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Abstract—VLSI design companies are now mainly fabless and
spend large amount of resources to develop their Intellectual
Property (IP). It is therefore paramount to protect their IPs
from being stolen and illegally reversed engineered. The main
approach so far to protect the IP has been to add additional
locking logic such that the circuit does not meet the given
specifications if the user does not apply the correct key. The
main problem with this approach is that the fabless company
has to submit the entire design, including the locking circuitry, to
the fab. Moreover, these companies often subcontract the VLSI
design back-end to a third-party. This implies that the third-
party company or fab could potentially tamper with the locking
mechanism. One alternative approach is to lock through omission.
The main idea is to judiciously select a portion of the design
and map it onto an embedded FPGA (eFPGA). In this case, the
bitstream acts as the logic key. Third party company nor the fab
will, in this case, have access to the locking mechanism as the
eFPGA is left un-programmed. This is obviously a more secure
way to lock the circuit. The main problem with this approach is
the area, power, and delay overhead associated with it. To address
this, in this work, we present a framework that takes as input an
untimed behavioral description for High-Level Synthesis (HLS)
and automatically extracts a portion of the circuit to the eFPGA
such that the area overhead is minimized while the original timing
constraint is not violated. The main advantage of starting at the
behavioral level is that partitioning the design at this stage allows
the HLS process to fully re-optimize the circuit, thus, reducing
the overhead introduced by this obfuscation mechanism. We also
developed a framework to test our proposed approach and plan
to release it to the community to encourage the community to
find new techniques to break the proposed obfuscation method.

Index Terms—Functional Locking, Obfuscation, High-Level
Synthesis, eFPGA

I. INTRODUCTION

Computer architecture is currently undergoing a dramatic

transformation. The breakdown of Dennards scaling implies

that power densities are not constant anymore and hence,

new architectures are required in order to continue building

faster computers within the smallest possible power budget.

The main approach so far has been to build heterogeneous

architectures, both at the computer level, by having CPUs with

GPUs and/or FPGAs, and at the chip level ,by having Systems-

on-Chip (SoC) composed of multiple embedded processors,

memory, interfaces, and different types of dedicated hardware

accelerators. These accelerators are often the main differenti-

ating component of different competing SoC offerings. It is

therefore important for companies to protect these IPs from

being reversed engineered.

Various techniques have been proposed to address this

issue. These include camouflaging [1], split manufacturing [2],

Fig. 1. Logic locking overview. (a) Traditional flow based on logic locking
circuitry. (b) Logic locking through omission using an eFPGA.

and functional locking [3]–[6]. Out of all these techniques,

functional locking is the most widely adopted because it is

more practical and easier to implement. One of the main

problems with traditional functional locking methods, is that

they rely on inserting the locking mechanism within the

design, which in turn is sent to a potentially untrusted fab

to be fabricated. This implies that the fab always has access

to the entire design, including the locking circuitry. Moreover,

many hardware design companies now focus on developing

the overall architecture and often sub-contract the VLSI design

back-end (physical design) to a third-party. These third-party

companies also have access to the locking mechanism. One

promising new approach is to functionally lock a circuit

through omission [7]. The main idea is to map a portion of the

design onto an embedded FPGA (eFPGA). Fig. 1 provides an

overview of the main differences between these two locking

mechanisms. Fig. 1 (a) shows an example of a traditional

approach. In this case, two extra gates are added to the circuit.

The key in this case for these two gates would be OR=0 and

AND=1. This key is typically stored in an external tamper

proof memory as shown in the figure. Fig. 1 (b) shows the

new approach where a portion of the design is mapped onto the

eFPGA. In this case, the bitstream that configures the eFPGA

acts as the logic locking key, and because this bitstream is

not made available to third party companies, including the

fab, it is harder if not impossible to break. There are multiple

commercial eFPGAs that allow to license their eFPGAs as

IPs that are inserted as a hardmacro directly into an ASIC

design. These include traditional fine-grain eFPGAs [8] and

coarse-grain eFPGAs [9].

One advantage of this approach is that FPGA bitstreams

are normally encrypted, and hence, can be stored in a regular

external memory (PROM). One of the main problems with
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Fig. 2. Motivational Example. (a) High-Level Synthesis inputs. (b) Main High-Level synthesis steps. (c) Results of HLS parser stage (front-end). Different
CDFGs are generated based on the synthesis directives annotated at the original C code. (d) Result of HLS scheduling stage when different portions of
the CDFG are mapped onto an eFPGA, (e) Final output of the proposed flow showing that the original latencies are preserved, but that the split design
(ASIC+eFPGA) lead to circuits with larger area.

this approach is the potential large overheads involved with

mapping a portion of the design to the eFPGA. The authors

in [10] reported a 10× area, delay and power overheads

of FPGAs vs. ASIC designs. It is therefore important to

develop a framework that can minimize this overhead. It

should nevertheless be noted that for some applications the

area overhead is not as important. One example are military

applications. Most military agencies and their suppliers are

currently forced to use a very limited number secure foundries.

This makes their ICs extremely expensive. Being able to use

cheaper, but less secure foundries overseas, would make their

ICs much cheaper, even if the ICs are larger due to the eFPGA

embedded in them to make them secure.

Raising the level of abstraction from the RT-level to the

behavioral level could help minimizing this overhead. High-

Level Synthesis (HLS) takes as input an untimed behavioral

description and generates efficient RTL code (Verilog or

VHDL). HLS has many advantages over traditional RT-level

approaches. It reduces the number of lines of code required,

thus, speeding up the design and verification process. It also

allows generating different micro-architectures from the same

behavioral description with unique area vs. performance and

power trade-offs. This is typically done by setting different

combinations of synthesis directives in the form or pragmas

(comments) at the source code. For example, this allows to

control how to synthesize arrays (RAM or registers), loops

(unroll, not unroll, partial unroll or pipeline), and functions

(inline or not). The HLS process itself can be divided into

three main phases: Phase 1 parses the behavioral description

and performs technology-independent optimizations such as

constant propagation, dead code elimination, and automatic

bitwidth reduction. The output of this phase is typically an

intermediate representation of the input description in the form

of a Control Data Flow Graph (CDFG). Phase 2 performs

the three main steps in HLS: resource allocation, scheduling,

and binding. Finally, phase 3 generates the resultant circuit in

Verilog or VHDL.

The main idea behind this work is to split the CDFG gen-

erated after phase 1 (CDFGCin) into the part to be mapped

onto the ASIC (CDFGASIC ) and the part to be hidden

and thus, mapped to the eFPGA (CDFGeFPGA) such that

CDFGCin = CDFGASIC ∪CDFGeFPGA. The partitioned

design is in turn synthesized (phase 2 of HLS) separately

(ASIC and eFPGA) with different constraints such that the

generated circuit complies with the original specifications.

HLS basically provides a way to re-optimize the partitioned

description as opposed to partitioning the design at the RT-

Level or gate netlist level where the circuit implementation

has already been set and, hence, there are fewer opportunities

for re-optimizations. It is therefore tempting to investigate

whether the overheads associated with using eFPGAs for logic

locking can be minimized through HLS. In summary, the main

contributions of this work are:

• We present an automated framework that partitions an

untimed behavioral description for HLS into a visible

ASIC part, and obfuscated eFPGA part.

• We perform extensive experimental investigation whether

the proposed approach works for a variety of CDFGs

generated from HLS design space exploration and include

a flexible security evaluation platform.

II. MOTIVATIONAL EXAMPLE

Fig. 2 shows a motivational example of a behavioral de-

scription that computes the moving average of eight num-

bers. Fig. 2(a) shows the other inputs required to synthesize

the behavioral description. In particular, a technology library

(techlib) that contains the area and delay of functional units

and a target HLS synthesis frequency (fmax). The example

also shows the use of synthesis directives in the form of

pragmas to force the HLS process to synthesize the circuit in

a particular way. In this case, the main loop that accumulates

the 8 numbers can be fully unrolled, partially unrolled, or not
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unrolled. When parsing the behavioral description, the HLS

front-end reads these synthesis directives in and generates a

CDFG based on the data dependencies in the code and these

pragmas. In this example, three possible CDFGs are shown

in Fig. 2(c): CDFGall, CDFGpartial and CDFGno for the

cases that the main loop is fully unrolled, partially unrolled

(unroll factor of 2), or not unrolled at all. As mentioned in the

introduction, this front-end also does technology-independent

optimizations. The main HLS stage then times the CDFG

based on the data dependencies, the delay of the different

functional units (FUs), and the target synthesis frequency. As

shown, in this case, fmax=100MHz, which implies a critical

path delay of 10ns. This, in turn, translates into the scheduler

placing CDFG operations into 10ns clock steps. Because in

this example, the delay of the adders=2ns, all the operations

in the fully unrolled case can be chained and scheduled within

one clock cycle at the output of the main HLS stage (Fig. 2(d).

The main idea in this work is to extract portions of the

CDFG and map them onto an eFPGA such that the original

schedule is preserved, as shown in the Fig. 2(d). If, e.g., a

group of three adders are mapped onto the eFPGA resulting

in a delay of 8ns, then the entire CDFG can still be scheduled

in a single clock cycle and, hence, the final circuit latency is

preserved while meeting the target synthesis frequency.

Moreover, designs of different area vs. latency trade-offs are

obtained based on the pragmas specified at the input descrip-

tion as shown. Previous work [11] presented a similar idea

but does the partition directly at the behavioral description.

This has two unintended consequences: First, the technology-

independent optimizations cannot be done when the behav-

ioral description is split into two independent descriptions.

Secondly, it does not allow for fine-grained exploration. In

the example shown here, only the entire accumulation of the

8 numbers could be mapped to the eFPGA, but not individual

FUs as these are not visible at the behavioral description level

(a single operation in the C code can lead as to multiple FUs).

Finally, Fig. 2(e) shows the output of the proposed flow,

where the red squares show Pareto-optimal designs obtained

through specific combinations of pragmas in the behavioral

description and the blue circles show the Pareto-optimal de-

signs for the ASIC+eFPGA configuration. It can be observed

that in all cases, the latency in clock cycles is preserved as the

use of the eFPGA should not lead to additional clock cycles

introduced by the obfuscation method. The area between the

two solutions is, therefore, the area overhead that the eFPGA-

based locking introduces and that this work tries to minimize.

Our proposed flow will consequently make use of the slack

reported by the HLS process for each scheduled control step,

in order to determine which portions of the CDFG should be

mapped onto the eFPGA such that the timing is not altered,

while guaranteeing that the generated circuit is secure. The

next section describes our metric for security and the threat

model used in this work.

III. RELATED WORK

The protection of intellectual property (IP) is an extremely

important topic and has received a lot of attention recently.

Even more these days where most hardware design companies

are now fabless and have to rely on fabs mostly located

offshore to manufacture their ICs. To protect these companies

a myriad of techniques have been proposed. These vary from

camouflaging [1] to split manufacturing [2] and functional

locking [3], [4]. This last technique is seen as the most

promising, as it is the least expensive and easiest to implement.

The basic idea is to add a locking circuitry to the design such

that the circuit does not follow the intended specifications if

the logic key is incorrect. This can imply that the outputs

are incorrect [3], [4] or that the circuit’s performance is

degraded [5]. Some functional locking techniques have been

specifically proposed at the behavioral level [6]. In this work

the authors proposed a method to transform the original behav-

ioral description for HLS to make the generated circuit harder

to reverse engineer during chip fabrication, while a key is later

inserted to unlock the functionality. Balajandran et al. [12]

presented a method that takes into account the scheduling

in HLS to insert different types of locking primitives to the

behavioral description for HLS. Badier et al. [13] introduced a

key-based obfuscation approach to protect BIPs during cloud-

based HLS. All of this work makes use of traditional locking

mechanisms that insert extra circuitry in the original circuit.

A relatively new idea is to lock by omission. This implies

judiciously extracting a portion of the design to be protected

and implementing it on an eFPGA [7], [11]. This approach

is obviously more secure than the traditional method as the

bitstream for the eFPGA now acts as the logic key, and the

number of combinations grows with the total number of unique

logic functions that can be mapped onto the eFPGA. Moreover,

the locking circuitry is not visible to third parties. Recently

the authors in [14] used this approach to hide the differences

between two functionally equivalent accelerators. One obvious

problem with this approach is the overhead associated with

using FPGAs which we have addressed in this work.

IV. SECURITY ANALYSIS AND METRIC

This section introduces the threat model assumed in this

work and studies the security of our framework. It also

introduces a security metric that drives our proposed method.

Threat model: The threat model assumed in this work assumes

that the attacker has full access to the netlist of the obfuscated

design, with the exception of the part mapped onto the eFPGA,

and also access to an unlocked, fully working chip that the

attacker can interrogate in order to try to find the logic function

mapped onto the eFPGA. We also assume that the eFPGA

bitstream is encrypted as typically done in commercial FPGAs.

Security Analysis: There are two main attacks that could be

used to determine the logic function mapped onto the eFPGA:

(1) Brute force enumeration or (2) SAT attack. In the first

case, the attacker would need to exhaustively enumerate all

possible bitstream configurations for the eFPGA until the

exact bitstream that replicates the fully-functioning circuit
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Fig. 3. Overview of proposed flow composed of two steps.

is matched. This implies having access to a fully working

chip (available from the market) and using it as an oracle to

compare the outputs. This is obviously very time consuming as

the bitstream is typically much larger than a traditional locking

key as it encodes the functionality of the LUTs and also the

interconnect between them. The runtime for a brute force

attack would be: TBF = 2bitstream × (loadbitstream + exec),
with bitstream being the number of bits that comprise the bit-

stream, loadbistream the time required to load a new bitstream

to the eFPGA and exec the time required to run at least one

test vector on the newly configured eFPGA which is a function

of the latency of the circuit (in clock cycles) and the maximum

frequency. Thus, execi = Li/fmax. It can be observed that the

runtime of the attack grows exponentially with the size of the

bitstream, leading to extremely long run times for even small

bitstream sizes. In the SAT-attack case, the attacker finds the

correct key by extracting the Boolean function from the netlist

building a miter circuit with two copies of the logic circuit to

be obfuscated and finding distinguishing input patterns (DIP)

for which two different keys generate different outputs. Keys

that lead to incorrect outputs are then discarded until no further

DIPs can be found, at which point the SAT-solver returns the

correct key. This method has the ability to remove invalid keys

at a much faster rate than the brute force enumeration attack

and hence, is much faster. Based on this, SAT-attacks cannot

be immediately applied to this obfuscation approach as the

Boolean function cannot be extracted from the un-programmed

eFPGA.

One additional threat to any logic locking mechanism is a

removal attack. In this case, the third-party company that has

access to the design removes the locking mechanism bypassing

it completely. This is obviously not possible here as the circuit

will not work correctly without the eFPGA.

Security Metric: Finally, one key parameter required by our

proposed method is a security metric to effectively measure

how secure a partition is. The HLS process reports the area,

and performance of the generated circuit, but we also need

to guarantee that the generated configuration is secure and

discard the ones that are not. Simply using the equation for

brute force attack is one option, as it gives an indication of

the runtime required to find the logic function mapped onto

the eFPGA. The problem with just using this function is that

it will tend to accept configurations that only map a single

CDFG operation onto the eFPGA, e.g., a single addition or

multiplication. In these cases, the attacker could reasonably

guess the solution. Thus, in this work we use the bitstream size

and the diversity of operations (divope) mapped to the eFPGA

as security metric: S = bitstream × divope. Intuitively, the

larger the variety of logic operations mapped onto the eFPGA,

the harder it is to guess as oppose to just mapping a single

type of operations, e.g., adders or multipliers.

V. PROPOSED OBFUSCATION METHOD

Fig. 3 shows an overview of the complete proposed flow,

while algorithm 1 summarizes the first part of our flow. The

flow takes as input the behavioral description to be locked

(Cin) in either ANSI-C or SystemC, the technology libraries

for the ASIC (techlibASIC ) and eFPGA (techlibeFPGA), the

target HLS synthesis frequency (fmax), a library of pragmas

for the behavioral description (pragmalib) and the minimum

security required (Smin). The flow produces RTL code of the

Pareto-optimal design configurations with different area (A)

vs. latency (L) trade-offs (POi = {Ai, Li}) where each design

meets the specified security metric and where each design is

divided into a portion to be mapped onto the ASIC and another

onto the eFPGA (POi = RTLasic ∪ RTLefpga). The flow

is composed of two main steps. Step 1 generates the CDFG

for the given behavioral description and extracts different

portions of the CDFG to the eFPGA based on the timing

slack available, minimizing the area and delay overheads and

meeting Smin. It then synthesizes (HLS) the partitioned design

targeting only the eFPGA and back-annotating the area and

timing result such that the HLS process can re-optimize the

synthesis of the ASIC portion. Step 2 sets a different mix of

pragmas in the C code in order to generate CDFGs of different

nature and thus, generate secure configurations with different

trade-offs. Step 1 is repeated for this new CDFG. These steps

are described in detail below:

Step 1: Selective CDFG Partition: This first step takes

as input the behavioral description to be obfuscated (Cin),

including a specific set of synthesis directives (pragmas), and

synthesizes (HLS) it targeting the ASIC portion only (line 1).

The output from the HLS process is the RTL description and

different reports that our method requires for the partitioning.

In particular, the result of the HLS scheduling stage that

indicates which portions of the CDFG have been mapped to

individual clock step (scheduled CDFG) sCDFGCin, and the
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Algorithm 1: Selective Extraction to eFPGA

input : Cin, fmax, techlibASIC , techlibeFPGA

Cin: Original behavioral description to be locked
fmax: Target synthesis frequency
techlibASIC : ASIC technology library
techlibeFPGA: eFPGA technology library
Smin: Minimum acceptable security

output: RTLASIC , RTLeFPGA

RTLASIC : RTL of the ASIC portion of the design
RTLeFPGA: RTL of the eFPGA portion of the design

1 (sCDFGCin, time.rpt) = HLS(Cin, techlibASIC , fmax);
2 CSList = sort slack(sCDFG, time.rpt);
3 OPList = sort num ope(sCDFG);
4 for (csi ∈ CSList) do
5 for (opi ∈ csi) do
6 clusteri ← cluster nodes(opi);
7 dly clusteri = est dly(clusteri, techlibeFPGA);
8 S clusteri = est sec(clusteri, techlibeFPGA);
9 if (dly clusteri ≤ csi(slack)) then

10 if (Smin ≤ S clusteri) then
11 ListCluster[x++]← clusteri;
12 end
13 end
14 end
15 end
16 for (clusteri ∈ ListCluster) do
17 (Ai, Dlyi) = HLS(clusteri, techlibeFPGA, fmax);
18 ASICi = anotate asic(Ai, Dlyi);
19 Si(Ai, Dlyi, Li) = HLS(Cin, techlibASIC , fmax);
20 SList[x++]← Si;
21 end
22 SListsorted = sort solutions(SList);
23 Ssmallest = return smallest overhead(SListsorted);
24 return (Ssmallest = {RTLASIC +RTLeFPGA})

timing report (timing.rpt) indicating the delay of each control

step and the available timing slack with respect to fmax.

The pragmas are important, as shown in the motivational

example, because, based on the mix of distinct pragmas, a

different CDFG is generated.

This step then continues by parsing the generated sched-

uled CDFG (sCDFGCin) and sorting the individual con-

trol step based on slack available from largest to small-

est. CSList = {cs1, cs2, . . . , csn} with tslack(cs1) >
tslack(cs2) > tslack(csn) (line 2).

The method also traverses the scheduled CDFG (sCDFG)

and records the number of times that individual operations

appear on different control steps. (line 3). The main reason

for this is that HLS is very efficient doing resource sharing.

In resource sharing, a single functional unit (FU) is shared

across different operations in the CDFG. This typically leads

to smaller circuits. The main problem with mapping shared

operations to the eFPGA is that we have observed that it

leads to timing issues, as different control step have different

amounts of slack. From the security point of view, resource

sharing might actually be beneficial as it allows to map

multiple operations to the eFPGA with a minimum area

overhead. The result is OPList = {op1, op2, . . . , opn} with

Num(op 1) < Num(op 2) < Num(op n).

The method proceeds by clustering in each control step (csi)
operations that have a security metric Si larger than Smin

and delays smaller than the available slack in that control

step (lines 4 to 15). All the clusters that meet the constraints

are added to a cluster list (line 11). Although exhaustive

enumerations might lead to a large number of combinations,

the number of CDFG nodes in a single control step is typically

small. It should be noted that the nodes in the csi do not need

to be directly connected. The delay of every cluster is then

estimated by extracting the delay of each operation mapped

onto the eFPGA from the FPGA technology library passed

as input to the flow (techlibeFPGA) (line 7). The method

uses the area in terms of LUTs used for that operation as an

approximation of bitstream size from the FPGA technology

library. This process is repeated for each control step.

Next, all the valid solutions are synthesized (HLS) to get the

actual area and delay information for the operations mapped

onto the eFPGA only (line 17). The results in terms of area

and delay are back-annotated to the rest of the circuit to be

synthesized on the ASIC (lines 18 and 19) . The HLS process

can then re-optimize the partitioned circuit, typically leading

to the same schedule as the original ASIC-only design. Finally,

all the results are sorted based on the ability to meet the

original schedule, and within those solutions, the one with

the smallest area overhead is selected (lines 22 and 23). It

should be noted that our proposed method is independent of

the target HLS frequency (fmax). One could think that lower

frequencies increase the amount of logic that can be mapped

onto a single control step. Nevertheless, the nature of the HLS

process automatically accounts for this and adjusts the amount

of logic mapped onto each control step based on fmax.

Step 2: Pragma Update: This second step is optional and

automatically updates the mix of pragmas specified in the

behavioral description. As shown in the motivational example,

different pragma mixes lead to a completely new CDFG with

unique area vs. performance trade-offs. The main idea behind

this step is to fully characterize the behavioral description in

terms of area vs. performance when a portion is mapped to the

eFPGA. It also helps to investigate whether the overhead of our

proposed method increases or decreases with different CDFG

structures. If the user knows exactly the timing required for

the circuit and fixes the pragmas in the behavioral description,

then this phase is not required.

The problem of automatic pragma settings has been widely

studied in the area of HLS design space exploration (DSE).

A recent survey summarizes the main contributions in this

domain [15]. In this work, we make use of recent observations

presented in [16], [17] that make use of transfer learning from

previous HLS DSE results onto a new unseen description to be

explored. Basically, it was shown that behavioral descriptions

with similar structure have identical pragma combinations that

lead to the same Pareto-optimal designs. Thus, the proposed

pragma update phase parses the description (Cin) and builds an

Abstract Syntax Tree (AST) from its dependencies. It extracts

all the loops within the description and computes the similarity
index with other designs that have been pre-characterized in

a database. This index is based on perceptual hashing for the

AST. Perceptual hashing is an algorithm commonly used in

digital forensics. The key advantage of perceptual hashing is
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that it is robust enough to take into account dissimilarities but

flexible enough to distinguish between different micro-kernel

structures. The database has already been generated (omitted

for blind review).
The method then goes to the database and finds the AST that

has the smallest Hamming distance and extracts the pragma

combinations used to generate the Pareto-optimal designs for

that design. This method is extremely fast as the entire process

does not require any actual synthesis.
Step 1 is repeated for every pragma combination that leads

to Pareto-optimal design.

TABLE I
EXPERIMENTAL SETUP

HLS Tool NEC CyberWorkBench 6.1
HLS Frequency 100MHz

ASIC Logic Synthesis Synopsys Design Compiler 2018.06-SP1
FPGA Logic Synthesis Intel Quartus Prime Pro. 21.1

RTL Simulator Synopsys VCS 0-2018.06
Synthesis Technology Nangate 45nm Opensource

FPGA Technology Intel Stratix V

VI. EXPERIMENTAL RESULTS

Table I shows an overview of the experimental setup used

to test our proposed flow. The HLS tool used is NEC’s

CyberWorkBench v. 6.1 and the target synthesis frequency

(fmax) is set to 100MHz in all cases (10ns control step delay).

The target ASIC technology is Nangate OpenCell 45nm, and

we use Intel Stratix V as a proxy for an embedded FPGA. The

final ASIC partitions is synthesized using Synopsys Design

Compiler 2018.06-SP1 and the FPGA partition with Intel

Quartus Prime Pro 21.1 to get accurate area results. The work

in [18] is used to convert the FPGA logic resources into μm2.

This allows us to compare the area overhead directly. We also

perform a functional RTL simulation of the partitioned design

and compared it with the ASIC only one to make sure that

the partitioned circuits is functionally correct. Synopsys VCS

0-2018.06 is used as RTL simulator. The security metric S
was set such that the time to find the correct bitstream would

take at least 1 year using a state-of-the-art computer to find

the correct bitstream using an exhaustive search and forcing

all benchmarks to at least map two CDFG operations on the

eFPGA.
Eight different benchmarks from the open-source Synthe-

sizable SystemC benchmark suite (S2Cbench) [19] were used

to test our proposed methodology. The benchmarks selected

are from different domain and different complexities. Table II

summarizes their main characteristics in terms of their domain,

lines of code, number of adders and multipliers when the loops

are fully unrolled, number of arrays and finally the number

of loops. The benchmarks have been grouped based on their

complexity into small, medium and large. This should help

fully characterize our proposed design obfuscation method.
Two set of different experimental results are presented. The

first experiments measure the overhead introduced by our

method compared to the ASIC only design as well as the

state of the art. The second set of experiments analyze the

robustness of our proposed method to reverse engineering.

TABLE II
BENCHMARK DETAILS

Bench Domain Lines Mul Add Arrays Loops

S
m

al
l ave16 DSP 24 0 16 1 1

fir DSP 105 9 9 2 1

M
ed

interp DSP 212 8 21 1 5
kasumi encrypt 286 0 22 16 8
snow3G encrypt 372 9 36 3 4

L
ar

g
e decim DSP 422 5 50 10 16

jpeg image 480 121 98 11 32
cnn image 331 15 446 16 51

Overhead Analysis: Table III compares our proposed

method vs. an ASIC only implementation (ASIC) and an

ASIC+eFPGA based on [11] that does the partitioning at the

source code level when all the loops are unrolled and all

the functions inlined in order to find the design with the

highest performance (lowest latency). The results show that

our proposed method does never change the original latency

of the circuit. Although the delay increases in most cases,

it only does on average by 14% while always being able to

meet the target synthesis frequency of 100MHz. This is a

significant improvement over the state-of-the-art, which in all

cases increased the latency by an average of 2× with respect

to the original ASIC-only design.

Our proposed method also leads to a much smaller area

overhead of an average of 1.70×, while the previous work

leads to circuits on average 5.59× larger. That is a 3.29× area

improvement while keeping the latency equal to the original

circuit.

Fig. 4 shows the results when the Pareto-optimal designs

for each of the benchmarks are obfuscated through our pro-

posed method. Every point in the curve represents a different

CDFG generated through different combinations of synthesis

options. It can be observed that in all cases, our proposed

method guarantees to keep the original latency constant while

leading to a much smaller area overhead than previous work.

On average, across all of the benchmarks and all of their

different implementations, our proposed method leads to an

area overhead of 1.57×, while previous work leads to an

average area overhead of 8.74×. Moreover, it is important to

observe that our proposed method guarantees in all cases that

the original latency is preserved.

Finally, Table IV compares the two obfuscation methods

in terms of their runtime to obtain the results depicted in

Table III. Our proposed method is on average 1.82× slower

due to the larger search space that needs to be evaluated. The

running time is nevertheless still very small, e.g., it takes at

most 11 minutes for the cnn benchmark. We believe that this

is still acceptable, considering the benefits introduced by our

flow.

In summary, based on these results, we can claim that our

proposed method is more efficient than previous work, leading

to smaller overheads while maintaining the original circuits’

timing.

Security Analysis: The next set of results investigate the ro-

bustness of our proposed method to being reverse engineered.

The assumptions that we make here is that the rough designer
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TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD (ASIC+EFTPGA), ASIC ONLY IMPLEMENTATION AND THE OBFUSCATION METHOD IN [11] (ALL

LOOPS UNROLLED AND ALL FUNCTIONS INLINED).

Benchmark
ASIC ASIC+eFPGA [11] ASIC+eFPGA (Proposed)

Area Delay Latency Area Delay Latency Area Delay Latency
[μm2] [ns] [clk cycles] [μm2] [ns] [clk cycles] [μm2] [ns] [clk cycles]

Small
ave16 805 2.42 1 37,919 2.57 2 11,847 3.47 1

fir 5,375 3.14 1 85,341 6.85 2 6,740 8.04 1

Medium
interp 15,610 7.02 1 148,311 9.09 2 17,615 7.48 1

kasumi 70,566 4.41 2 107,006 4.41 9 79,861 4.41 2
snow3G 12,294 1.31 10 63,861 1.68 41 21,390 1.31 10

Large
decfilt 25,001 9.95 5 81,486 9.97 6 41,540 9.95 5
jpeg 76,439 9.45 450 151,231 9.78 456 76,786 9.97 450
cnn 181,950 9.12 33 481,950 9.54 37 186,950 9.957 33

Average 5.9 7.2 6.8
Geomean 19,437 5.9 108,691 11.5 33,077 5.9

TABLE IV
RUNTIME COMPARISON ASIC+EFPGA [11] VS. PROPOSED METHOD

Bench ASIC+eFPGA [s] ( [11]) ASIC+eFPGA [s] (Proposed) Diff
ave16 37 53 1.43

fir 21 58 2.76

interp 96 157 1.64
kasumi 191 423 2.21
snow3G 263 325 1.24

decfilt 113 248 2.19
jpeg 350 454 1.30
cnn 379 676 1.78

Avg. 1.82

that wants to reverse engineer the design can lawfully purchase

the IC from the market and that he can fully reverse engineer

the ASIC portions of the IC as well as identify the eFPGA

part identifying the number of LUTs and switch boxes. This

has been shown possible through different methods including

electromagnetic imaging [20], [21]. We also assume that the

bitstream is fully encrypted and thus, cannot be reversed

engineered, but that the attacker is able to generate valid

bitstreams to program the eFPGA, although this by itself is

not trivial.

Fig. 5 shows an overview of the security evaluation platform

that we created to simulate how the attacker could break

our proposed obfuscation scheme. For this, we synthesize the

ASIC portions of the design using Synopsys Design Compiler.

For the FPGA portion we create a model of the eFPGA using

VTR [22] and program that model through a bitstream gener-

ator. This is done by describing the target eFPGA architecture

using VTR’s XML-based architecture description replicating

the Intel Stratix V architecture used in this work as proxy for

an eFPGA. We then synthesize the RTL portion of the design

to be mapped onto the eFPGA using ABC, followed by the

technology mapping of the netlist and placing and routing the

netlist on the eFPGA fabric to obtain the post-implementation

netlist. A simple bitstream generator is created for the placed

and routed netlist.

This netlist is integrated with the ASIC portion netlist. We

also build, as shown in Fig. 5, a testbench that takes these

netlists as DUT. This testbench takes a minimal subset of

test vectors (TVs) as inputs. Here we used only 10 as this

is enough to discard if the eFPGA is configured incorrectly.

The testbench also contains the golden outputs for those 10

test vectors. The entire system can then be simulated and the

generated outputs are automatically compared with the golden

outputs. A match signal is generated if the functionality is

correct, signaling that the eFPGA was programmed correctly

and no match if it is not.
This platform is used to test the robustness of our proposed

flow. As shown in Fig. 5 we also developed a bitstream

generator. This bitstream generator knows the eFPGA structure

and the bitstream format (taken from the correct bitstream

generated from the VTR flow) and generates new bitstreams

that in turn correspond to new post-implementation netlists,

and hence, a new eFPGA configuration. The testbench feeds

the simulation result back to the bitstream generator to alert

the attacker if the generated bitstream is correct or not, who

can then continue generating new bitstreams until a valid one

is found.
We evaluated this flow for the eight benchmarks and

left it running for one week each time without success of

replicating the correct bitstream that successfully configured

the eFPGA. The bitstream generator is based on a pseudo-

random generation approach that generates random bitstream

configurations, but only considering valid bitstreams. Many

bitstreams (e.g., all 0’s or all 1’s or bitstreams that lead to

short circuits) are discarded, thus, reducing the search space.

The total number of combinations of valid bitstreams are set

in our proposed partitioning method to at least 500 million.

This is the equivalent to finding the correct bitstream in one

year considering that each evaluation would takes 100ms.
One of the obvious problems with this platform is that it is

simulation based, which makes it relatively slow. We measured

average simulation times of 1s to 3 seconds for benchmarks

of different complexities for a single evaluation. In reality

the attacker would have access to the real hardware which

would allow him to theoretically evaluate each new bitstream

faster than our simulated approach. We say theoretically
because every newly generated bitstream would need to be

encrypted using the public key available to the attacker and

the bitstream would need to be scanned into the eFPGA before

the functionality can be evaluated. This is also relatively time

consuming considering that the bitstream now also has to be

decrypted and typically also decompressed at the eFPGA side.
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Fig. 4. Obfuscation results for different versions of the same application
comparing ASIC only baseline vs. our proposed and previous work

Embedded Systems Security and Trust (CHEST) through

project #P7 20.

VIII. CONCLUSION

This work has presented a method to efficiently obfuscate

a circuit generated from High-Level Synthesis by judiciously

extracting a small portion of it onto an eFPGA. Making use of

the detailed timing information reported by the HLS process

allows our proposed method to maintain the original timing.

Our proposed method is extended to generate a set of Pareto-

optimal configuration by setting different mixes of synthesis

directives in the form of pragmas. Experimental results show

that our proposed method works well and that it is a competi-

tive alternative to traditional functional locking methods while

being more secure because the eFPGA bitstream now acts as

a locking key.
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