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Abstract— A proof-of-concept hardware neural network for the
purpose of analog built-in self-test is presented. The network
is reconfigurable into any one-hidden-layer topology within the
constraints of the number of inputs and neurons. Analog oper-
ation domain of synapses and neurons in conjunction with the
digital weight storage allow fast computational time, low power
consumption and fast training cycle. The network is trained in
the chip-in-the-loop fashion with the simulated annealing-based
parallel weight perturbation training algorithm. Its effectiveness
in learning how to separate nominal from faulty circuits is
investigated on two case studies: a Butterworth filter and an
operational amplifier. The results are compared to those of the
software neural networks of equivalent topologies and limitations
concerning the practical applicability are discussed.

I. INTRODUCTION

Built-in self-test (BIST) is the ability of an integrated circuit

(IC) to examine its own functional health, in order to detect

and report faults that may jeopardize the reliability of the

application wherein it is deployed. BIST can be used for off-

line test, aiming to simplify test resources, speed up test time,

facilitate fault diagnosis, and obtain valuable information for

yield enhancement in future IC generations. However, the key

advantage of BIST is that it can also be performed on-line

in the field of operation and, thus, target malfunctions due to

environmental impact and wear. Therefore, BIST is vital to ICs

that are deployed in safety-critical applications (e.g. avionics,

medicine, nuclear reactors), sensitive environments (e.g. space

operations), and remote-controlled systems.

Successful application of BIST in the analog domain has

long posed a great challenge. Traditionally, analog circuits

are tested by measuring directly all performance parameters

and subsequently comparing them to the specifications. This

typically involves complex automatic test equipment (ATE)

and demands lengthy test times. Evidently, migrating ATE

capabilities onto the IC for the purpose of BIST is impractical.

A promising solution relies on simple on-chip sensors to

extract informative measurements. These measurements can

be mapped to the performance parameters using the alternate

test paradigm [1], [2], [3]. Alternatively, instead of predicting

individual performance parameters, one can directly predict

the outcome of the standard specification test. This approach

narrows down to a binary classifier, which produces a pass/fail

decision indicating the health status of the circuit [4], [5], [6].

The above mappings can be performed externally on the

ATE or using software on the baseband DSP processor [7].

The latter choice points to a true stand-alone BIST. However, a

DSP processor might not always be accessible or even present

on the chip and might not have the necessary power to learn

the mapping through a training phase. In addition, the interface

of the analog circuit to the DSP processor would require

A/D converters. Finally, low power is a serious concern when

BIST is to be used for concurrent test or frequent on-line

tests in battery operated systems. A more aggressive approach

would be to build the mapping on hardware. The classification

approach is particularly suitable for on-chip integration since

it can be implemented using hardware neural networks that

accept analog inputs, provide a binary response, and operate

in the sub-threshold regime.

The BIST architecture that we envision is illustrated in

Fig. 1. When BIST is enabled, the circuit is driven by the

test stimulus and a measurement pattern is recorded by the

available on-chip sensors. The measurement pattern is next

processed through the neural classifier and is classified as a

valid or invalid code-word pointing to a functional or faulty

operation, respectively. The classifier learns to perform this

mapping in a training phase that is carried out before BIST is

enabled. This phase employs a representative data set of the

circuit which is stored off-chip.

The focus of this work is the classifier, which is a generic

BIST component independent of the circuit under test. In

particular, the aim is to demonstrate the feasibility of learning

on-chip complex classification problems related to BIST. To

this end, we present the design of a classifier as a stand-alone

Fig. 1. Proposed BIST architecture.
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IC chip, we discuss its learning strategy, and we demonstrate

its efficiency on two classification problems stemming from

a Butterworth low-pass filter and an operational amplifier.

Our primary objective was to design a reconfigurable and

flexible architecture so as to study various hardware classifier

models and gain insight into their performance and limitations

compared to their software counterparts. This study serves

as a proof-of-concept of on-chip learning and classification.

The issue of cost-effective implementation requires further

investigation and will be the subject of future research work.

II. NEURAL NETWORK DESIGN

A. Background

In designing an analog neural network one has to consider a

number of important factors. Appropriate connectionist topolo-

gies, training algorithms, long-term weight storage are among

the most crucial. In addition, there are design constraints

imposed by a BIST application itself, such as small area

overhead, limited pin number, negligible interference, etc. Fur-

thermore, one has to consider implications of the technology

in which a network is to be implemented. Digital CMOS

processes, which are becoming more popular for analog/RF

circuits, are plagued by process variation, mismatch, noise,

environmental factors, etc. There is a large body of literature

discussing these factors and various architectural considera-

tions [8], [9], [10], [11]. Further discussion, however, is outside

the scope of this work. The network presented herein was

designed with two key objectives in mind: reconfigurability

to explore various network models for a given application

and simplicity of training. The first was achieved by utilizing

control bits to program the connectivity of the network, while

the second by using digital weight storage in local RAM cells.

B. System Architecture

The chosen model for the neural classifier is a multi-layer

perceptron (MLP), which is a feed-forward network consisting

of several interconnected layers of neurons. Each node in this

network has a simple mathematical model shown in Fig. 2.

A synapse can be considered as a multiplier of an input

signal value by the stored weight value. A neuron sums

the output values of the connected synapses and passes the

resulting sum through a nonlinear activation function. Thus,

the entire network requires only two types of circuits, efficient

implementation of which is essential for large networks.

Fig. 3 illustrates a network architecture that can be recon-

figured into any one-hidden-layer topology within the given

number of inputs and neurons. The network consists of a

matrix of synaptic blocks (S) and neurons (N). The synapses

represent mixed-signal devices in the sense that they conduct

all computations in analog form, however, their weights are

implemented as digital words stored in a local RAM memory.

Multiplexers before each synapse are used to program the

source of its input: either the primary input (for a hidden

layer) or the output of other neurons (for an output layer). The

results of synapse multiplication are summed and fed to the

corresponding neuron, which performs a squashing function

Fig. 2. Neuron and synapse models.

Fig. 3. Reconfigurable network architecture.

and produces an output either to the next layer or the primary

output. The architecture is very modular and can easily be

expanded to any number of neurons and inputs within the

available silicon area. The output muliplexer is introduced to

reduce the number of pins and ADCs. The signal encoding

takes different forms: the outputs of the neurons are voltages,

while the outputs of the synapses are currents. In addition, all

the signals are in differential form increasing the input range

and improving noise resilience.

C. The Synapse Circuit

The basic function of a synapse is multiplication. Linear

multiplication, as dictated by the mathematical model, is area

expensive in analog ICs. As a result, it is often the case that

much simpler circuits exhibiting only approximate multipli-

cation behavior are preferred. The effect of nonlinearity in

synapse circuits is addressed in a number of resources, with the

solutions ranging from specially tailored backpropagation al-

gorithms [8] to the training algorithms independent of synapse

and neuron transfer characteristics [12].

The synapse circuit chosen for this design is a simple

multiplying DAC [13], which represents a differential pair with

programmable tail current (Fig. 4). A differential input voltage

produces a differential output current which is collected on

the summing nodes common to all synapses connected to one

neuron. The core of the circuit is a differential pair N10 −

N11 performing a two-quadrant multiplication, while the four
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Fig. 4. Synapse circuit schematic.

switching transistors P0 − P3 steer the current between the

two summing nodes for a four-quadrant multiplication. The

tail current is digitally controlled by the five switch transistors

N5 − N9 connecting the corresponding binary weighted

current sources N0−N4 to the tail node. Thus, the tail current

as a function of a digital weight word (bits B4−B0) can be

represented by

Itail =
4∑

i=0

Bi · Ii =
4∑

i=0

Bi · Ibias · 2
i−4 = Ibias ·W, (1)

where Bi are the bits of a weight word, Ii is the current

corresponding to the i-th bit, Ibias is the external biasing

current, and W is the weight value. The biasing voltages V bi
for the current sources of all synapses are supplied by a single

biasing circuit shown in Fig. 5. The external biasing current

Ibias sets the MSB current component, while the other currents

are generated internally using the ratioed current mirrors.

The input-output relation between the variables of the

synapse circuit depends on the region of operation of the

differential pair. In the above threshold region this relation

using the first order transistor models takes the following form

ΔIout = KNΔVin

√
IbiasW

KN

− (ΔVin)2. (2)

Here, ΔVin is the differential input voltage and KN is the

transconductance coefficient. Linear multiplication is only

valid for a narrow range of differential input voltages. As

can be seen from the above equation, this range depends

on both the tail current and the transconductance coefficient.

Since synapses account for the major part of power con-

sumption, the tail current was kept minimum, but enough

for the differential pair to operate just above threshold. The

external biasing current during actual experimentation was

about 1.5 μA producing the LSB current of about 90 nA,

which corresponds to the weak inversion. In view of the

small operating currents the relatively wide input range (about

800 mV for maximum weight) was achieved by selecting

transistors with long channels (14 μm). A proper choice of

Fig. 5. Current sources control circuit.

the common mode input voltage alleviates the problem of the

large gate-source voltage drops and keeps the current sources

in saturation. Other transistors were kept at minimum size.

D. The Neuron Circuit

The main function of a neuron circuit is to convert the sum

of differential currents from its synapses into a differential

voltage. There are two issues that need to be taken into account

when designing this circuit. First, if the output voltage is

propagated to the next layer, it should be compatible with

the input requirements of the synapses, i.e. have high com-

mon mode. Second, the circuit should handle relatively large

dynamic range of input currents. While the useful information

is contained in the difference, the common mode current

may vary significantly depending on the number of connected

synapses, as well as on their weight values. In the current

design, the common mode current ranges from 90 nA (one

synapse, minimum weight value) to 30 μA (10 synapses,

maximum weight values).

A circuit satisfying these requirements is shown in Fig. 6(a).

The central part of the circuit is responsible for common mode

cancellation by subtracting the input currents from each other

and producing a positive difference. The output currents of the

transistors N7 and N0 can be expressed as max(0, (I+
in
−I−

in
))

and max(0, (I−
in

− I+
in
)) respectively. Thus, only one of the

transistors can sink non-zero current at a time. The second

stage is a simple current-to-voltage converter composed of two

p-channel MOSFETs. It can be shown that when the transistors

are identical such circuit exhibits a linear to the first degree

characteristic of the following form

V = Vdd −

I

2KP (Vdd − 2VTP )
, (3)

where KP is the transconductance coefficient, VTP is the

threshold voltage, and Vdd is the supply voltage. The circuit

also provides a limiting function when the input current

exceeds the internal current flowing through the circuit, thus

introducing nonlinearity to the neuron characteristic. Note

from the formula above that the slope of the characteristic

depends on the KP , which is set at the design stage by

specifying transistor sizes. Finally, the output of the converter

is shifted upwards to meet the requirements of the high

common mode input voltage for the synapses in the following

layer. This level shifter is a simple source follower circuit

where the amount of shift is controlled by the Vbias. A shift

of 1 V is used in this design. Fig. 6(b) shows the simulated

transfer characteristic of the entire circuit and represents the

activation function of the neuron.
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(a) (b)

Fig. 6. (a) Neuron circuit schematic; (b) Neuron characteristic.

E. Training setup

The choice of a learning algorithm is critical for analog

neural networks and depends on what paradigm of training is

pursued, i.e. on-chip, off-chip or chip-in-the-loop. The latter

approach is particularly attractive since it requires little or

no on-chip support resulting in a compact solution. The chip

is trained by a computer program which uses the network’s

response to guide the search in the weight space. The gradient

of the error surface cannot be calculated, since the model of

the network is unknown in addition to the weights being non-

continuous. Instead, it can be measured by perturbing a set of

weights and observing a change in the error function. Such

weight perturbation-based algorithms are well suited for ana-

log implementations, because they make no assumption about

the network model, i.e. the synapse and neuron characteristics.

For this design we employed a popular algorithm called

parallel stochastic weight perturbation [12]. In this algorithm,

all weights are perturbed simultaneously by a random vector.

Then the mean squared error is evaluated on the entire training

set. If the error decreases, the new vector of weights is

accepted; otherwise, it is discarded. This algorithm, however,

suffers from high likelihood of convergence to a local mini-

mum. Thus, training may need to be performed several times

before a good solution is found. To decrease the probability

of being stuck in a local minimum, this algorithm has been

augmented with the simulated annealing technique, which is

known to be efficient in avoiding local minima since it allows

the state of the network to move “uphill”. The main difference

from the original algorithm consists in its ability to accept

weight changes resulting in an increase of the error, however,

with a certain probability. This probability depends on the

magnitude of the error change and the “temperature” of the

system T , i.e. p � exp(−ΔE/T ). Higher temperatures at

the initial stages favor the exploration of the whole search

space. A cooling schedule is used to adjust the temperature and

magnitude of weight perturbations as the training progresses.

In general, this training approach applied to the hardware

network has shown very similar performance in comparison

to software neural networks, as will be shown later.

III. CHIP IMPLEMENTATION AND EXPERIMENTAL RESULTS

The chip has been fabricated using a 0.5 μm digital CMOS

process available through MOSIS. Fig. 7 shows a photograph

of the chip and Table I summarizes its key features. The

Fig. 7. Chip photograph.

training algorithm runs in MATLAB and communicates with

the chip via a layer of two PCB boards. The top layer is a

custom-built PCB board that houses the chip, as well as two

DACs, an ADC, and biasing circuits. The bottom layer is a

commercial FPGA board that was used for communication

with the PC and for programming the on-chip memory, the

DACs, and the ADC.

The chip is tested on two case studies: a Butterworth low-

pass filter and an operational amplifier. The main objective

is to train the chip to discriminate good from faulty circuit

instances based on a set of low-cost measurements. The

data sets are borrowed from [4], where the software-based

approach has proved to perform well. In brief, a set of 14

low-cost measurements is collected from about 2000 instances

of each circuit, including ac, dc, impulse response, Fourier

transformation of the power supply current, and power supply

ramping. The course of the experiment is as follows:

1) To explore the trade-offs between the dimensionality of

the problem and classification accuracy, we perform a

feature selection algorithm to determine the best mea-

surement subsets for each cardinality. A combination of

a genetic algorithm and an ontogenic neural network

have been used for this purpose [6].

2) The data set is randomly split into training and validation

sets in proportion 3/1. The training set is used to

train the chip and the validation set is used to report

the classification error. Due to the stochastic nature of

random splitting and training, these steps are repeated 10

times and we report the mean error rate and the standard
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TABLE I

CHIP KEY FEATURES

Implementation method mixed-signal
Network topology reconfigurable MLP
IC process 0.5 μm CMOS

Core area 1× 1.2 mm2

Neurons 10

Synapses 100

Weight resolution 6 bit
Response time < 1 ms
Power supply 3.3 V
Max. current per synapse 3 μA

deviation. Different network models are explored by

varying the number of hidden neurons.

3) For comparison purposes, we repeat the same experi-

ment using an exact software version of the MLP net-

work in the Matlab Neural Networks toolbox. Training,

however, is performed using the superior gradient-based

resilient backpropagation algorithm.

The ability of the chip to generalize on the validation set is

shown in Fig. 8. The error is plotted versus the best measure-

ment subsets of cardinalities from 2 to 7. The figure shows

the error for 3 different network topologies that consist of a

single layer of 2, 4, and 8 hidden neurons (hn), respectively. It

can be seen that the software classifiers obtain smaller errors

than their hardware counterparts; however, the differences are

small. Notice that there are about 500 circuits in the validation

sets, which means that 0.2% error translates to approximately

1 circuit being misclassified. There are mainly two reasons for

this difference in error. First, the software classifiers are trained

using a superior learning algorithm. Second, the weights in the

hardware classifiers have finite precision and limited dynamic

range. During the experiments it was often observed that the

weights saturated to their maximum value. Despite these two

disadvantages, the experiment illustrates that the hardware

classifier achieves similar performance compared to an ideal

software classifier and is capable of learning to discriminate

good from faulty circuits.

For the Butterworth data set, the errors of both the hard-

ware and software classifiers tend to decrease as the number

of hidden neurons and the dimensionality increase. For the

operational amplifier data set, the performance is best for

medium-size measurement subsets, which is a phenomenon

called curse of dimensionality [4]. Another observation that

can be made is that the performance of the software classifier

improves drastically from 2 to 4 hidden neurons. In general, it

can be concluded that satisfactory results can be accomplished

with networks of moderate complexity.

The standard deviation of the classification errors is shown

in Fig. 9. It can be observed that the variance of the error is one

order of magnitude lower than its mean value. Moreover, it is

independent of the network topology, the dimensionality of the

measurement subset, and the type of classifier (e.g. software

or hardware). The low variance of the error of the hardware

classifier indicates good stability properties of the hardware

training algorithm.

An interesting observation concerning the behavior of the

hardware classifier can be made from Fig. 10 which shows

Fig. 8. Mean classification error for the Butterworth filter (upper) and
operational amplifier (bottom).

the classification rates on the training and validation sets for

both classifiers with respect to the number of measurements.

As expected, the software network over-fits the training data

resulting in a gap between the training and validation errors.

However, the problem of over-fitting seems to be avoided by

the hardware classifier – the error on the training set can be

used as an indication of its performance.

IV. CONCLUSION

This paper proposed a BIST architecture for analog circuits

and focused on its central component, namely the neural

classifier. The role of this neural classifier is to map a set of

simple on-chip measurements to a single-bit decision, which

indicates whether the performances of the circuit comply to

the specifications or not. To this end, we described in detail a

reconfigurable neural classifier chip which we designed and

fabricated using a 0.5 μm digital CMOS process available

through MOSIS. The chip was tested using data sets from two

analog circuits, namely a Butterworth filter and an operational

amplifier. Our experiments showed that the chip’s ability to

separate good and faulty devices is comparable to its software

counterpart. The aim of the paper was to provide a proof-
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Fig. 9. Standard deviation of the classification error for the Butterworth filter
(upper) and operational amplifier (bottom).

of-concept of on-chip learning capabilities in the context

of analog BIST. Further work will focus on cost-effective

implementations. In particular, we plan to investigate the use

of floating-gate synapses, which constitute an elegant solution

for long-term nonvolatile memory storage, as well as precise

weight updates and local learning [14]. Furthermore, we plan

to explore the trade-off between the classification error and the

overhead of the neural network by moderating its complexity

and by using guard-bands to separate high confidence regions

of the decision space via a safety layer [6].
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