
CASPER: CAD Framework for a Novel
Transistor-Level Programmable Fabric

Mustafa M. Shihab, Bharath Ramanidharan, Gaurav Rajavendra Reddy, Jingxian Tian,
William Swartz Jr., Carl Sechen and Yiorgos Makris

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, USA
{mustafa.shihab, bharath.ramanidharan, gaurav.reddy, jingxian.tian, bill-swartz, carl.sechen, yiorgos.makris}@utdallas.edu

Abstract—A recently proposed TRAnsistor-level
Programmable (TRAP) fabric can enable seamless on-die
integration of high-density reconfigurable logic with custom ICs.
However, state-of-the-art CAD tools are developed for either
ASICs or FPGAs and do not support the new architecture. To
this end, we present CASPER - a novel CAD framework for
implementing designs on the TRAP fabric. CASPER begins
with characterizing an ASIC-esque cell library in order to
leverage the industry-leading logic synthesis tools for TRAP. We
then systematically remodel the TimberWolf and the Versatile
Place and Route (VPR) tools to facilitate TRAP-specific design
placement and routing, respectively. In addition, we develop a
robust programming bitstream generation tool for TRAP. Lastly,
we fabricate a 65nm prototype TRAP chip and implement ten
ISCAS-85/MCNC benchmark circuits on it. Our evaluation
results validate the proposed CAD framework and provide a
comparative overhead analysis between TRAP and FPGA.

I. INTRODUCTION

A. Motivation
Notable technological advancement has rendered recon-

figurable computing a key apparatus for various emerging
applications such as image processing and bioinformatics [1].
Although the Look-Up Table- (LUT-) based FPGAs remain
the prevalent choice, several studies have explored alterna-
tive reconfigurable architectures based on fine-granular pro-
grammability [2]–[4]. In particular, a recent work [5] intro-
duced a transistor-level programmable (TRAP) fabric that has
demonstrated uniquely compelling features, such as (i) a better
logic density as compared to FPGAs from the same technology
node, and (ii) seamless on-die integration with ASICs. Con-
sequently, TRAP is considered as a promising technology for
various novel applications of reconfigurable computing such as
hardware security (i.e., design obfuscation) [6], [7]. However,
before venturing into such applications, the core design of
TRAP needs to be thoroughly vetted for limits and limitations.
This, in turn, renders it essential to develop a robust computer-
aided design (CAD) framework for fast and reliable design-
space exploration for the fabric.

B. Challenges
Conventional CAD tools are predominantly designed for

ASICs. In addition, most of the CAD tools for reconfigurable
fabrics are proprietary and vendor-specific. The few avail-
able open-source alternatives, such as the Verilog-to-Routing
(VTR) [8] framework, are exclusively designed for LUT-based
FPGAs and do not support fine-granular fabrics such as TRAP.

Furthermore, the novel design philosophy of TRAP ren-
ders developing a CAD solution for the fabric a challenging
task. Typically, hardware designs are implemented following
either the ASIC or the FPGA CAD flow, as shown in Fig-
ure 1. However, TRAP is a programmable fabric designed to
integrate with ASICs. Consequently, design implementation
on TRAP requires a unique combination of features from

Fig. 1: TRAP leverages components from both the ASIC and
the FPGA design-flow, mandating a novel CAD framework.

both the ASIC and the FPGA CAD flow. First, while the de-
sign synthesis needs to be standard cell-based (like in an
ASIC), but also reflects a TRAP-based implementation. Sec-
ond, the design mapping must be as per TRAP’s architecture,
while retaining ASIC-compatible floorplanning and placement.
Lastly, the design routing and the programming bitstream
generation should be consistent with the fabric’s design.

Based on the above discussion, we can infer that there exists
no straightforward mechanism to apply any existing CAD
framework for implementing designs on the TRAP fabric.

C. Contributions

To address TRAP’s incompatibility with the prevailing CAD
tools and to render its promising features available, in this
work we present CASPER - a full-stack CAD frAmework
for the tranSistor-level ProgrammablE fabRic. Specifically, the
key contributions of this work are as follows:

• Design Synthesis: We characterize a 65nm standard cell
library for TRAP which enables CASPER to leverage the
state-of-the-art logic synthesis tools.

• Mapping and Placement: We customize the Timber-
Wolf [9] tool to map and place cells as per their imple-
mentation in TRAP and generate an ASIC-like floorplan.

• Design Routing: We enable TRAP-based design routing
by remodeling the Versatile Place and Route (VPR) [10]
tool to capture the fine-granular structure of the fabric.

• Bitstream Generation: We develop a Python-based tool
that leverages a target design’s netlist, placement, and
routing files to generate the programming bits for TRAP.

• Validation and Evaluation: We fabricate a 65nm pro-
totype TRAP chip and implement ten ISCAS-85 and
MCNC benchmark circuits [11] on it.

Our evaluation results demonstrate a successful realization
of the proposed CASPER framework and provides compara-

978-1-7281-3320-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Hierarchical organization of the TRAP fabric.

tive overhead analysis for TRAP and two conventional FPGAs
from the same technology node.

II. TRANSISTOR-LEVEL PROGRAMMING FABRIC (TRAP)
TRAP is a field programmable transistor array (FPTA)

that supports post-fabrication instantiation of arbitrary logic
functions [5]. The target function, which can be either com-
binational or sequential, is instantiated by connecting together
cell-based primitives that are programmed at transistor-level.

A. Architecture
The fabric is structured as a hierarchically arranged CMOS

sea-of-transistors, as portrayed in Figure 2.
Logic element: The logic element (LE) is the core component
for implementing a function on TRAP. As shown in the
figure, each LE contains four columns of transistors, wherein
each column consists of eight transistors. The transistors in
an LE can be stitched together into gates or state-holding
components. In order to improve TRAP’s performance and
area efficiency, each LE also includes a built-in flip-flop (DFF),
a full adder (FA) and a multiplexer (MUX).
Unit: Each logic element is combined with an address decoder,
memory blocks, switch boxes and a repeater to form a unit.
The memory blocks store the programming bits, while the
switch boxes are used to deliver the bits to the LE. The repeater
is used for boosting signals traveling across multiple units.
Group: At the top of the hierarchy, four neighboring units
together form a functional block called a Group. The groups
communicate between them and the fabric’s input/output pads
through programmable interconnects (not shown in the figure).
It should be noted that the role of a group is to assist in address
mapping and storing of the programming bits. Otherwise,
from a hardware/CAD perspective, TRAP can be defined as a
connected array of units, as depicted in the figure.

B. Programming Mechanism
In order to ensure compatibility and streamlined integration

with the ASIC CAD-flow, TRAP utilizes a cell library with set
height but variable widths. Consequently, different logic gates
require a varying number of (transistor) columns, can start
from any column, and can extend across multiple LEs. As an
example, the programming of a NAND3 gate in a TRAP LE
is shown in Figure 2, where a suitable bitstream switches on
the required transistors (highlighted in blue) and turns off the
remaining ones. The programming bits need to also activate
the required multiplexers and switches in the switch boxes.

III. PROPOSED CAD FRAMEWORK

Figure 3 portrays the proposed CASPER framework for
implementing designs on the TRAP fabric. In this section, we
detail the six steps of the CAD tool-flow, namely, cell library
generation, logic synthesis, mapping and placement, routing,
and programming bitstream generation.

Fig. 3: Proposed CAD tool-flow for the TRAP fabric.

A. Standard Cell Library Generation
The precursory task for the proposed CAD flow is the

characterization of logic cells based on their TRAP im-
plementation. Specifically, the cell library should accurately
reflect each cell’s area, latency, and power characteristics
when programmed on the fabric. In this work, we use the
library proposed by Tian et al. [5] as our baseline and extend
it for a 65nm process technology. The library contains a
total of 137 cells, including custom cells for the built-in
DFFs, FAs, and MUXs. Each of the cells is first verified for
correct functionality through implementation on an extracted
schematic of TRAP LE(s), which is then simulated using
the Synopsys’ HSPICE tool. We then characterize the cells
with SiliconSmart ACE from Synopsys [12]. The cell library
generation process is completed by creating a database file
(.db) using Synopsys’ Library Compiler.

B. Logic Synthesis
The design flow begins by synthesizing the register-transfer

level (RTL) description of the target design. To this end,
preparing the TRAP-specific cell library renders the task of
logic synthesis both reliable and straight-forward, as we can
leverage any of the state-of-the-art ASIC RTL synthesis tools.
For example, in this work, we use the Design Compiler tool
from Synopsys for this purpose.

C. Mapping and Placement
The synthesized design netlist needs to be mapped and

placed based on the TRAP architecture. The mapping pro-
cess should translate the logic cells into their corresponding
(transistor) column-based representation. On the other hand,
the cell placement should be compatible with the row-based

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: TimberWolf-C is designed to capture the architecture
of TRAP and execute the design placement task accordingly.

floorplanning used in ASIC designs. To achieve this, we
leverage a version of the TimberWolf, which is a timing-driven
placement and partitioning tool often leveraged by the CAD
community for innovative research [9]. This tailored version
for our CASPER framework (TimberWolf-C) undergoes the
following customizations: (i) the dimensions of TimberWolf’s
row and site based grid structure is updated to render it
compatible with TRAP, (ii) the internal characterization of
cells and site categories is modified to ensure correct mapping
and placement, as well as to verify that a target design will
fit on the TRAP hardware, and (iii) TimberWolf’s I/O pads
placement policy is redefined to match with that of TRAP.
Collectively, these modifications ensure that TimberWolf-C
accurately captures the TRAP architecture, as shown in Figure
4, and performs design placement accordingly.

D. Placement and Interconnect Translation
CASPER leverages TimberWolf-C’s placement information

for routing a design with the Versatile Place and Route (VPR)
tool. While TimberWolf generates a single output file (.pl1)
that combines placement and interconnect information, VPR
requires them in the form of two separate input files (.p and
.net). We build the placement and interconnect translator for
TRAP (PITT), a novel Python-based software tool, to translate
the .pl1 file into corresponding .p and .net files.
Placement (.p) file generation: PITT first parses the .pl1 file
to extract the name and pinlist for all the primary I/Os present
in the design, and then copies that information in the .p file
following the appropriate format. The tool then acquires the
clock and reset nets for the sequential/state-holding cells
from the synthesized netlist file. Next, it extracts the I/O pad
placement information and prints it into .p file. Finally, PITT
extracts the logic block (LE) information, translates it into
VPR accepted format, and writes it into the .p file.
Interconnect (.net) file generation: The .net file contains the
name and pinlist of all the blocks (LEs) used in the design,
as well as the internal pinlists for the four sub-blocks inside
each of those LEs. For an LE, the list of nets corresponds to
all the pins connected to it and the net names used to make
the connections are the same as they are in the Verilog file.
For the sub-blocks, the nets correspond to the connection to
each of the four transistor columns. Each transistor can get
three values: an input, short (closed) or, open. Short (open)

Fig. 5: (a) Hardware testbed and (b) GUI design for validating
CASPER with our prototype TRAP chip.

means the gate of the transistor is given a value that makes
the transistor act as a closed (open) switch.

E. Design Routing
VPR is an open-source placement and routing software

for FPGAs which takes the placement (.p) and interconnect
(.net) information for a target design and generates the optimal
routing result (.r) [10]. However, to render it compatible with
TRAP’s novel architecture, the CASPER version of VPR
(VPR-C) must undergo the following customization: (i) the
logic block (CLB) design is revised to make it structurally
equivalent to the TRAP LEs, (ii) the programmable intercon-
nect network is reconfigured to match with that of TRAP, and
(iii) the tool is modified to replicate the I/O pad configuration
of TRAP. This is critical because, unlike FPGAs, TRAP has
a non-uniform distribution of I/O pads. Specifically, on the
vertical sides (left and right) two pads are placed for each row
of LEs, whereas on the horizontal sides (top and bottom) a
single pad is shared between two columns of LEs.

F. Programming Bitstream Generation
The final step in CASPER is to generate the required

bitstream for programming a target design on the TRAP fabric.
Specifically, in addition to the standard tasks of programming
the I/O pads, the interconnect network, and the logic blocks
(LEs), the TRAP bitstream must also implement each logic
cell used in the design. To this end, we develop the bitstream
generator for TRAP (BGT) – a Python-based tool that lever-
ages the design netlist, placement, and routing files to generate
the required programming bitstream for the target TRAP chip.
BGT performs two sub-tasks: (i) generating I/O programming
(IOP) bits to program the I/O pads and connectivity with the
fabric, and (ii) generating logic and interconnect programming
(LIP) bits to program the actual fabric.

IV. VALIDATION AND EVALUATION

A. Silicon Prototype and Hardware Testbed
We conjecture that a complex CAD framework such as

CASPER can be reliably verified only through hardware-based
testing. Therefore, we fabricated a 3mmX3mm prototype
TRAP chip in Global Foundries 65nm process (via MOSIS).
We also developed an experimentation platform for the chip,
which consists of a custom-designed interposer printed circuit
board (PCB) and an Opal Kelly XEM3010-1500P FPGA kit
(Xilinx Spartan 3) [13]. This hardware testbed for CASPER is
shown in Figure 5(a). The interposer PCB houses the TRAP
chip and facilitates communication with the FPGA board.
The purpose of the FPGA board is to load the programming
bitstream on the TRAP chip and provide required control and
trigger signals. The FPGA also captures the TRAP chip’s
output at runtime for further analysis.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Sum of N natural numbers program: (a) be-
havioral Verilog and (b) VPR-C’s routing result.

B. Validation Example
Figure 6(a) shows the behavioral RTL (Verilog) code for

a “sum of N numbers” program that we implement in
order to verify correct operation of CASPER. Specifically, the
program calculates the sum of all natural numbers up to a user-
provided input (N). The mathematical formula used in the pro-
gram is: S = N(N+1)/2, where S is the calculated sum. We
choose this program because, in spite of being a simple design,
the program leverages three different mathematical operations,
namely addition, multiplication, and division (right shift). This,
in turn, renders the synthesized netlist to use a wide range
of cells from the TRAP library and can allow us to test the
fabric’s capability to implement such cells. Furthermore, the
small size of the design allows us to easily demonstrate its
routing results, as shown in Figure 6(b). The generation of
the routing (.r) files can confirm a successful implementation
of CASPER for the most part. We then generate the bitstream
for the circuit using our BGT tool and program the prototype
TRAP chip. At this point, our custom GUI allows us to verify
the correct operation of the programmed chip, which in turn
confirms a successful implementation of CASPER. Figure 5(b)
shows a sample case of the implemented program where a user
input of N=10, generates the correct output of S=55.

C. Comparative Evaluation against FPGAs
It is plausible to spontaneously compare TRAP with

conventional FPGAs – as both are programmable fabrics.
However, FPGAs typically require a separate tool-flow and
lacks the seamless integration with ASIC. Nevertheless, the
most critical difference between TRAP and FPGAs lies in
their respective overhead over ASIC. To demonstrate this,
we compared our 65nm TRAP with Altera(Intel)
Stratix III (EP3SL50F780C2) and Xilinx
Virtex 5 (XC5VLX110) – two of the prominent FPGAs
from that technology node [14], [15]. As for benchmark
design, we chose ten circuits – five each from the ISCAS-85
and the MCNC benchmark suites [11].
Area Overhead: In order to demonstrate TRAP’s advan-
tage in terms of design density, we compare a single-layer
(TRAP-1L) and a four-layer (TRAP-4L) TRAP with the two
FPGAs. As shown in Figure 7a, the difference between the two
incarnations of TRAP becomes insignificant when compared
to that with the FPGAs. In addtion, for both the ISCAS-85
and MCNC benchmarks, TRAP-1L and TRAP-4L’s average
area overhead was 0.05X and 0.06X compared to Stratix
III and Virtex 5, respectively.

Fig. 7: TRAP vs. FPGA: Comparative overhead analysis.

Latency Overhead: It is often critical to implement designs
with minimal latency degradation. In Figure 7b, compare
TRAP-1L and FPGA (we used Virtex 5 as it has lower area
overhead) in terms of latency normalized to ASIC. For the
ISCAS-85, TRAP performs competitively with an average la-
tency overhead of 1.15X compared to the FPGA. Furthermore,
for the MCNC circuits, TRAP performs significantly better
than the FPGA reducing the overhead to 0.54X.
Power Overhead: Efficient area and interconnect usage allow
TRAP to cut down power consumption significantly. As shown
in Figure 7c, for most of the benchmark circuits, TRAP’s
power consumption overhead was closer to ASIC’s, than to
that of the FPGA. Specifically, for the ISCAS-85 and the
MCNC benchmarks, TRAP’s power consumption overhead
was 0.16X and compared to that of the FPGA.

Based on the above discussion, we can confirm that, for
specific applications that benefit for on-die integration with an
ASIC, TRAP is better-suited than conventional FPGAs.

V. CONCLUSION

While the recently proposed transistor-level programmable
fabric has demonstrated a promising future, it remains unex-
plored due to incompatibility with existing CAD tools. In this
work, we proposed a novel CAD framework for implementing
designs on the TRAP fabric. Specifically, we characterized
an ASIC-esque cell library to leverage the existing logic
synthesis tools, modified the TimberWolf tool to facilitate
TRAP-specific design mapping and placement, customized the
VPR tool for design routing, and developed a Python-based
programming bitstream generator tool for TRAP. Finally, we
fabricated a prototype TRAP chip and built an FPGA-based
validation testbed. Our experiments confirmed a successful
implementation of the proposed framework.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Vanderbauwhede and K. Benkrid, High-Performance Computing
Using FPGAs. Springer, 2013, vol. 3.

[2] P. Layzell, “A New Research Tool for Intrinsic Hardware Evolution,” in
ICES, 1998.

[3] A. Stoica, “Towards Evolvable Hardware Chips: Experiments with a
Programmable Transistor Array,” in MicroNeuro, 1999.

[4] J. Langeheine, K. Meier, and J. Schemmel, “Intrinsic evolution of analog
electronic circuits using a cmos fpta chip,” in EUROGEN, 2003.

[5] J. Tian, G. R. Reddy, J. Wang et al., “A field programmable transistor
array featuring single-cycle partial/full dynamic reconfiguration,” in
DATE, 2017.

[6] M. M. Shihab, J. Tian, G. R. Reddy et al., “Design obfuscation through
selective post-fabrication transistor-level programming,” in DATE, 2019.

[7] B. Hu, J. Tian, M. Shihab et al., “Functional obfuscation of hardware
accelerators through selective partial design extraction onto an embedded
fpga,” in GLSVLSI, 2019.

[8] J. Luu, J. Goeders, M. Wainberg et al., “VTR 7.0: Next Generation
Architecture and CAD System for FPGAs,” ACM TRETS, vol. 7-2, 2014.

[9] “TimberWolf Systems Inc.” http://www.twolf.com/, 2019.
[10] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing

Tool for FPGA Research,” in FPL, 1997.
[11] D. Bryan, “The ISCAS’85 Benchmark Circuits and Netlist Format,”

North Carolina State University, vol. 25, p. 39, 1985.
[12] https://www.synopsys.com, 2019.
[13] “Opal Kelly XEM3010.” [Online]. Available: https://opalkelly.com/

products/xem3010/
[14] https://www.altera.com/, 2019.
[15] https://www.xilinx.com/, 2019.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:45:49 UTC from IEEE Xplore. Restrictions apply.

