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Abstract—Ensuring high reliability in modern integrated cir-
cuits (ICs) requires the employment of several die screening
methodologies. One such technique, commonly referred to as die
inking, aims to discard devices that are likely to fail, based on
their proximity to known failed devices on the wafer. Die inking
is traditionally performed manually by visually inspecting each
manufactured wafer and thus it is very time-consuming. Recently,
machine learning has been used to automate and speed-up the
inking process. In this work, we employ on-line machine learning
to address the practicability limitations of the current state-of-
the-art automated inking approach. Effectiveness is demonstrated
on an industrial dataset of manually inked wafers.

I. INTRODUCTION

As reliability becomes imperative for industrial and auto-
motive applications, relying on IC testing alone to identify
the failure-prone devices has become a significant challenge.
To complement testing, several screening techniques are often
used, each based on different criteria. The general premise
behind these techniques is that any abnormality can be an
indication of the presence of latent defects and, therefore,
proactive screening is justified. Techniques such as Dynamic
Part Average Testing (DPAT) [1] aim to identify the passing
die that exhibit marginal test measurements relative to the main
distribution of each wafer. Once a wafer has completed wafer
sort, the wafer-level distribution of all test measurements is
known and robust statistics can be calculated. These statistics
are subsequently used to identify any passing outliers which
are then discarded or marked for further testing. DPAT is
an automated technique which only marginally increases the
overall test time.

At the opposite extreme, burn-in testing is a time-consuming
technique that allows the detection of manufacturing imperfec-
tions. Burn-in stress-tests each device to its operational electri-
cal and temperature limits, in order to accelerate manifestation
of latent defects on devices that have passed all previous
testing stages. The excessive cost of this process is a result
of the addition of one more die-level test insertion and the
relatively long time it takes for the stress-test to force the
manifestation of any possible defects.

To reduce the number of devices that go through burn-in and
to complement the detection capabilities of all other screening
methods, manual die inking is used to mark passing die that are

1 This author was with ams AG when this work took place.
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Fig. 1. Flow of the automated inking method proposed in [2]

located near failing devices on a given wafer. The assumption
behind this common practice is that clusters of failing die
on a wafer suggest a systematic local discrepancy that can
lead to an early-life failure. Manual inking is performed by
product engineers after the completion of wafer sort and the
application of any statistical-based screening methods. Product
engineers visually inspect the failure maps for each manufac-
tured wafer, identify clusters of failures for certain critical
failure types and then mark the neighboring die as inked.
Despite the prescription of generic strategies, inking remains
a highly subjective process based on the experience of each
product engineer. As a result, manual inking is inconsistently
performed between different engineers and often, due to its
complexity, even between inspections by the same engineer.

Theoretically, automation of the inking process can be
achieved by developing a rule-based system that utilizes the
failure maps. This system requires a series of rules to be
defined and coded, avoiding conflicts and taking into account
several parameters such as the location, topology, density, and
failure type of each failed die. Designing, maintaining, and
adapting such a system to additional products is a mounting
challenge that would require multiple development iterations,
resulting in a significantly complex system.

Alternatively, authors in [2] proposed a pattern recognition-
based approach for the automation of the inking process. In
this approach, a machine learning model was trained based on
manually inked wafers to decide whether a given die should be
inked, or not. Figure 1 shows the two-stage process proposed
in [2], wherein a set of wafers is used to extract the model
features for training, while the manual inking decision is used
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Fig. 2. Flow of the proposed on-line learning automated inking method

as the prediction target. After training, the model predicts the
inking decision for every newly manufactured wafer based
on its failure map, eliminating the need for visual inspection
and manual inking. Despite the model’s high accuracy, which
demonstrated its ability to learn the underlying manual inking
strategy, several practicability related limitations emerged.
Such a two-phase system, where training and production
deployment are fully separated, requires availability of a
relatively large number of wafers in order to train a model
capable of supporting all different inking strategies. Moreover,
any future process shifts that might lead to a supplementary
inking policy will force a complete re-training of the model.
Finally, one more limitation of the modeling approach in [2]
is that even subtle changes to the inking decisions must be
accumulated over time and added to the initial training set to
improve the overall inking accuracy.

To address these limitations, in this work we propose an on-
line machine learning-based approach which allows for contin-
uous updating of the learned inking strategy. The remainder of
the paper is organized as follows. Section II gives an overview
of the proposed approach. In Section III, we evaluate the
on-line learning-based automated inking methodology on an
industrial dataset of manually inked wafers and in Section IV
we draw conclusions.

II. PROPOSED APPROACH

To address the above-mentioned practical drawbacks, we
propose the shift to the on-line machine learning paradigm.
The current state-of-the-art is based on a batch-learning type
of classifier, which takes a collection of manually inked
wafers to learn the binary decision boundary. In contrast,
on-line learning does not separate the training phase from
the production phase; instead, it creates a unified flow which

contains a feedback loop responsible for updating the model
as needed. Figure 2 shows the proposed approach, where for
each newly manufactured and fully tested wafer the failure
map is used to extract the features needed by the model to
predict the location of the inked die. Once these wafers have
been automatically inked, an evaluation step for assessing
effectiveness of the automated inking system follows. During
this step, product engineers (PEs) have the ability to visually
inspect the inked wafer and adjust the predicted ink patterns by
marking additional die or removing inked ones. Any potential
corrections by the product engineers are then used to update
the inking model. This online learning flow is closer to
the current manual inking paradigm, which often includes
the evaluation of the screening methods by a committee of
engineers.

This continuous feedback allows for more control over how
inking is being performed, especially during ramp-up where
the model learns the inking strategy for each new product.
During these early wafers, the model will serve as a suggestion
tool for the engineers, pointing the most likely locations that
need inking. In addition, as the automated inking model is
getting adjusted by the PE’s corrections, its accuracy will
progressively get increased and, as a result, less time will
be required for evaluation. After the model has been trained
with a sufficient number of wafers, high prediction confidence
will allow manufacturers to auto-approve the automated inking
decisions, thus eliminating the need for visual inspection.

A. On-line Machine Learning

Supervised machine learning aims to build a model that
expresses the desired output as a function of the input features.
This is traditionally achieved with a training dataset consisting
of (x, y) pairs of input vectors and target values. This approach
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is commonly referred to as batch learning since it requires
such collection of training pairs to exist for the model to be
trained. In many practical applications, the availability of a
large training dataset cannot be easily satisfied as samples
arrive over time rather than all being available up front. To
address this limitation, as well as others that stem from finite
computational resources (e.g., run-time and storage memory),
the idea of incremental learning has been introduced. Incre-
mental or on-line learning refers to the ability of a model to be
trained with smaller training sets, either in the form of mini-
batches or even with a single instance at a time. This ability
provides multiple benefits for practical applications where data
arrive in streams.

B. Classification

Similarly to the study in [2], a binary classifier model needs
to be trained in order to infer the inking decision based on the
wafer failure maps. Several models [3] have the ability to be
incrementally learned, some of which include Multilayer Per-
ceptron [4], On-line Random Forests [5], Incremental Support
Vector Machines [6], Naive Bayes [7], and Learn++ [8]. In
this work, we use a Multilayer Perceptron (MLP) classifier
with Stochastic Gradient Descent (SDG) [9], [10].

An MLP is a feed-forward artificial neural network consist-
ing of at least three layers, namely an input, an output and
a hidden layer in between. The number of hidden layers and
their connectivity affects the level of functional complexity the
network is able to approximate. The hidden and output layers
consist of neurons that implement a non-linear activation
function, usually a sigmoid or unit step function. Each layer
is connected to its neighboring ones through synapses which
are assigned weights and serve the purpose of adjusting the
strength of the carrying signal. Due to the multiple layers and
the use of non-linear activation functions, MLPs are univer-
sal approximators capable of learning non-linear separation
boundaries when used for classification.

A multilayer perceptron is trained using backpropagation
which allows the weights of all the layers to be adjusted by dis-
tributing the output error to all previous layers. Traditionally,
during backpropagation batch gradient descent optimizers are
used to adjust the weights of the neurons. Unfortunately, while
the classic gradient descent algorithm is efficient for relatively
small datasets, it has the added disadvantage of requiring all
training samples in order to minimize the error. Alternatively,
the Stochastic Gradient Descent (SGD) algorithm perturbs
the weights at each iteration by taking into account a single
training sample at a time. This property of SGD not only
allows training of the MLP when large training datasets are
used, but also enables the transition from batch learning to the
on-line learning paradigm.

C. Feature Extraction

Both training and prediction require a die-level feature
vector that is indicative of the likelihood of a die to be inked.
As described in [2], these features are based on the distance
of each die from the edge of the wafer, as well as the failure

density of the neighborhood for each failure type, with the
various failure types being denoted by different bin numbers.
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Fig. 3. Feature extraction example for a maximum die distance of three

Figure 3 summarizes the failure density-based feature ex-
traction for a 9×9 die segment of a wafer. Blue and red colored
boxes correspond to failing die of different failure types, which
would have been expressed by different bin numbers in the
probe-test report. The feature extraction process, as proposed
in [2], counts the number of failures at certain distances away
from the target die, as shown by the count row in Figure 3,
for a maximum die distance of three. Generating these counts
separately for each different bin number is essential as it allows
the model to infer the significance of each failure type for the
inking decision.

Likewise, measuring the distance from the edge allows the
distinction between failure-dense areas near the center of the
wafer, as compared to the ones near the edge. This distinction
is important, as wafers tend to be more sensitive near their
edge and, therefore, fewer failures are required for a positive
inking decision to be made.

D. Post-prediction tuning

Due to the subjectivity of manual inking, models have
to distinguish the noise (i.e., overly aggressively inked die
locations) from the correctly inked locations. Although failure
density is the primary criterion that drives the inking decision,
in the interest of time product engineers often use inking tools
with regular shape brushes (e.g., square or circle shaped),
instead of inking one die at a time. Based on the above, the
automated inking model usually performs a less conservative
inking, marking fewer die locations compared to the manual
approach. Although this is desirable in most cases, as it
reduces unnecessary yield loss, sometimes a more aggressive
inking is preferable. To enable such post-prediction calibration
an image-processing-based step was introduced in [2]. During
that step, the size of the automatically inked areas was reduced
or increased by a pre-determined and hard-coded degree.

In this work, we propose an alternative approach for post-
prediction tuning of the inking result based on the confidence
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Fig. 4. Probability estimates and predictions for three sample wafers

estimation of the inking prediction. In a multilayer perceptron
the activation value of the output layer can be used as a reliable
prediction confidence metric [11]. This technique allows for a
dynamic adaptation of the degree of inking performed by the
proposed methodology, by adjusting the decision threshold. If
pi denotes the probability estimate for die i to be inked, the
default classification is performed by evaluating the [pi ≥ 0.5]
Iverson bracket for all die locations. By generalizing the above
to [pi ≥ t] we can adjust the degree of inking by increasing
or reducing t ∈ [0, 1]. When t ∈ [0, 0.5) a more aggressive
inking is performed. On the other hand, when t ∈ (0.5, 1] the
prediction is less aggressively adjusted, thereby resulting in
fewer inked die locations.

III. EXPERIMENTAL RESULTS

A. Dataset Overview

To evaluate the effectiveness of the proposed methodology
a dataset of several hundred thousand devices across 120
industrial wafers was used. After specification testing, whereby
all failing devices were identified, each wafer was manually
inked by product engineers and the locations of the inked die
were indicated in the dataset by a specific bin number. Bin
numbers corresponding to different failure types were also
provided, allowing the proposed model to infer the significance
of each failure type with respect to the inking decisions, as
summarized in Section II-C.

B. Automated Inking Accuracy

To assess the overall ability of the proposed methodology in
correctly identifying the areas on the wafer that require inking,
a leave-one-out cross-validation experiment was performed.
For this, each wafer was removed from the training dataset

and the remaining wafers were used to train the model. Each
column of Figure 4 shows the predictions of the automated
inking methodology for one of three representative wafers of
the dataset. The first row of wafermaps depicts the probability
estimates for the positive inking decision. Gray represents
0% probability for those die locations to require inking,
while other colors represent probability values in (0, 100] as
shown in the colormap on the right side. In the second row,
corresponding prediction results are shown for the above three
wafers, where passing die are depicted with gray color and
blue colored die are the failing ones, with all bins been repre-
sented by one color1. Moreover, green indicates agreement be-
tween product engineers and the automated inking model (i.e.,
true positive predictions) and red represents manually inked
die locations that weren’t inked by the proposed methodology
(i.e., false negatives). Purple colored die represent locations
that were only marked as inked by the methodology but not
by the product engineers (i.e., false positives).

As can be observed in Figure 4.a, certain clusters of die
locations are selected by the proposed model, based on the
failure density and their distance from the edge of the wafer.
High probability, as represented by the red colored die, is in
the center of every die cluster and decreases progressively the
further away a die is located from that center. One of the
major benefits of the post-prediction tuning approach using
probability estimates is that it allows product engineers to
tweak the degree of inking with a simple knob while evaluating
the results. This implies that, even during the early stages of
industrial integration of the proposed methodology, when the
model is still learning, product engineers would save time by

1Detailed binning information may not be released due to an NDA under
which the data has been provided to us.
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Fig. 5. Comparison between automated and manual inking at different learning iterations

being able to quickly adjust the aggressiveness of the model
or to use the predicted locations as suggestions, before making
any manual alterations to the ink maps.

Figure 4.b shows how the automated inking compares to
the manual inking performed on these wafers. In order to
match the aggressiveness of the manual inking, a threshold
probability of 10% was chosen for the complete set of wafers.
Wafer A included a single cluster at the bottom side of the
wafer, which was manually inked by the product engineers,
and which was correctly identified by the machine learning-
based algorithm. At this level of aggressiveness, the algorithm
also identified a smaller cluster of die near the center of the
wafer. On the other hand, Wafers B and C exhibit multiple
failure-dense clusters. Similarly to the previous wafer, the pro-
posed model was able to identify the overall location and size
of those clusters with minimal disagreement. By contrasting
the probability estimates of these wafers in Figure 4.a, one
can observe that a higher threshold would have produced a
better matching inking pattern. Specifically, a threshold value
of 30% for Wafer B would have accurately inked the top-right
cluster, which was aggressively inked with a 10% threshold,
but would have likely missed the smaller cluster on the right.

C. On-line Machine Learning-based Modeling

To accurately simulate the actual sequence of wafer arrival,
the process of inking prediction, and the training of the
proposed inking model, the wafers were sorted based on their
manufacturing order, as reflected by their wafer and lot ID. For
each wafer in the ordered dataset, the feature extraction step
was first performed, using the locations and bins of each failing
device. For the initial training of the model, we used only the
first wafer. This allows us to better evaluate the learning rate

of the proposed model, as it starts with the minimal available
information. In practical cases, the model would have been
trained with wafers from at least one lot, the wafers of which
would have been manually inked. For all remaining wafers,
feature extraction was performed in order to predict the inked
locations accordingly. Following prediction, the known manual
inked locations of the wafer under processing were used to
update the proposed online model.

1) Learning progression: As shown from the previous
experiment, the proposed model can learn the inking strategy
effectively when provided with all 119 training wafers. To
evaluate the progress and the number of wafers needed for
the model to produce useful inking decisions, a different
experiment was performed, reflecting the proposed on-line
learning algorithm. In this experiment, a single sample wafer
was chosen as the target, while the algorithm was progres-
sively trained using the remaining wafers. In other words, the
selected wafer represents an unseen newly manufactured wafer
at different learning iterations. At each iteration, the trained
model was used to predict the target wafer and was updated
with the next wafer from the dataset.

Figure 5 shows the comparison between the automated
and manual inking decisions of the target wafer at different
learning iterations. The first wafer map shows the initial
prediction when only one wafer was used to train the model.
As expected, the model has only learned that not inking any die
location is a preferable strategy in terms of overall accuracy,
as the number of non-inked die is significantly larger than
the number of inked ones. After 21 wafers, it appears that
the model has already learned that specific failure density
related features, as well as the distance from the edge, are
essential; thus, it correctly inks some of the die on the left
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0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Batch Learning
Online Learning

Wafer #

F 1 S
co

re

Fig. 7. Model accuracy comparison between batch and on-line learning

and right sides of the wafer. This remains true and even
shows minor improvements after a total of 34 wafers have
been incrementally used for training. Although the size and
location of the two die clusters that were selected by the
product engineers have been correctly identified, the model
appears to have weighted the distance from the edge more than
it should, resulting in some false positive predictions shown on
the left. Finally, after incremental learning has been performed
with a total of either 70 or 114 wafers, the model has very
accurately learned the manual inking strategy employed by the
engineers for this product.

Alternatively, the F1-score can be used to summarize the
progression of the proposed incremental learning methodology
at each iteration step. The F1-score is defined as the harmonic
mean of precision and recall. Figure 6 shows how the F1-
score changes when predicting the target wafer during the
execution of the proposed on-line learning methodology. As
demonstrated, the F1-score remains zero for the first few
wafers, yet within the first lot it increases to above 0.8.
Then, for two lots there is no significant improvement until
there is a sudden decrease when the fourth lot is processed.
This sudden fluctuation is caused by a low recall score, due
to less conservative inking, which is then quickly corrected
with the arrival of more wafers that provide a more robust
understanding for the significance of the model features.

2) Comparison to Batch Machine Learning-based Model-
ing: Ideally, to effectively compare the proposed approach
with the current state-of-the-art batch learning approach, a

dataset containing multiple distinct inking strategies should
have been used. These dissimilar strategies would showcase
the primary benefit of the proposed approach to incrementally
learn and accommodate them, compared to the static batch
learning-based method. To simulate such a dataset, we re-
ordered the industrial dataset described before, so that wafers
exhibiting significant edge defects are pushed last. Assuming
that this was the wafer manufacturing order, we compare the
performance of the two approaches in predicting the last 15
wafers. In this experiment, both models have been initially
trained using the same set of 105 wafers. The proposed model
continues to be trained incrementally with every new wafer.
Figure 7 shows the F1-score for the two methods for each new
wafer. As expected, the F1-score for the first predicted wafer
is the same for both methods, since they have been trained
using the same wafers. After the ink maps for the first and
second wafers are corrected, the on-line learning model learns
that the edge-distance-based feature bears more significance
and weighs it accordingly. For all remaining wafers, the on-
line learning based model either outperforms or matches the
accuracy of the batch learning model.

IV. CONCLUSIONS

In this work, we sought to improve the state-of-the-art
automated inking algorithm, by employing an on-line machine
learning-based methodology. This paradigm shift allows for
smooth integration with current industrial environments, by
balancing the trade-off between the level of human interaction
and confidence towards the process. This is achieved through
the ability to monitor, calibrate and continuously update the
inking prediction model . High accuracy and fast learning rate
were demonstrated on an industrial dataset with more than two
million devices.
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