
A Dual-Mode Weight Storage Analog Neural
Network Platform for On-Chip Applications

Dzmitry Maliuk∗ and Yiorgos Makris†
∗Electrical Engineering Department, Yale University, New Haven, CT, 06520-8267

†Electrical Engineering Department, The University of Texas at Dallas, Richardson, TX, 75080-3021

Abstract— On-chip trainable neural networks show great
promise in enabling various desired features of modern integrated
circuits (IC), such as Built-In Self-Test (BIST), security and
trust monitoring, self-healing, etc. Cost-efficient implementation
of these features imposes strict area and power constraints
on the circuits dedicated to neural networks, which, however,
should not compromise their ability to learn fast and retain
functionality throughout their lifecycle. To this end, we have
designed and fabricated a reconfigurable analog neural network
(ANN) chip which serves as an expertise acquisition platform
for various applications requiring on-chip ANN integration.
With this platform, we intend to address the key cost-efficiency
issues: a fully analog implementation with strict area and power
budgets, a learning ability of the proposed architecture, fast
dynamic programming of the weight memory during training,
and high precision non-volatile storage of weight coefficients
during operation or standby. We explore two learning structures:
a multilayer perceptron (MLP) and an ontogenic neural network
with their corresponding training algorithms. The core circuits
are biased in weak inversion and make use of the translinear
principle for multiplication and non-linear conversion operations.
The chip is mounted on a custom PCB and connected to a
computer for chip-in-the-loop training. We present measured
results of the core circuits and the dual-mode weight memory.
The learning ability is evaluated on a 3-input XOR classification
task.

I. INTRODUCTION

Various realities of modern semiconductor manufactur-
ing business necessitate the inclusion of dedicated on-chip
circuitry for post-deployment monitoring – and potentially
action-taking – of analog/RF ICs, in order to enhance their
reliability, robustness, and trustworthiness. For example, cir-
cuit deployment in mission-critical applications (e.g. avionics,
medicine) and sensitive environments (e.g. space) calls for
a BIST method [1] such that the chip can assess its own
functional health and issue alerts in case of malfunctions.
Similarly, contemporary analog/RF ICs take an aggressive
design approach in order to maximize performance, possibly
at the expense of robustness, which is later compensated
for through on-chip self-calibration and self-healing hardware
[2] (i.e. tuning knobs). Finally, security concerns regarding
the globalized IC supply chain, which may be vulnerable to
malicious attacks (a.k.a. Hardware Trojans [3]), have sparked
interest in adding hardware for monitoring operation trustwor-
thiness. In the heart of these three problems, lies some form
of low-cost on-chip intelligence, which acquires measurements
through low-cost sensors and makes pass/fail decisions regard-
ing correctness/trustworthiness, or selects appropriate tuning
knob positions to ensure specification-compliant functionality.
To this end, our research focuses on developing a low-cost
analog neural network which can be integrated with the circuit
in order to provide the aforementioned reliability, robustness
and trustworthiness capabilities.

Fig. 1. Top level chip architecture. The core includes synapses (S), neurons
(N) and multiplexors for topology configuration. Peripheral circuits support
network operation and programming.

The nature of the described applications imposes rather
strict requirements on the choice of neural network implemen-
tation. More specifically, the circuits dedicated to the ANN
should incur low area and power overhead, compared to the
system they are built into. The weight memory should be
rapidly programmable during training and also feature long-
term storage of the learned weights. The ANN should have
a high degree of learning capacity, which is determined by
the weight and signal dynamic range, weight programming
accuracy, synapse linearity, noise level, etc. Finally, the im-
plementation technology must be the same as for the other
circuits for seamless integration into a single chip. Note that
the outlined requirements exclude digital implementation due
to its large area overhead.

In the past, we proposed a mixed-signal implementation of a
neural network and successfully demonstrated its learning abil-
ity on real-life classification problems [1], [4]. Local SRAM
cells were used to store weight coefficients in digital form
and multiplying digital-to-analog converter-based synapses
were used to convert them into analog values with further
multiplication. Off-chip memory was required to permanently
store the weights and copy them into the chip’s memory on
power-up. This work represents a major improvement of our
previous design, focusing on cost-effective implementation for
on-chip integration. In effect, we have designed and fabricated
a reconfigurable neural network platform featuring 20 inputs,
a 30×20 array of synapses and 20 neurons. The chip provides
us with an experimentation ground to explore various learning
models and their topologies as well as strategies to train
them. Performing model selection on a given learning problem
allows us to find the most compact implementation achieving
the desired performance. This model can later be customized
and integrated on-chip for a specific application.



Fig. 2. Current storage cell. Fig. 3. Synapse circuit. Fig. 4. Neuron circuit.

II. DESIGN OVERVIEW

A. System Description

The block diagram of our ANN is presented in Figure 1.
The core of the design is a 30×20 array of synapses (S);
each row is locally connected to a corresponding neuron (N).
Global connectivity is programmable by means of multiplexors
inserted between rows. This allows the core to be configured
into several learning structures, including a multilayer percep-
tron [5] and an ontogenic neural network [6]. The former is
a three-layer network of fixed topology with programmable
number of neurons in each layer. By contrast, the ontogenic
configuration allows for the network topology to be learned
dynamically in parallel to its weights.

The information processing inside the core is analog; the
signals and weights are represented by balanced differential
currents. The current signal domain and the translinear princi-
ple offer a wide variety of mathematical functions, including
multiplication and tanh-like transformation [7], whereas the
differential coding allows for four-quadrant multiplication. A
single weight value requires two current sources for differ-
ential current storage. It appears that the overall learning
ability depends – to a great extent – on the “quality” of these
sources. The ideal implementation should have the following
characteristics: high precision, non-volatile storage and fast
bidirectional update. To this end, we designed a novel current
storage cell (CSC) featuring two modes of weight storage:
dynamic, for rapid bidirectional update, and non-volatile, for
long-term storage of learned weights. The dynamic mode is
engaged during training, when the weight values undergo
multiple changes. Once the best set of weights is found,
their values are copied onto the floating gate transistors for
permanent storage.

Surrounding the core are the peripheral circuits providing
support for fast programming, configuration storage, and in-
terfacing with the external world. In particular, the “DVI”
blocks convert voltage-encoded input signals into balanced
differential currents required by the core. Not only does it
simplify the interface with the off-chip stimuli generator, but
it also allows a direct connection of on-chip sensors with
voltage output. The row and column controls isolate individual
CSC cells from the array for weight programming. Finally, the
circuits at the bottom facilitate network training by transferring
some of the programming related tasks on-chip. In particular,
a digitally-controlled current source “IDAC” generates target
currents for dynamic programming of the CSC. Both the “IV”

and the “DIV” blocks convert the output current supplied by
the core into voltage, which is captured by an off-chip ADC.
For high accuracy we use the single-ended current to voltage
converter “IV”, which is necessary for floating-gate transistor
(FGT) programming. This block constitutes a part of a fast
current measurement system; the current values are derived
from the measured voltages using characterization data of
the converter. The “DIV” block converts differential currents
produced by the network output into differential voltages.
Although less accurate, this is useful for quick network output
evaluation in run mode. During training, however, accurate
estimation of the error between the network output and the
target value is necessary, which can only be furnished by the
“IV” converter.

B. Weight Storage Mechanism
The principle of our CSC, a building block of the weight

memory, is presented in Figure 2. At the core of the circuit
is the floating gate (FG) PMOS transistor P1 (enclosed by the
dashed box), whose drain current is the entity being stored.
The drain current is modulated by the voltage on the FG
(node 1), which is itself determined by the FG node charge
and the gate voltage (node 2). Manipulating the charge value
constitutes the non-volatile storage mode. For dynamic storage
of the gate voltage we use a simple sample-and-hold (S/H)
circuit comprising a MOS capacitor P4 and a switch transistor
P3. The cascode transistor P2 is inserted to minimize the drain
coupling effect to the FG node and also to isolate the drain
from the main circuit during programming.

We selected two mechanisms for non-volatile programming
of FGTs. Hot-electron injection is used to add electrons to the
FG, thus, lowering its voltage and increasing the drain cur-
rent. Conversely, Fowler-Nordheim (FN) tunneling is used to
remove electrons from the FG. Although the two mechanisms
allow for bidirectional charge transfer, due to the difficulties
in on-chip routing of high voltages and poor controllability we
use FN tunneling for global erase. Injection, on the other hand,
is used to program individual FGTs to a target current with
high accuracy. First, the FGT of interest is isolated from the
containing circuitry by raising the global vcasp and connecting
its drain to the bit line. Next, we ramp up the avdd and apply
a series of short pulses to the bit line, measuring the drain
current with the “IV” circuit after each pulse. The amount of
charge injected during each pulse depends on both the source-
to-drain voltage and the duration of the pulse. For accurate
injection we adopt the algorithm described in [8], however,



using a pulse-width instead of a drain voltage modulation.
For fast bidirectional weight updates during training we

use the dynamic storage. In this mode, the CSC of interest
is isolated from the array, the gate is shorted to the drain,
while the drain is connected to the “IDAC” block. The “IDAC”
is programmed to sink the desired current, thereby charging
the dynamic capacitor P4 and forcing the diode-connected FG
transistor to supply equal current. Once this self-biasing loop
is stabilized the switch transistor disconnects the gate. Crucial
items in this programming scheme are the accuracy of the
“IDAC” current source and the switch non-idealities. While
the S/H circuit is kept very simple, we perform thorough
calibration of the “IDAC” block to match the accuracy of
dynamic programming to that of FGT injection.
C. Synapse Circuit

The synapse circuit, illustrated in Figure 3, implements a
four-quadrant multiplication function [9]. The circuit features
two CSC cells for differential weight components storage and
a six-transistor core, enclosed by the dashed box. Provided
the core transistors are identical and there is no mismatch, the
output differential and common mode currents can be obtained
by

i+out − i−out =
i+in − i−in
i+in + i−in

(i+w − i−w)

i+out + i−out = i+w + i−w

(1)

where i+in, i−in are the differential components of the input
signal and i+w , i−w are the differential components of the weight
value. The core results in a very compact layout, while most
of the area is occupied by the CSC cells due to the dynamic
capacitors (approximately 1 pF each).
D. Neuron Circuit

The neuron circuit, illustrated in Figure 4, applies a non-
linear activation function to the sum of the outputs of the
connected synapses. For summation, the positive and negative
components of the synaptic outputs are connected to the
corresponding i+in and i−in terminals of the neuron circuit.
The non-linear transformation is completed in two stages.
The first stage, represented by P1-P8 and the feedback loop,
performs input normalization and gain control. In particular,
the feedback loop adjusts the common mode to the value
iscale, which is stored in the CSC. This also affects the slope
of the activation function. We use this property to adjust the
neuron to the number of synapses, as well as to the specifics
of a learning task (i.e. regression or classification).

Non-linear transformation of the normalized current i+s −i−s
is performed by the second stage [9]. Assuming the transistors
N1-N6 are identical and utilizing the translinear principle, the
output differential and common mode currents are obtained by

i+out − i−out =
(i+s )

1+κ
κ − (i−s )

1+κ
κ

(i+s )
1+κ
κ + (i−s )

1+κ
κ

· ineur

i+out + i−out = ineur

(2)

where κ is the subthreshold slope; ineur sets the common
mode current of the neuron output.

Fig. 5. Die photo of the neural network chip implemented in 0.5-µm process.

E. Learning Strategy
Training is performed in a hierarchical arrangement using

chip-in-the-loop approach. At the bottom level is the hardware
neural network with the low-level programming support by
the peripheral circuitry. The next level is a custom PCB
housing our chip and other off-the-shelf components that
provide analog, digital and high voltage interfaces to the chip.
A commercial FPGA board implements a communication link
between a host computer and the custom PCB. Finally, the
software layer (in MATLAB) implements training algorithms
for different network configurations.

For the MLP structure we adopt an improved resilient back-
propagation algorithm (iRPROP+) [10]. Originating from the
family of first-order gradient descent algorithms, it uses weight
perturbation for gradient estimation and local learning rate
adaptation for faster training. When the chip is configured as
an ontogenic network we employ a cascade-correlation algo-
rithm [11]. The algorithm not only optimizes weight values,
but also searches for the best architecture by progressively
adding more neurons to the existing topology.

III. EXPERIMENTAL RESULTS
The die photograph of the chip fabricated in a 0.5-µm

CMOS technology is shown in Figure 5. The core of the chip
features 20 inputs, 30 neurons and 600 synapses, occupying
1.5×2.5 mm2 die area. Such a large number of components
makes it a flexible platform to explore models of various
scales. The final models to be integrated on chip for the target
applications will be much smaller. The power consumption
largely depends on the chip configuration and the common
mode current values. As a first step, we calibrated and tested
all of our peripheral components using external instruments.
The achieved linearity for the “IDAC” and “IV” blocks for
currents in the range from 0.5 to 200 nA was around 8 bits.

Next, we evaluated the efficiency of our CSC memory. For
the non-volatile storage, we characterized a random set of FG
transistors to build an injection model. Using this model we
could predict the programming pulse length (ranging from
1 µs to 300 ms) producing the desired increase in a drain
current. For our range of interest (from 0.5 to 200 nA) the
estimated programming error was below 0.5 nA resulting in
the accuracy of more than 8 bits. For the dynamic storage,
we evaluated the leakage rate, caused by the reverse biased
junction of the switch and resulting in weight distortion over
time. It appeared that the leakage currents depend on the stored



Fig. 6. Synapse multiplication characteristic. The
weight values are stored in dynamic mode covering
the range from -200 to 200 nA.

Fig. 7. Neuron transfer characteristic. iscale is from
(5, 25, 50, 100, 200) nA. Larger iscale results in
flatter characteristic.

Fig. 8. XOR3 learning curve of the hardware
neural network configured as a MLP with 3 input,
3 hidden and 1 output layers.

voltage with the worst case voltage change rate of 1.6 mV/s.
In terms of the CSC’s output, 1 bit current change occurs in
200 ms for the worst case output current of 200 nA. Periodic
refresh of the dynamic memory is performed when the training
algorithm updates the weights or between long forward passes.

Figure 6 shows the measured multiplication characteristic
of the synapse circuit for 30 equidistant weight values from
-200 to 200 nA. The input differential current is produced
by the “DVI” converter, while the input and output currents
are measured by the calibrated “IV” block. The observed non-
linearity and DC offset can be attributed to transistor mismatch
and process variations. For the purpose of training, however,
this is not a major limitation, because our learning strategy
does not assume a linear model for gradient descent. Figure 7
illustrates the measured characteristic of the neuron circuit for
ineur set to 200 nA and different values of iscale. As expected,
for low values of iscale the characteristic resembles a step-
like function, becoming more flat for high values. We use this
property in training: the gain is set low in the beginning for
better sensitivity of gradient measurements and is gradually
increased towards the end of training. The gain of the output
neuron is set to maximum at this point for binary decisions.

Finally, we present the results of learning for a popular 3-
input XOR problem. The training set consists of 8 vectors
covering all possible input combinations. We do not divide
it into separate training and validations sets; our task is to
demonstrate the chip’s ability to learn complex boundaries,
which can not be achieved with linear classifiers. The learning
structure we selected is a MLP with 3 inputs, 3 hidden neurons,
and one output neuron. Initialized with random weight values,
the training proceeds by descending down the error surface,
as illustrated in Figure 8. The algorithm successfully escapes
a region of local minimum between 200 and 300 epochs and
converges after 437 epochs, achieving 100% classification rate
on the training sample.

IV. CONCLUSIONS

We introduced the design of a reconfigurable ANN plat-
form featuring a novel dual-mode weight storage memory.
The system was fabricated in a 0.5-µm CMOS process and
mounted onto a custom PCB. A hierarchical chip-in-the-loop
setup was used to perform learning. We presented data from

the measured synapse and neuron characteristics, dynamic
and non-volatile weight programming, and demonstrated its
learning ability on a XOR3 problem. Future work includes
applying the platform to real-life classification problems for
analog/RF BIST and also fine tuning the CSC circuit for better
performance.

V. ACKNOWLEDGEMENTS
The authors would like to thank Dr. Paul Hasler and his

group at Georgia Institute of Technology for their assistance
with the FG transistors technology.

REFERENCES

[1] D. Maliuk, H.-G. Stratigopoulos, H. He, and Y. Makris, “Analog
neural network design for RF built-in self-test,” in Proceedings
of the IEEE International Test Conference (ITC), 2010, pp.
23.2.1–23.2.10.

[2] N. Kupp, H. Huang, P. Drineas, and Y. Makris, “Post-production
performance calibration in analog/RF devices,” in Proceedings
of the IEEE International Test Conference (ITC), 2010, pp.
8.3.1–8.3.10.

[3] Y. Jin and Y. Makris, “Hardware trojans in wireless crypto-
graphic integrated circuits,” in Special issue of IEEE Design &
Test of Computers (D&T), 2010, vol. 27, pp. 26–35.

[4] D. Maliuk, H.-G. Stratigopoulos, and Y. Makris, “An analog
VLSI multilayer perceptron and its application towards built-in
self-test in analog circuits,” in IEEE International On-Line Test
Synposium (IOLTS), 2010, pp. 71–76.

[5] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd
Edition), Prentice Hall, 1998.

[6] V. Honavar and L. Uhr, “Generative learning structures and
processes for generalized connectionist networks,” in Inf. Sci.,
1993, vol. 70.

[7] S. C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas,
Analog VLSI: Circuits and Principles, MIT Press, 2002.

[8] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Adaptive
algorithm using hot-electron injection for programming analog
computational memory elements within 0.2% of accuracy over
3.5 decades,” IEEE Journal of Solid-State Circuits, vol. 41, no.
9, pp. 2107–2114, 2006.

[9] M. Valle and F. Diotalevi, “A dedicated very low power analog
VLSI architecture for smart adaptive systems,” in Applied Soft
Computing 4, 2004, pp. 206–226.

[10] R. Smithies, S. Salhi, and N. Queen, “Adaptive hybrid learning
for neural networks,” Neural Computation, vol. 16, no. 1, pp.
139–157, 2004.

[11] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Proc. Advances Neural Inform. Process. Syst,
1990, vol. 2, pp. 524–532.


