
VeriCoq: A Verilog-to-Coq Converter for
Proof-Carrying Hardware Automation

Mohammad-Mahdi Bidmeshki and Yiorgos Makris
Department of Electrical Engineering, The University of Texas at Dallas

Email: {bidmeshki, yiorgos.makris}@utdallas.edu

Abstract—Proof carrying hardware intellectual property
(PCHIP) introduces a new framework in which a hardware
(semiconductor) Intellectual Property (IP) is accompanied by
formal proofs of certain security-related properties, ensuring
that the acquired IP is trustworthy and free from hardware
Trojans. In the PCHIP framework, conversion of the design
from a hardware description language (HDL) to a formal repre-
sentation is an essential step. Towards automating this process,
herein we introduce VeriCoq, a converter of designs described
in Register Transfer Level (RTL) Verilog to their corresponding
representation in the Coq theorem proving language, based on
the rules defined in the PCHIP framework. VeriCoq supports
most of the synthesizable Verilog constructs and is the first step
towards automating the entire framework, in order to simplify
adoption of PCHIP by hardware IP developers and consumers
and, thereby, increase IP trustworthiness.

I. INTRODUCTION

Economy globalization has recently resulted in a highly
geographically dispersed integrated circuit (IC) design and fab-
rication flow. Concomitant with this dispersion, this flow has
become very vulnerable to inclusion of malicious capabilities,
a.k.a. hardware Trojans, which are not known to the designer
and user of the IC, but which can be exploited by a knowl-
edgeable adversary. Given the wide reach of technology in
every aspect of our everyday life, the impact of such hardware
Trojans can be disastrous. Accordingly, intense research efforts
have been invested in preventing and/or detecting hardware
Trojan inclusion in various phases of IC design and fabrication
[1, 2].

In the fast paced IC industry, time to market is a crucial
factor in investment return. Hence, design reuse and utilization
of previously developed designs in the form of hardware IPs
(in-house or third party) is inevitable. Soft IPs, delivered in the
form of HDL code, are more susceptible to malicious modi-
fications and hardware Trojan insertion due to their flexibility
and the fact that functional testing can by no means exercise
the design capabilities exhaustively. Furthermore, since soft IPs
are also widely used in FPGA-based designs, hardware Trojans
concealed in soft IPs have a significantly wider domain of
action as compared to hardware Trojans which are implanted
during the later fabrication stages. Given this intensified threat,
prevention and/or detection of hardware Trojans in soft IPs has
become extremely important.

A few approaches, such as FANCI [3] and VeriTrust [4],
sought to address the problem of soft-IP hardware Trojan
identification at the design stage. While such methods are
systematic, smart Trojan designs can still evade their checking
mechanisms [5]. Along a different direction and utilizing
formal methods and mathematical theorems, a proof-carrying

hardware intellectual property (PCHIP) [6, 7, 8, 9] framework
was proposed for trusted 3rd party IP acquisition. Within the
PCHIP framework, which is based on the Proof-Carrying Code
(PCC) principles [10], formal proofs that a given IP abides by a
set of security properties are developed, in order to prevent the
insertion of hardware Trojans in a design. IP consumers receive
a bundle containing not only the HDL code but also the proofs
for these security properties, and can then automatically check
that the provided proofs are actually valid for the acquired
HDL code.

Although PCHIP is a very promising framework, its broad
adoption faces a few challenges. First, developing security
properties is not straightforward. While a few such properties
have been introduced for microprocessors [7] and crypto-
graphic hardware [8, 9], they are usually specific to each
design, and cannot be reused for others. Second, converting
HDL code to a formal representation, such as the Coq [11]
language used in PCHIP1, and developing proofs for security
properties, requires additional knowledge of formal methods,
theorem proving environments, and proof writing. Even for
someone that has this expertise, the process is tedious and
time consuming, making the barrier to entrance rather high
for IP developers.

Evidently, automating the PCHIP framework to the extent
possible could make it more appealing and could help in its
broader utilization, leading to lower risk in hardware IP acqui-
sition. Towards this goal, in this paper we introduce VeriCoq,
a Verilog-to-Coq converter based on the rules developed in the
PCHIP framework. VeriCoq supports most of the synthesizable
Verilog constructs and converts parameters, arrays, module
hierarchy and module instantiations effectively to their Coq
representation. While automating the entire PCHIP framework
is a much broader endeavor and may not be completely
feasible, given the strenuous details of proof construction,
VeriCoq is a fundamental step towards this end. Crucially, it
not only automates the conversion process, but also makes
proof construction by IP developers and proof checking by
IP consumers less perplexing, since both can rely on the
common Coq representation of the Verilog code, which is now
automatically generated by VeriCoq.

II. PROOF-CARRYING HARDWARE IP (PCHIP)
OVERVIEW

In this section, we briefly review the PCHIP framework,
which is depicted in Fig. 1. In this framework, along with

1Coq is a popular theorem proving tool used extensively by the software
research community. Other automated theorem provers can also be utilized in
PCHIP framework by adjusting the conversion rules and the converter.

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 29



Trusted IP BundleIP Developer

Proof Development

IP Consumer

Coq IDE

Pass/Fail

DeliveryPreparation Evaluation

Design

 in Coq

Proofs of 

Security 

Property 

Theorems

Security

Properties

Functional

Specifications

Design 

in Coq

T
h

e
o

re
m

s

HDL Code

Fig. 1. PCHIP framework

HDL code for a design, IP developers are required to develop
and deliver another essential piece: formal proofs that the
code abides by a set of security properties that are agreed
upon by both the IP developer and the IP consumer. These
properties do not necessarily impose restrictions on the details
of implementation. Rather, they institute a high level boundary
of trusted functionality, which prevents misbehavior or unso-
licited actions. For example, a security property for a micro-
processor IP could be defined as follows: Each instruction is
only allowed to access memory locations which are specified
in the corresponding fields of its op-code [7]. This property
prevents stealthy information leakage. However, it does not
restrict the details of instruction implementation. As another
example, security properties might impose restrictions on the
flow of information in a design [8, 9] to avoid propagation of
sensitive information to unauthorized sites within the chip and
eventual leakage.

Mechanized proof development and checking requires a
theorem proving language and proof checking environment,
such as Coq and CoqIDE, respectively. Therefore, in order to
be applicable and leverage the rich collection of hardware IPs
developed in HDLs such as Verilog and VHDL, PCHIP defines
conversion rules from HDLs to a Coq representation. Conse-
quently, PCHIP does not intervene in the current hardware IP
design and test methodology, as is the case when introducing
a new formal HDL [12]. Rather, it adds extra steps in parallel
to the current design methodology, namely conversion to Coq,
stating security properties as theorems in Coq, constructing
proofs for such theorems based on the hardware design and
delivering those proofs along with the HDL code to the IP
consumer. VeriCoq seeks to assist with a portion of these extra
tasks, as shown by the shaded arrows in Fig. 1, by making the
conversion to Coq representation effective, reliable, quick and
automatic, with minimum user intervention.

PCHIP does not inflict IP consumers with much extra
burden. Along with the IP developers, they need to agree
on the desired security properties. The onerous task of proof
development is, then, the responsibility of the IP developers.
Consumers, upon receiving the HDL code and the proofs, may
utilize VeriCoq to convert the design to its Coq representation
and check the validity of proofs in the CoqIDE environment.
In this sense, VeriCoq is helpful to both IP developers and IP
consumers. In the next section, we introduce VeriCoq and we
provide details regarding conversion of Verilog code to Coq.

III. VERICOQ

VeriCoq converts RTL designs described in Verilog to
Coq, according to the rules defined in the PCHIP framework.

Although conversion of Verilog constructs to an equivalent
Coq representation may seem straightforward, a closer look
at these two languages reveals fundamental differences which
add significant challenges to the task. In the following, we
describe how VeriCoq handles Verilog constructs and creates
their equivalent in Coq. To this end, we use the simple Verilog
code shown in Fig. 2 and its Coq representation shown in Fig. 3
to explain the details of the conversion.

Basic Circuit Elements in Coq Representation: The PCHIP
framework defines value as an inductive type which can
be lo, hi, or x. A bus_value is represented as a list of
value. This allows treating single-bit and multi-bit signals in
the same manner, without the need for additional definitions.

Inductive value := lo|hi|x.
Definition bus_value := list value.
Definition bus := nat -> bus_value.

PCHIP also defines bus as a function of nat to
bus_value which allows bringing the notion of time to
the Coq representation, so that we can handle sequential
statements. All signal types in a design, such as reg and
wire, are considered as bus in Coq representation. PCHIP
considers arrays as list bus which VeriCoq identifies and
handles accordingly.

Module Definitions: VeriCoq flattens the design hierarchy and
converts module definitions in the Verilog source code to an
inductive type in the Coq representation. It creates a construc-
tor for the module and considers module inputs and outputs
as parameters of this constructor. The body of the module is
created in a function named module_inst. For example,
lines 3-8 in Fig. 3 show the created module type definition
for the modules defined in the Verilog source code of Fig. 2.
Then, as shown in lines 10-58 of Fig. 3, VeriCoq also creates
the module_inst function which constitutes the body of
the modules. More details on the structure of this function
are provided below. Flattened design hierarchy in Coq may
make developing proofs for security properties more difficult.
To solve this problem, designers can selectively convert parts
of the design to Coq and develop proofs incrementally.

Local Signals: Coq does not provide a flexible way for defin-
ing local variables inside functions. However, Verilog modules
make extensive use of local signals. In order to resolve this
Coq restriction, VeriCoq traces all the signals in a module and,
whenever a local signal is needed, it adds it to the parameter
list of the module in the Coq representation, even though
such signals are not present in the port list of the module
in Verilog. For example, consider signals compl_result
and and_result which are locally defined in the my_alu
module of Fig. 2. As line 13 of Fig. 3 shows, these two
signals are considered as parameters for this module in its
Coq representation. However, if a local signal is used only
to connect module instantiations and is not assigned or read
directly inside a module, there is no need to treat it as a module
parameter. VeriCoq can correctly identify such local signals
and accurately create their equivalent Coq description.

Parameters: VeriCoq supports Verilog numeric parameters
which are often defined within modules. Since such parameters
can be modified by each module instance, VeriCoq considers
them as additional parameters when defining the module in its
Coq representation. It also tracks the parameter definitions in

30



1 // Simple ALU for VeriCoq demonstration
2 module my_alu (result, src1, src2,
3 clk, rst, op_select);
4 parameter ALU_BIT_LEN = 8;
5 output [1:ALU_BIT_LEN] result;
6 input [1:ALU_BIT_LEN] src1;
7 input [1:ALU_BIT_LEN] src2;
8 input clk;
9 input rst;

10 input op_select;
11 wire [1:ALU_BIT_LEN] compl_result;
12 wire [1:ALU_BIT_LEN] and_result;
13 reg [1:ALU_BIT_LEN] result;
14
15 always @(rst)
16 if (rst)
17 result = 8’h00;
18
19 always @(posedge clk) begin
20 if (!rst)
21 case (op_select)
22 0: result = compl_result;
23 1: result = and_result;
24 endcase
25 end
26
27 defparam add1.BIT_LEN = ALU_BIT_LEN;
28 defparam and1.BIT_LEN = ALU_BIT_LEN;
29
30 my_add add1 (.result (compl_result),
31 .src1 (˜src1), .src2 (8’h01), .clk(clk));
32 my_and and1 (.result (and_result), .src1 (src1),
33 .src2 (src2), .clk(clk));
34
35 endmodule // ALU
36
37 // Adder module
38 module my_add (result, src1, src2, clk);
39 parameter BIT_LEN = 4;
40 output [1:BIT_LEN] result;
41 input [1:BIT_LEN] src1;
42 input [1:BIT_LEN] src2;
43 input clk;
44 reg [1:BIT_LEN] result;
45
46 always @(posedge clk)
47 result[1:BIT_LEN] <= src1[1:BIT_LEN] + src2[1:BIT_LEN];
48 endmodule // Adder
49
50 // And module
51 module my_and (result, src1, src2, clk);
52 parameter BIT_LEN = 4;
53 output [BIT_LEN:1] result;
54 input [BIT_LEN:1] src1;
55 input [BIT_LEN:1] src2;
56 input clk;
57 reg [BIT_LEN:1] result;
58
59 always @(posedge clk)
60 result[BIT_LEN:1] <= src1[BIT_LEN:1] & src2[BIT_LEN:1];
61 endmodule // And

Fig. 2. Verilog source code of a simple ALU

the Verilog source code and passes the correct values for these
parameters when creating module instances. As an example,
BIT_LEN is defined as a parameter in module my_add of
Fig. 2. Consequently, in lines 6 and 43 of Fig. 3, this Verilog
module parameter is defined as a nat parameter for the
module_my_add constructor and its body is defined in the
module_inst function.

Module Instantiations: To support hierarchy, VeriCoq tracks
module instantiations inside a module and defines them as
parameters of the module definition in the Coq representation.
For example, the my_alu module in Fig. 2 instantiates two
modules named add1 and and1. As lines 5 and 14 in Fig. 3
show, these modules are added to the definition of the my_alu
module in its Coq representation.

VeriCoq automatically creates an axiom for the top module
of the Verilog source code, representing the top module
instantiation. For this purpose, VeriCoq creates the appropriate
variables, parameters and module instantiations. As lines 60-
77 in Fig. 3 show, to instantiate my_alu, VeriCoq defined
the required variables and created parameters with their cor-
responding values assigned in the Verilog source code. It also
created two module instances, namely module_my_and and
module_my_add, in order to instantiate module_my_alu.

1 Require Import Vericoq.
2
3 Inductive module :=
4 | module_my_alu : bus->bus->bus->bus->bus->bus->
5 bus->bus->nat->module->module->module
6 | module_my_add : bus->bus->bus->bus->nat->module
7 | module_my_and : bus->bus->bus->bus->nat->module
8 .
9

10 Fixpoint module_inst (m:module) (t:nat) :=
11 match m with
12 | (module_my_alu result src1 src2 clk rst op_select
13 and_result compl_result ALU_BIT_LEN
14 module_my_and_and1 module_my_add_add1) =>
15 (adoif (
16 (aifsimple (econb rst) (
17 (anoif (expr_assign result
18 (econv (lo::lo::lo::lo::
19 lo::lo::lo::lo::nil))))
20 ))
21 ) t)
22 /\
23 (doif (
24 (ifsimple (enot (econb rst)) (
25 (ifelse (eeq_case (econb op_select)
26 (econv (hi::nil)))
27 (
28 (noif (upd_expr result
29 (econb and_result)))
30 )
31 (
32 (ifsimple (eeq_case (econb op_select)
33 (econv (lo::nil))) (
34 (noif (upd_expr result (econb compl_result)))
35 ))
36 )
37 )
38 ))
39 ) t)
40 /\
41 (module_inst module_my_and_and1 t) /\
42 (module_inst module_my_add_add1 t)
43 | (module_my_add result src1 src2 clk BIT_LEN) =>
44 (doif (
45 (noif (upd_expr
46 (result [(BIT_LEN - 1), (BIT_LEN - BIT_LEN)])
47 (eadd (bus_length
48 (result [(BIT_LEN - 1), (BIT_LEN - BIT_LEN)]) t)
49 (econb (src1 [(BIT_LEN - 1), (BIT_LEN - BIT_LEN)]))
50 (econb (src2 [(BIT_LEN - 1), (BIT_LEN - BIT_LEN)])))))
51 ) t)
52 | (module_my_and result src1 src2 clk BIT_LEN) =>
53 (doif (
54 (noif (upd_expr (result [(BIT_LEN - 1), (1 - 1)])
55 (eand (econb (src1 [(BIT_LEN - 1), (1 - 1)]))
56 (econb (src2 [(BIT_LEN - 1), (1 - 1)])))))
57 ) t)
58 end.
59
60 Variable src1 src2 clk rst op_select : bus.
61 Definition ALU_BIT_LEN := 8.
62 Variable result : reg.
63 Variable and_result compl_result : wire.
64 Definition and1_BIT_LEN := ALU_BIT_LEN.
65 Variable and1_result : reg.
66 Definition add1_BIT_LEN := ALU_BIT_LEN.
67 Variable add1_result : reg.
68
69 Axiom my_alu: forall (t:nat),
70 module_inst (module_my_alu result src1 src2 clk rst
71 op_select and_result compl_result
72 (module_my_and and_result src1 src2 clk and1_BIT_LEN)
73 (module_my_add compl_result
74 (fun t => (eval (enot (econb src1)) t))
75 (fun t => (eval (econv (lo::lo::lo::lo::
76 lo::lo::lo::hi::nil)) t)) clk add1_BIT_LEN)
77 ) t.

Fig. 3. VeriCoq generated Coq code for simple ALU

Part Selection: Selecting a part of a bus is common in Verilog
statements. Since bus_value is defined as a list, PCHIP de-
fines a function to select a portion of a list and uses the [ , ]
notation to represent it. A challenge is that Verilog does not
restrict the range of buses to ascending/descending order or
to start/end by index 0. Therefore, to prevent complexities in
the Coq representation, VeriCoq normalizes indexes in part
selection of buses such that the least significant bit (LSB) of
a bus is always referred to by index 0. The Verilog source
of Fig. 2 shows two methods of defining and using ranges.
Specifically, the LSB of the result bus has index BIT_LEN
in my_add module, while it has index 1 in my_and module.
VeriCoq normalized the LSB to index 0 in both cases as seen
in lines 46, 48 and 54 of the converted code in Fig. 3.

31



Expressions and Verilog Operations: PCHIP defines an in-
ductive type expr in order to build expressions based on basic
mathematical and logical operations of Verilog. It then defines
constructors to build expressions based on these operations.
VeriCoq converts these operations to their equivalent in Coq.
PCHIP also defines the econv and econb constructors to
convert bus_value and bus types to expr. For example,
we point out the add operation in line 47 of Fig. 2, which is
converted as lines 47-50 in Fig. 3. Constructor eadd represents
the add operation whose first parameter is a number and
determines the length of the result. As mentioned earlier,
econb is used to convert src1 and src2 from bus to
expr, which is the type of the other two parameters of eadd.
Similarly, the logical and operation in line 60 of Fig. 2 is
converted as lines 55-56 of Fig. 3. However, eand only gets
two parameters of type expr. PCHIP also defines the eval
function in order to compute the result of expressions and
utilizes it in assignments and conditions.

Constants and Expressions in Module Instantiations: Ver-
ilog allows instantiating modules by connecting input ports
directly to a constant value or an expression. However, sig-
nals, constants and expressions have different types in Coq
representation. To support such module instantiations in Coq,
whenever VeriCoq finds a connection to a constant or an
expression in module instantiations, it creates anonymous
functions converting a bus_value or expr to bus. For
example, we point out the instantiation of add1 in lines 30-31
of Fig. 2, which is converted to lines 73-76 in Fig. 3. VeriCoq
created two anonymous functions, one to negate src1 and the
other to convert constant 8’h01 to bus.

Conditional, Combinational and Sequential Statements:
PCHIP defines two distinct inductive types for conditions in a
combinational or sequential block. To simplify working with
the converted code, unconditional statements are considered
a special case of conditionals without any condition. For se-
quential blocks, noif, ifsimple and ifelse constructors
are used for no condition, if, and if-else statements, respec-
tively. Constructors anoif, aifsimple and aifelse are
used similarly to represent combinational blocks. Constructors
ifcons and aifcons are used to link such statements
together and create Coq code blocks in sequential and combi-
national cases. Since these constructors expect corresponding
if blocks as their action, nested conditional statements can be
converted to Coq seamlessly. The conditional constructors con-
stitute the base structure of the code in its Coq representation.

To distinguish between combinational and sequential as-
signments, PCHIP defines two inductive types through the
expr_assign and upd_expr constructors, respectively.
The difference between these two is that in a combinational
assignment, the computed result affects the left side in the
current clock cycle, while in a sequential one, the result is
computed for the next clock cycle. Lines 15-17 in Fig. 2 show
a combinational block whose Coq representation is given in
lines 16-20 of Fig. 3. Likewise, lines 46-47 of Fig. 2 are
considered a sequential block and converted to lines 45-50 in
Fig. 3. adoif and doif are functions which PCHIP defines
to evaluate combinational and sequential conditional blocks.

VeriCoq also recognizes case statements as conditional
blocks. To make the conversion process less complicated,
VeriCoq unrolls case structures in Verilog and treats them as

consecutive if-else conditions, while considering their appear-
ance in combinational or sequential blocks. As an example,
VeriCoq unrolled the case block of lines 21-24 in Fig. 2 and
converted it to lines 25-37 in Fig. 3

Fig. 3 shows the complete code generated by VeriCoq for
the simple example of Fig. 2, which is directly usable in
the Coq environment to develop proofs for desired security
properties. The conversion is quick and takes less time than
compiling Verilog source codes for running a simulation. The
first line of Fig. 3 imports a Coq library containing the PCHIP
definitions. We are planning to extend the capabilities of
VeriCoq by adding support for a few other Verilog statements
such as generate, function and task.

IV. CONCLUSION

PCHIP introduces a new framework for enhancing trust-
worthiness of hardware IPs by accompanying their HDL code
with formal proofs regarding their security properties. These
properties are designed to confine the IP behavior in a definite
boundary and prevent the introduction of hardware Trojans in
the design. However, PCHIP adds extra steps in the hardware
IP development process, among which conversion of the HDL
code to a formal theorem proving language, such as Coq, is
one of the essential ones. Towards automating this process, in
this paper we introduced VeriCoq, a Verilog-to-Coq converter
based on the rules developed in the PCHIP framework and
we used a simple ALU example to describe how the various
Verilog constructs are handled. VeriCoq supports all of Ver-
ilog’s essential statements and ongoing work is extending its
capabilities into a richer set. VeriCoq is a first attempt towards
automation of the entire PCHIP framework. We continue our
efforts in this direction in order to reduce the extra burden
and make it more appealing for the hardware community to
adopt and utilize the PCHIP framework towards enhancing
trustworthiness of 3rd party hardware IP.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF 1318860) and the Army Research Office
(ARO W911NF-12-1-0091).

REFERENCES

[1] Y. Jin and Y. Makris, “Hardware trojans in wireless cryptographic integrated
circuits,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 26–35, 2010.

[2] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

[3] A. Waksman, M. Suozzo et al., “FANCI: identification of stealthy malicious logic
using boolean functional analysis,” in Proc. ACM Conf. Computer & Communica-
tions Security, 2013, pp. 697–708.

[4] J. Zhang, F. Yuan et al., “Veritrust: verification for hardware trust,” in Proc. Design
Automation Conference. ACM, 2013, p. 61.

[5] J. Zhang, F. Yuan et al., “Detrust: Defeating hardware trust verification with
stealthy implicitly-triggered hardware trojans,” in Proc. ACM Conf. Computer and
Communications Security, 2014.

[6] E. Love, Y. Jin et al., “Proof-carrying hardware intellectual property: A pathway
to trusted module acquisition,” IEEE Trans. Information Forensics and Security,
vol. 7, no. 1 PART 1, pp. 25–40, 2012.

[7] Y. Jin and Y. Makris, “A proof-carrying based framework for trusted microprocessor
IP,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, 2013, pp. 824–829.

[8] Y. Jin and Y. Makris, “Proof carrying-based information flow tracking for data
secrecy protection and hardware trust,” in Proc. IEEE VLSI Test Symposium, 2012,
pp. 252–257.

[9] Y. Jin, B. Yang et al., “Cycle-accurate information assurance by proof-carrying
based signal sensitivity tracing,” in Int. Symp. Hardware-Oriented Security and
Trust. IEEE, 2013, pp. 99–106.

[10] G. C. Necula, “Proof-carrying code,” in Proc. Symp. Principles of Programming
Languages. ACM, 1997, pp. 106–119.

[11] INRIA. (2014, Oct.) The coq proof assistant. [Online]. Available: http://coq.inria.fr/
[12] T. Braibant and A. Chlipala, “Formal verification of hardware synthesis,” in

Computer Aided Verification. Springer, 2013, pp. 213–228.

32


