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Abstract—Yield estimation is an indispensable piece of infor-
mation at the onset of high-volume manufacturing (HVM) of
a device. The increasing demand for faster time-to-market and
for designs with growing quality requirements and complexity,
requires a quick and successful yield estimation prior to HVM.
Prior to commencing HVM, a few early silicon wafers are typi-
cally produced and subjected to thorough characterization. One
of the objectives of such characterization is yield estimation with
better accuracy than what pre-silicon Monte Carlo simulation
may offer. In this work, we propose predicting yield of a device
using information from a similar previous-generation device,
which is manufactured in the same technology node and in
the same fabrication facility. For this purpose, we rely on the
Bayesian Model Fusion (BMF) technique. The effectiveness of
the proposed methodology is evaluated using sizable industrial
data from two RF devices in a 65nm technology.

I. INTRODUCTION

The trend nowadays is towards mixed-signal Systems-on-
Chip (SoCs), wherein analog and RF circuits are integrated
together with the digital processor, memory, etc. Towards this
goal, analog and RF devices are now designed in advance
technology nodes and, as a result, they suffer from increased
process variations which may lead to significant yield loss.
Therefore, accurate and fast prediction of yield of a new device
is an indispensable piece of information during production,
in order to identify and quickly resolve any issues that may
jeopardize production ramp-up. To this end, significant effort
has been invested in improving and speeding up Monte Carlo-
based yield estimation [1]-[3].

In the rapidly growing and dynamically changing con-
sumer electronics market, time-to-market is a crucial factor
in investment return. The semiconductor industry often reuses
an existing device and implements slight modifications and
enhancements to develop the next-generation device so as to
respond to market demands in a reasonable time.

In this work, we introduce a methodology to predict yield
of a device which is planned to be produced in HVM in a
fabrication facility, by borrowing information from a previous-
generation device that is currently being produced or was
produced in the past in HVM in the same fabrication facility.

To accomplish this, we rely on two facts. First, two devices
fabricated in the same technology node and in the same
fabrication facility experience very similar process variations.
Therefore, they share similar e-test distributions, where by the
term e-test we refer to electrical measurements which are typ-
ically performed using process control monitors (PCMs) that
are included in the wafer scribe lines in select locations across
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the wafer. Second, since the new-generation device has slight
modifications and design improvements as compared to the
previous-generation device, both devices exhibit a very similar
performance deviation pattern due to process variations.

The proposed methodology relies on modeling yield of
a wafer as a function of its e-tests. This enables us to
predict yield of a wafer solely based on its e-tests. Such a
prediction model can be learned reliably for the previous-
generation device thanks to the large volume of data that is
available. In this work, we deal with the problem of learning
such a prediction model for the new-generation device during
the characterization phase, where only a few early wafers
with the new-generation device are available. Thereafter, the
HVM yield of the new-generation device can be predicted
by considering the available e-test profile of the previous-
generation device.

To accomplish this, we employ the BMF learning procedure
which aims at effectively refining and adapting the prediction
model for the new-generation device by incorporating, in
an intelligent manner, prior knowledge from the previous-
generation device. BMF is a very powerful technique which
has been used successfully for model improvement in various
contexts in the past, including pre-silicon validation, post-
manufacturing tuning, bit error rate estimation, alternate test,
and production migration [4]-[8].

The proposed BMF learning procedure is compared with
three other more straightforward HVM yield prediction meth-
ods.

II. YIELD/E-TEST CORRELATION

Let us consider device A that is currently being produced
in HVM in a specific fabrication facility. Let us also assume
that we have at hand the e-test measurements from w,4
wafers that contain device A and the probe-tests from all
devices contained in each of these wafers, where by the
term probe-tests we refer to electrical measurements per-
formed to derive the performances of the device. Formally, let
ET!, = [ET} ,, -, ET} ] denote the I-dimensional e-test
measurement pattern of the i-th wafer, where ETY , denotes
the k-th e-test measurement. By knowing the spéciﬁcation
limits for all probe-tests, we can compute yield of the i-th
wafer, denoted by y',, as the percentage of devices in the
i-th wafer that pass all probe-test specification limits. Thus,
information from device A includes

wafery = [ETY,y4], i=1,- ,wa. (1)
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Using the training data in (1), we can learn the correlation
between yield and e-test measurements of a wafer using a
regression function

7'~ fa (ETZ) . 2)
Once the regression function is learned, we can use it to predict
the yield y* for future wafers containing device A, i.e. for
1 > w4, based on their e-test measurements.

III. YIELD PREDICTION ACROSS DESIGNS

Let us now consider that device B is a next generation
of device A with slight modifications and improvements and
that device B is planned to be produced in HVM in the
same technology node and fabrication facility that device A
is currently being or was produced. Let us assume that we
have at hand the e-test measurements from the first wpg wafers
that contain device B and the probe-tests from all devices
contained in each of these wafers. Following similar notation
as in Section II, information from device B includes

wafery = [ET%,ys], i=1,-- 3)

, WB-

We are interested in using the limited data in (3) to accurately
predict HVM yield of device B.
A. Averaging

A simple and straightforward approach is to compute the
average yield of the wp early wafers and use it as an
estimation of HVM yield of device B

N o @)
wp &= YB-

B. Early learning

Another approach is to use the data in (3) as a training set
and learn a regression model to express yield as a function of

the e-tests for device B
~ fp (ET"). (5)

The HVM yield of device B can be predicted by employing
the e-test profile of device A, since it is very similar to that

of device B
1 <& ,
—_— ET"
" z:zl f8 (ETY)

C. Naive mixing of data

(6)

Another approach is to naively mix data in (1) and (3), use
the combined data as a training set, and learn a regression
model to express yield as a function of the e-tests

J' = fap (ET"). (7
The HVM yield of device B can be predicted as
1 & ;
jp = — ETY). 8
B = ; fap (ETY) ®)

D. Bayesian Model Fusion

The BMF approach is similar to early learning, but the
training procedure leverages information from device A in
an intelligent manner. In particular, for devices A and B we
assume regression models

Z @

fA ETl

m (ETY) 9)

and

fe.BMrF ( ET (10)

Z aBm
m=1

respectively. These regression models are based on M basis
functions, where b,, is the m-th basis function, and aa
and ap,, correspond to the coefficient of the m-th basis
function for device A and B, respectively. The coefficients
asg =aa, - ,aa,m] of regression model f4 can be learned
accurately based on the rich dataset in (1). The coefficients
ag = lag1, - ,ap ) of regression model fp are learned

by maximizing the posterior distribution

 (ETY)

max pdf(ap|waferp),
ap

(1)

where pdf(ap|waferg) « pdf(ap)pdf(waferg|ag), pdf(ags)
is the prior distribution, pdf(waferg|ag) is the likelihood
function, and waferp = [wafery, - - , wafer's?]. In this way,
we maximize the “agreement” of the selected coefficients with
the limited observed data in (3). An expression for the prior
distribution is developed by involving the prior knowledge
from device A, whereas an expression for the likelihood
function is developed by using the data in (3). Due to the
lack of space, the interested reader is referred to [7], [8] for
an in-depth discussion on the learning procedure formulation
based on BMF.
The HVM yield of device B can, then, be predicted as

o Z.
i =~ ;fB,BMF (ET,). (12)

IV. EXPERIMENTAL RESULTS
A. Data set and objectives

We use actual production data from two RF devices fabri-
cated in a 65nm technology in the same fabrication facility by
Texas Instruments'. We will refer to these devices as device
A and device B, following the terminology in the rest of the
paper. The dataset for device A includes 54 e-tests obtained
on 9 e-test sites and 168 probe-tests for a total of 1800 wafers
with approximately 1500 die per wafer. The dataset for device
B includes the same 54 e-tests and 200 probe-tests for a total
of 1000 wafers with approximately 1500 die per wafer. The
e-test signature of a given wafer is computed as the mean and
standard deviation of each e-test across the e-test sites, which
leads to an e-test signature with 108 features. Along with the
data, we are also provided with the specification limits for
each probe-test, hence we can compute the actual yield of
each wafer.

IDetails regarding the devices cannot be released due to an NDA under
which this data has been provided to us.
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Using this dataset, we seek to:

o Quantify the existence of a correlation between yield of
a wafer and its e-test signature, which enables precise
prediction of yield of a wafer solely based on its e-test
signature.

e Confirm that accurate prediction of HVM yield of a
device entirely based on data from a few engineering
wafers is not feasible.

« Evaluate and compare the different HVM yield prediction
methods described in Section III.

The regression functions in the different HVM yield pre-
diction methods in Section III are learned using Multivariate
Adaptive Regression Splines (MARS) [9].

B. Yield/e-test correlation

The accuracy of predicting wafer yield from e-tests is
studied independently for both devices A and B by employing
the complete data sets in (1) and (3). We learn and assess the
generalization of the regression models in (2) and (5) by using
5-fold cross-validation. Specifically, a data set is divided into
5 folds, where 4 folds are used for training and the remaining
fold for validation. The procedure is repeated such that all
folds are left out as a validation set and in the end we report the
average prediction error. We employ the absolute prediction
error defined as

0; =

i =, (13)
where §j° and y* are the predicted and the actual yield of the
i-th wafer, respectively.

Figures 1(a) and 1(b) illustrate the correlation between
yield and e-tests for devices A and B, respectively. In each
histogram, the x-axis represents absolute prediction error in
% and the y-axis represents wafers in the validation set in %.
Each bin of the histogram shows the percentage of wafers
in the validation set for the corresponding prediction error
range. For example, regarding device A, the yield of about
37% of wafers in the validation set is predicted with an error
in the range 0-0.5%. Figures 1(a) and 1(b) also illustrate with
vertical lines the average 04y and maximum d,,,, absolute
prediction errors in % across the validation set. As it can
be seen, for both devices, the yield can be predicted with
an average prediction error close to 1% and a maximum
prediction error that does not exceed 5%. This corroborates
our conjecture that the correlation between e-tests and yield is
strong, which allows us to predict yield from e-tests using a
regression function, provided that the training set is rich and
representative of HVM.

C. Yield prediction across designs

In order to demonstrate and compare the HVM yield pre-
diction methods proposed in Section III, we performed the
following experiment. We assume access to the entire dataset
of device A, which constitutes the training data in (1) with
w4 = 1800. For device B, we assume that we have available
only a subset of wafers, in particular wafers that come from
the first two lots. We vary wp in the range [10, 50] and we
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Fig. 1: Error in predicting yield from e-tests.

4

g === BMF Early learning
S 3
o —— Averaging —@ - Naive mixing
jo3
3
= — e — . g o .
E w ‘. —N. —
2 —
g 1 Mo = e e N o e O = o = X X
o
<
g O

10 15 20 25 30 35 40 45 50

Number of available wafers (wy)

Fig. 2: Average HVM yield prediction error for device B from
a few early wafers.

employ the methods proposed in Section III to predict the
HVM yield. We report the average absolute prediction error
expressed as

L .

> s — v, (14)
Wp =
where wjg denotes the size of the validation set defined as the
available wafers for device B excluding the wp wafers, that
is, wjg = 1000 —wp, yp is the HVM yield prediction, and yi
is the actual yield of the i-th wafer.

The accuracy of the different HVM yield prediction methods
proposed in Section III is presented in Figure 2. The curves
show the average absolute prediction error as a function of
wp. As it can be seen, the BMF outperforms the other
straightforward methods regardless of the size of the training
set. It shows a remarkably stable behavior, maintaining steady
HVM yield prediction error even when the training set size is
as small as 10 wafers. This shows that the BMF method, by
statistically fusing prior knowledge from device A, is capable
of providing a very accurate HVM yield prediction model
for device B, based on only a few early fabricated wafers of
device B. Therefore, BMF can be used for a fast and precise
forecasting of HVM yield from a few early wafers in the
HVM, without having to wait until a large volume of data
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Fig. 3: Yield prediction error for device B when w;, = 10.

is collected. The second best method is the averaging method.
The stable behavior implies that the yield of the wafers in the
first two lots that are included in the training set is very similar.
It is outperformed by the BMF method since the wafers in the
first two lots are not very representative of HVM. The early
learning method strongly depends on the size of the training
set. The prediction error is low for large w; and exponentially
increases as wy becomes smaller. This is anticipated since the
information content of the training set is weakened, becoming
biased and non-representative of HVM, and the regression
model is unable to extrapolate towards the tails of distribution,
resulting in large prediction error. The naive mixing of data
method is outperformed by all other methods for w; > 15 and
surpasses only the early learning method for w;, = 10. The
fact that the accuracy of this method is inferior implies that
the data from devices A and B do not exhibit strong similarity
and that the rich data from device A overshadow the limited
data from device B.

To gain better insight, we consider w, = 10 and we illustrate
in Figure 3 the distribution of absolute prediction error for all
wafers in the validation set for the BMF and early learning
methods, which have the best and worst predictions for this
value of wy. The absolute prediction error is calculated as in
(13). As in Figure 1, in each histogram, the x-axis represents
absolute prediction error in % and the y-axis represents wafers
in the validation set in %. Each bin of the histogram shows the
percentage of wafers in the validation set for the corresponding
prediction error range. As it can be seen, for the BMF method
the histogram is skewed to the left, showing that the yield of
the majority of the wafers is predicted accurately with average
and maximum errors 1% and 7%, respectively, whereas for the
early learning method the histogram is skewed to the right,
showing that the yield of about half of the wafers is predicted
with an error of 3.5% and that the maximum error reaches
32%.

Finally, regarding the BMF method, by comparing Figures
3(b) and 1(b), we observe that information from as few as 10
fabricated wafers of device B suffices to reduce HVM yield
prediction error to the quality of prediction that employs a
large HVM population of 800 wafers.

V. CONCLUSION

We discussed methods to accurately predict HVM yield of
a device from a few early silicon wafers assuming availability
of data from a previous-generation device. The set of methods
includes three rather straightforward methods and a new more
sophisticated method based on BMF. As demonstrated using
a large dataset from two 65nm devices from Texas Instru-
ments, the BMF method shows a very stable performance and
outperforms the straightforward methods, since it can intelli-
gently combine data from the new-generation and previous-
generation devices. By using only 10 wafers from the first
two lots and including in the analysis prior information from
a previous-generation device, the BMF method is capable of
predicting HVM yield within 1% of error.
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