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Abstract

We propose a methodology for testing ultra-high-speed
asynchronous pipelines, the latest and most promising asyn-
chronous circuit design style. Unlike traditional delay-
insensitive asynchronous micro-pipelines, which use slow
capture-pass latches, these circuits employ aggressive
handshaking protocols and transparent latches between
fine-grain pipeline stages, in order to achieve high perfor-
mance. Their functional robustness, however, relies on cer-
tain timing constraints that need to be satisfied. As a result,
these circuits are no longer delay-insensitive, which means
that stuck-at faults will not always lead to pipeline stalling.
In addition, delay faults may result in violation of these tim-
ing constraints, thus affecting not only performance, as in
delay-insensitive micro-pipelines, but also functional cor-
rectness. To address these new challenges, we develop
a test method for both stuck-at and timing constraint vi-
olation faults in fine-grain ultra-high-speed asynchronous
pipelines. The efficiency of the proposed method is demon-
strated on MOUSETRAP, a recently developed pipeline for
high-speed applications.

1 Introduction

Ever since Ivan Sutherland revitalized interest in asyn-
chronous circuits by introducingmicro-pipelines[1], nu-
merous alternative styles have been proposed for designing
asynchronous pipelines. These efforts are motivated by a
number of advantages that asynchronous circuits promise
over their synchronous counterparts. Despite their ability
to achieve multi-gigahertz clock frequencies, synchronous
designs are challenged by problems with clock skew, clock
power management, and interfacing across clock domains,
which are summarily eliminated in asynchronous designs.
In addition, asynchronous pipelines are inherently more ro-
bust and can naturally tolerate process variations and fluc-
tuations in operational conditions [2]. Moreover, they ex-
hibit excellent modularity and can interface directly with a
multitude of environments through simple handshaking pro-
tocols, facilitating reusability. Migration of asynchronous
pipelines from research labs to industrial production, how-
ever, calls for CAD support in several areas, including test.

A number of methods have been proposed in the past
for testing asynchronous pipelines [3, 4, 5, 6, 7, 8]. Most
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of these methods focus mainly on testing the classic micro-
pipeline [1], which is adelay-insensitivearchitecture, i.e. it
operates correctly under arbitrary gate and wire delays, ex-
cept that the standard bundled data timing convention still
needs to be observed when datapaths are included. Since
then, however, a new generation of ultra-high-speed asyn-
chronous pipelines have been developed, introducing a new
set of test challenges which make existing asynchronous
test methodologies obsolete. Indeed, these circuits exhibit
new faulty behaviors and impose new cost and performance
limitations that are not considered in existing test methods.

More specifically, ultra-high-speed asynchronous
pipelines typically sacrifice the robustness of a delay-
insensitive design style and employ aggressive handshaking
protocols in order to achieve high performance. This high
performance, however, is obtained at the cost of certain
timing constraints that need to be observed for the circuit to
function correctly. As a result, traditional testing becomes
a more complicated task because not all control stuck-at
faults result in pipeline stalling, as in the micro-pipeline
architecture [3, 9, 10]. Moreover, delay faults that result
in violation of the aforementioned timing constraints also
need to be considered. Unlike in the delay-insensitive
micro-pipeline, where such faults only result in perfor-
mance degradation, functional correctness is jeopardized
if timing constraints are violated in ultra-high-speed asyn-
chronous pipelines. In addition, these circuits achieve high
performance partially due to their very fine-grain pipeline
stages, which in the extreme case may contain a single level
of gates. Such fine-grain architectures make scan-based test
solutions unacceptably expensive and usually unnecessary.
In order to develop cost effective test strategies for these
circuits, the capabilities of non-scan based methods need to
be leveraged before intrusive hardware is added for test.

In this paper, we propose a test method for ultra-high-
speed asynchronous pipelines. Our method builds upon
a previously developed tool-suite for the class of speed-
independent circuits [11, 12, 13], which we extend in or-
der to handle delay-insensitive and quasi-delay-insensitive
circuits and to incorporate timing constraints. In addition,
we introduce a fault model and a simple design-for-test
(DFT) method to support testing for timing constraint vi-
olations, which are critical to the correct operation of ultra-
high-speed asynchronous pipelines. Moreover, the pro-
posed method guarantees that the fault effects are observed
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in stable states and requires that the test patterns are applied
after the circuit stabilizes, in order to facilitate testing us-
ing slow testers. The MOUSETRAP [2] pipeline is used for
demonstrating the proposed methods.

The rest of this paper is organized as follows. In sec-
tion 2, we briefly review previously proposed test meth-
ods for asynchronous pipelines. In section 3, we intro-
duce the basics of asynchronous pipelines, with emphasis
on the details of MOUSETRAP. In section 4, we discuss
our test method for stuck-at faults in ultra-high-speed asyn-
chronous pipelines. In section 5, we describe the proposed
DFT method which facilitates testing of timing constraint
violation faults.

2 Previous Work

Several researchers have studied the problem of testing
asynchronous pipelines in the past. Pageyet al. [3] pro-
posed a test generation method for stuck-at faults in tradi-
tional micro-pipelines. However, timing faults resulting in
bundling constraint violation are not considered. Khoche
et al. [4] and Petlinet al. [5] developed full-scan ap-
proaches for testing micro-pipelines. Their methods are
able to test not only for stuck-at faults but also for delay
faults resulting in bundling constraint violation. However,
full-scan methods increase the test application time and in-
cur hardware overhead which may be prohibitive for fine-
grain asynchronous pipelines. Kinget al. [6] developed a
method which generates test sequences for faults inside the
C-elements of the micro-pipeline control stages and applies
them through the circuit. Ronckenet al. [7, 8] proposed
a partial scan method to test both datapaths and handshake
components in asynchronous pipelines. Test patterns are
generated not only for gate I/O stuck-at faults, but also for
bridging faults. In addition to voltage testing,IDDQ testing
is also performed to improve test quality. Furthermore, a
handshaking component,HOLD, is introduced to hold the
circuit in between a handshaking request and its acknowl-
edgement, in order to regain adequate test control. As men-
tioned earlier, these methods were developed for traditional
micro-pipelines and do not address the additional test needs
of fine-grain ultra-high-speed asynchronous pipelines.

3 Styles of Asynchronous Pipelines

Before describing the styles of asynchronous pipelines,
first we briefly introduce the most common classes of
asynchronous circuits, based on their timing assumptions.
Delay-Insensitivecircuits are the most robust, yet the class
of such circuits built out of simple gates is rather limited.
Quasi-Delay-Insensitivecircuits are delay-insensitive ex-
cept that “isochronic forks” are required to build practical
circuits using simple gates and operators. An isochronic
fork is a forked wire where all branches have exactly the

same delay.Speed-Independentcircuits tolerate arbitrary
gate delays, but assume negligible wire delays.Timedcir-
cuits operate correctly under specific internal and/or envi-
ronmental timing assumptions such as bounded delays.

Sutherland [1] proposed the classic asynchronous
pipeline architecture calledmicro-pipeline. The control
circuit for a micro-pipeline, which is shown in Figure
4 (a), is a string of Muller C-elements. Micro-pipeline
stages handshake through transition signaling and aredelay-
insensitive. However, this style uses complex and slow
capture-pass latches which hinder the performance. To al-
leviate this problem, a four-phase micro-pipeline control
approach was proposed [14] in order to improve perfor-
mance by employing faster single-phase transparent latches.
From then onwards, many variants of micro-pipelines have
been developed using alternative control and latch struc-
tures [2, 15, 16, 17, 18, 19]. In order to improve perfor-
mance, most of these asynchronous pipelines employ fine-
grained stages and aggressive timing, i.e. they give up
the robustness of delay-insensitivity and require that certain
timing constraints are met in order to operate correctly.

Among these architectures, we focus on MOUSETRAP
[2] (or M inimal-OverheadUltra-high-SpEed TRansition-
signalingAsynchronousPipeline), which we will use as a
vehicle to demonstrate the proposed test methodology. The
structure of a MOUSETRAP asynchronous pipeline includ-
ing both control and processing logic is shown in Figure 1.
A MOUSETRAP pipeline works under a hybrid protocol
[2] – transition signalingfor the handshaking signals, and
level signalingfor the latch enable signal. In its initial state,
the pipeline is empty with all thedone, req, andacksignals
at a low level, and all its latches in transparent mode. The
pipeline communicates with the environment through tran-
sition signaling, that is, each transition, whether up or down,
is treated as a distinct event. When the first request, or a rise
transition onreqN−1 flow through the pipeline stageN−1,
doneN−1 changes to one andEnN−1 to zero, which closes
the latches in stageN − 1 in order to lock the stage and
block any new request. The same process is applied to the
data, which is “bundled”, i.e. it arrives before the request.
ThenreqN rises after a certain delay which matches the de-
lay of the processing logic in this stage, and bothdoneN and
ackN change to one. As a result,EnN changes to zero to
close the latches and lock the results, andEnN−1 changes
to one which opens the latches in stageN − 1 to accept
the new request. After a successive request, or a fall transi-
tion, flows through stageN − 1, doneN−1 changes to zero
andEnN−1 changes to zero to close the latches, and the
same process repeats. Note that for each data item there are
two transitions on eachEn signal, one to capture it and one
to release it. Therefore, the XNOR gate serves as aphase
converterwhich converts thedone andack signals of tran-
sition signaling into level control for the transparent latches.
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Figure 1. MOUSETRAP Pipeline with Processing Logic

We point out that MOUSETRAP is a fine-grain pipeline in
the sense that the depth of the data processing logic can be
very shallow, comprising in the extreme case just a single
level of gates. MOUSETRAP achieves high performance
by using simple and fast transparent latches, while avoid-
ing the extra switching activity of a 4-phase communication
[14] to simplify the control circuitry. This aggressive hand-
shaking protocol generates an earlier completion signal but
its robustness relies on a few simple one-sided timing con-
straints.

We should note that numerous even more aggressive
structures of fine-grain asynchronous pipelines have also
been proposed [2, 20, 21, 22, 23], wherein latches are elim-
inated altogether. These designs usually employ dynamic
logic for the datapaths and exploit the inherent latching
properties of dynamic gates. Therefore, by avoiding explicit
pipeline latches, the performance is further improved, area
is saved, and power consumption is reduced. However, dy-
namic styles are less noise immune than static styles and
most commercial CAD design flows are not geared towards
dynamic logic. In contrast, the bundled static styles, such
as MOUSETRAP, are able to reuse existing synchronous
datapath blocks. Moreover, in some designs [23], delay-
insensitive codes such as dual-rail data code are adopted to
indicate the data state, hence no dedicated request signal
is needed. This style is particularly suitable forsingle-gate-
level pipelines, which achieve extremely high throughput by
partitioning the datapath in the finest-possible stages with
no explicit latches. However, dual-rail styles impose a sig-
nificant increase in both area and power.

4 Testing Stuck-At Faults

Since stuck-at faults constitute the basic model in both
synchronous and asynchronous circuits, we first discuss
stuck-at fault testing in asynchronous pipelines, empha-
sizing on fine-grain ultra-high-speed architectures and in
particular on MOUSETRAP. We divide the circuit in two
parts, the handshaking logic (control) and the processing
logic (datapath), which are treated individually. In order to

test the handshaking logic, we extend a tool-suite that we
recently developed for testing speed-independent circuits
[11, 12, 13]. These extensions include the ability to han-
dle other classes of asynchronous circuits, such as delay-
insensitive and quasi-delay-insensitive, and the ability to
take timing constraints into consideration. Testing the pro-
cessing logic is relatively simple based on the transparent
latches that are used in MOUSETRAP and only requires
conventional combinational ATPG. Results are reported for
the traditional micro-pipeline and for both the linear and
non-linear MOUSETRAP pipeline architectures.

4.1 Testing the Handshaking Logic

It has been observed in the past [3, 4] that a stuck-at fault
on a request or an acknowledge line of a micro-pipeline will
prevent the generation of any further events on that line.
Hence, the micro-pipeline is halted from progressing any
further and the fault can be easily detected. While this is
true for delay-insensitive micro-pipelines, ultra-high-speed
asynchronous pipelines employ timing assumptions to im-
prove performance and reduce hardware cost and are not
delay-insensitive any longer. For instance, the correct op-
eration of MOUSETRAP is based on a couple of timing
constraints. Therefore, not all stuck-at faults in the con-
trol circuit of MOUSETRAP will halt the pipeline. In addi-
tion, many other styles of asynchronous pipelines have been
proposed since the traditional micro-pipeline. These styles
employ different handshaking protocols and control circuit
structures, and operate under different timing constraints.
Therefore, a test generation method which is able to handle
these new pipeline styles is necessary.

The test generation method that we propose for asyn-
chronous pipelines is based on a tool-suite that we recently
developed for speed-independent circuits. The tool-suite
performs simulation (SPIN-SIM [11]), ATPG (SPIN-TEST
[12]), and test compaction (SPIN-PAC [13]). The heart of
this tool-suite is SPIN-SIM, a logic and fault simulator that
efficiently detects hazards by extending Eichelberger’s clas-
sical method [24] to overcome its limitations. In order to
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improve simulation accuracy, SPIN-SIM adopts a 13-valued
algebra [25, 26], maintains the relative order of causal sig-
nal transitions, and unfolds time frames judiciously. In ad-
dition, complex gates are handled through replacement by
pseudo-gate equivalents with regards to functionality, tim-
ing and faulty behavior. SPIN-TEST uses SPIN-SIM and an
A* search algorithm in order to perform fault-simulation-
based ATPG. Finally, SPIN-PAC employs several heuristics
to combine multiple single-input-change (SIC) vectors into
a single multiple-input-change (MIC) vector, as well as an
Integer-Linear-Programming (ILP) formulation to compact
independent test sequences via pruning or elimination.

Although this tool-suite was developed for speed-
independent circuits, it can be extended to handle other
classes of asynchronous circuits. First, we employ the
method in [27] to simulate delay-insensitive circuits using
SPIN-SIM. Delay-insensitive circuits operate correctly un-
der the unbounded delay model, which allows arbitrary gate
and wire delays. Unlike in speed-independent circuits, the
wires in delay-insensitive circuits also have unbounded de-
lay. Therefore, we preprocess and transform the circuit into
a new circuit by inserting buffers on the wires. As a re-
sult, under the speed-independent timing model, the trans-
formed circuit exhibits the same timing properties as the
original circuit. Therefore, the original circuit can be han-
dled by simulating the transformed circuit in SPIN-SIM. In
Figure 2, we give an example of a delay-insensitive circuit
(on the left) and the transformed circuit used for simulation
by SPIN-SIM (on the right). The inserted buffers, which are
used to mimic the timing of the original delay-insensitive
circuit, are shown in dashed lines. We also note that it is
not necessary to insert a buffer in every segment of a wire,
since some of them can be combined with the delay of the
gates that drive them.

Quasi-delay-insensitive circuits can also be simulated by
SPIN-SIM by preprocessing them in a similar way. How-

ever, such circuits employisochronic forks, in which the
delay on all fanout branches of a wire is assumed to be
equal. These isochronic forks need to be handled differ-
ently. In general, we transform an isochronic fork into an
equivalent speed-independent circuit form, as shown in Fig-
ure 3. Therefore, it is not necessary to insert buffers in
these isochronic forks. Of course, buffers are still inserted
in other parts of the circuit, including non-isochronic forks.

We also extended SPIN-SIM to simulate asynchronous
pipelines with particular timing constraints. SPIN-SIM has
an inherent feature that comes in handy for this purpose.
More specifically, it uses time-stamps to keep track of the
relative signal order while simulating speed-independent
circuits. This relative signal order is taken into account
when evaluating a gate during simulation and increases dra-
matically the simulation accuracy by eliminating false haz-
ard identification. Based on this capability, timing con-
straints can be easily incorporated as additional relative or-
derings of signals.

The transformation process and the extensions described
above have been automated, allowing seamless application
of SPIN-SIM to speed-independent, delay-insensitive and
quasi-delay insensitive circuits, while also taking into ac-
count all relevant timing constraints, such as isochronic
forks, using time stamps [11]. In this way, logic and fault
simulation of aggressive asynchronous pipelines via SPIN-
SIM is enabled. Consequently, the SPIN-TEST simulation-
based ATPG and the SPIN-PAC test compaction method are
also readily available for these circuits.

4.2 Testing the Processing Logic

When a MOUSETRAP pipeline is empty, all request and
acknowledge signals are at a low level and all the latches
are transparent. Therefore, all the processing logic blocks
are interconnected in a cascade and can be treated as a sin-
gle logic block for the purpose of testing. Suppose thatC
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represents the whole block of logic obtained by intercon-
necting all logic blocks in the pipeline stages in a cascade.
Then, any combinational ATPG tool can be used to gener-
ate test patterns for stuck-at faults inC. The test patterns are
subsequently applied to the input of the pipeline when the
pipeline is empty and without sending any request signals.
The responses are observed at the output of the pipeline and
compared to the expected fault-free responses.

Pagey etc. [3] proposed a similar method for testing
stuck-at faults in the processing logic of micro-pipelines,
wherein all latches are also in the pass mode when the
micro-pipeline is empty. Yet others [4] argued that the time
required to generate test vectors for the whole lumped logic
block may be very large and the test pattern generator may
fail to generate tests for some otherwise detectable faults
because of sheer circuit size. Therefore, they proposed a
test method based on a full scan path. However, a full
scan method may not be appropriate for ultra-high-speed
pipelines such as MOUSETRAP, since these pipelines are
very fine-grain. Each stage may only contain one level of
gates in the extreme case. Hence, fully scanning all the
pipeline latches is not only unnecessary but would also in-
cur considerable hardware overhead. Nevertheless, for very
long pipelines, a partial scan technique may be worth ex-
ploring for reducing the complexity of the lumped process-
ing logic for ATPG purposes.

4.3 Experimental Results

The extended tool-suite for testing stuck-at faults in
asynchronous pipelines is implemented in C. The input
netlist is in ISCAS89 format and the stuck-at fault list can
be either provided through a file or generated automati-
cally. In the latter case, all single stuck-at faults on gate
inputs and outputs are injected andg-equivalent [28] faults
are collapsed. An optional random ATPG phase is also

Type of No. of Collapsed Fault Test
Pipeline Faults Faults Coverage Length

Micropipeline 36 28 100% 4
MOUSETRAP 40 34 100% 7

Non-linear 182 154 96.1% 15

Table 1. Experimental Results for Stuck-at Faults

provided, implementing the algorithm of [29] with a user-
defined termination condition (i.e. the maximal number of
consecutive random test vectors that detect no faults). Then,
the simulation-based, deterministic test pattern generation
phase is performed for each remaining fault and the gener-
ated test patterns are compacted, preserving fault coverage.

We applied our method on three asynchronous pipelines.
The first one is the control part of the traditional micro-
pipeline, shown in Figure 4 (a). The second one is the con-
trol part of the MOUSETRAP pipeline, shown in Figure 4
(b). The third one is a non-linear MOUSETRAP pipeline
[2], illustrated in Figure 5. The fork and join stages of this
non-linear architecture are shown in Figure 6. We note that
our method does not target faults inside the C-Elements of
the micro-pipeline, since the method proposed in [6] to test
for these faults can be applied in parallel with our tool-suite.
The experimental results are reported in Table 1. The names
of the asynchronous pipelines are listed in the first column,
and the number of total stuck-at faults andg-equivalent col-
lapsed faults are shown in the second and third columns,
respectively. The achieved fault coverage is listed in the
fourth column, and the number of test patterns after test
compaction is shown in the fifth column.

The results show that, as expected, testing stuck-at faults
in the control circuit of a micro-pipeline is relatively easy.
Since a micro-pipeline is delay-insensitive and a stuck-at
fault on a C-element allows at most one event to be gener-
ated, any stuck-at fault in the control circuit can be detected
by applying two request events and observing the outputs.
So the test pattern for all stuck-at faults is00 → 10 →
00 → 01, where the first bit represents the value onR(in)
and the second bit represents the value onA(out).

Testing the control circuit of MOUSETRAP, however, is
not as easy, since some stuck-at faults, such as the stuck-at-
1 fault on lineEn1 in Figure 4 (b), do not cause the pipeline
to halt. Nevertheless, our method still achieves a fault cov-
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erage of 100%. The corresponding test sequence generated
by our method is00 → 10 → 00 → 10 → 00, where the
first bit represents the value onreq1 and the second bit rep-
resents the value onack4. In order to activate the fault by
closing the latch in the first stage, the sequence first sends
three requests on the left interface without any acknowl-
edgement on the right interface. Then, an additional request
is applied to test whether the latch is closed or not. In the
fault-free circuit the latch is closed, henceack1 remains at
logic one, while in the faulty circuit the latch is still open,
andack1 changes to zero. Unfortunately, the length of the
test sequence for this type of fault isN + 2, whereN is
the number of pipeline stages. Therefore, for a very long
MOUSETRAP, DFT strategies, such as the one described
in section 5, may be necessary to reduce test length.

In the non-linear pipeline, this type of fault in the stages
of the fork branches is undetectable and, therefore, fault
coverage is less than 100%. In order to detect the fault, con-
secutive requests need to be applied without any acknowl-
edgement. In the linear case, the fault-free pipeline will be
filled while the faulty pipeline will not. In the non-linear
case, however, both the fault-free and faulty pipelines will
be filled. This happens because, despite the inability to fill
the faulty branch, the non-faulty branch of the fork will still
be filled. And if either of the two branches is filled, the rest
of the pipeline will also be filled. Therefore, DFT strategies
may be needed in complex pipeline structures to improve
testability.

5 Testing Timing Constraint Violation Faults

In order to achieve ultra-high performance, aggressive
asynchronous pipelines such as MOUSETRAP often as-
sume timing constraints to simplify the handshaking proto-
col and reduce control hardware. For example, in MOUSE-
TRAP, two timing constraints must be satisfied for correct
operation of the pipeline:data overrunand setup time.
Even if these timing constraints are satisfied and verified
during design, they may be violated due to delay faults
caused by manufacturing defects. Therefore, delay faults
may cause aggressive asynchronous pipelines to fail, while

in delay-insensitive styles they may only degrade their per-
formance. In this section, we discuss how to test whether
these timing constraints are met.

5.1 Timing Constraint Violation Fault Model

Timing constraints in asynchronous circuits are typically
expressed in the form oft1 > t2, wheret1, t2 represent
the delay along a certain path, a certain predefined period
of time, or their combination. For example, the timing con-
straint for data overrun in MOUSETRAP is:

tXNORN−1↑+tLtN−1 +tlogicN−1 > tXNORN↓+thold (1)

In other words, sinceackN anddoneN are generated in par-
allel, the path fromackN to the data inputs of stageN must
be longer than the time it takes to close the latch of stageN ,
plus a hold timethold. Otherwise, the data in stageN may
be overwritten by new data. Under thetiming constraint
violation fault model, a circuit is faulty if its actual perfor-
mance violates any of the given timing constraints. For in-
stance, if a fault violates timing assumption (1), then in the
faulty circuit the opposite inequality will hold, i.e. new data
will be allowed to arrive to stageN before its latch is closed,
thus overwriting the current data of stageN . The fault that
violates thesetup timeconstraint in MOUSETRAP can also
be modelled in a similar way. The number of timing con-
straint violation faults in a circuit equals the number of its
one-sided timing constraints.

5.2 Difficulties in Testing Timing Constraints

Timing constraint violation faults can be very challeng-
ing not only for test generation but also for test application.
The two key difficulties are outlined below.

First, high-speed automatic test equipment (ATE) is very
expensive, if at all available, for the operational speed tar-
geted by modern ultra-high-speed asynchronous pipelines.
For example, in order to test the data overrun timing
constraint in MOUSETRAP, consecutive test patterns are
needed. New data in the input of stageN − 1 is required
to be available when the acknowledge signal arrives from
stageN , so that it will overwrite the previous data in stage
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N in the presence of a timing constraint violation fault.
Since the latency between two pipeline stages can be in the
order of just a few gates, it is unreasonable to expect that
ATE will be able to apply the consecutive test patterns so
quickly. The same problem occurs in delay testing of high
speed synchronous circuits, since ATE in the test floor is
usually several times slower than the new synchronous de-
signs that it tests. This problem is often dealt with by mov-
ing some of the ATE capabilities on the chip in the form
of DFT hardware. Similar strategies may be required for
testing high-speed asynchronous pipelines using slow ATE.

Second, unlike stuck-at faults, timing constraint viola-
tion faults may cause hazards in the circuit, which may pre-
vent the propagation of fault effects. While testing the data
overrun timing constraint, for example, new data comes in
before the old data settles. Therefore, what exactly will be
captured in the latches of the next stage is unknown. As a
result, since the fault response is non-deterministic, the fault
can, at best, bepotentially detected. Thus, smart ways for
ensuring deterministic fault responses are also required, in
order to detect timing constraint violation faults.

5.3 Proposed Method

In order to test the data overrun timing constraint in
MOUSETRAP, we propose the DFT strategy shown in Fig-
ure 71. The main source of difficulty in testing timing con-
straint violation faults in MOUSETRAP is the weak con-
trollability of the pipeline through the primary inputs. Once
a new request arrives, a series of operations occurs through
the whole pipeline, with no way to pause in between. As
a result, these unbridled operations often yield an unknown
response due to hazards injected by a timing constraint vi-
olation fault. To improve controllability, we insert a two-
input multiplexer in each pipeline stage except the first
and the last. As illustrated in Figure 7, the multiplexer is
inserted in the acknowledge signal coming from the next

1The processing logic is omitted in Figure 7

pipeline stage. In normal operation mode, the select input
of the multiplexer is set to zero so that the acknowledge sig-
nal from the next stage will pass through, as in the original
MOUSETRAP. In test mode, however, the select input of
the multiplexer is set to one, so that its output can be con-
trolled by the user through the primary inputhold. Thus, the
user can control the XNOR gate and the latch and, hence,
can pause or resume the pipeline at will.

Data overrun faults in MOUSETRAP can now be tested
in the following way. Assume that there is a timing con-
straint violation fault in the second stage of the circuit
shown in Figure 7, and that the circuit is in its initial state.
In order to test for this fault, the select input to MUX1 is
set to one through the shift registers and the primary input
hold is set to one. Thusm1 = 1, done2 = 0, andEn2 = 0
and the latch of the second stage is closed. Then, a one
is applied to inputreq1, followed by a zero onreq1 after
the circuit stabilizes, so that there are two requests blocked
by the closed latch of the second stage. Then,hold is set
to zero, andEn2 changes to one in order to accept a new
request. The fault-free and faulty circuits have different re-
sponses as follows.

If there is no data overrun fault in the second stage, only
one request propagates through the second latch; this hap-
pens because after the first request goes through the latch,
En2 changes to zero and blocks the second request. Even
after the first request has passed through the third stage,
the latch in the second stage will not open again because
the acknowledge signal from the third stage is blocked by
the multiplexer. Therefore, after the first request propagates
through the complete pipeline to the last stage, the primary
outputreq5 will be one even after the primary inputack5

changes to one. A waveform of these signals during this
process is illustrated in Figure 8 (a).

However, as shown in the waveform of Figure 8 (b), in-
correct responses are observed if a data overrun fault exists
in the second stage of the pipeline. In this case, after the
first request goes through the second stage, the latch of the
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first stage is opened and the second request arrives before
the latch in the second stage is closed. Therefore, the sec-
ond request also goes through the second stage and the fault
is activated. In this case, the primary outputreq5 is finally
zero, which is different from the correct response. As a re-
sult, this timing constraint violation fault is detected. Notice
that sending two consecutive requests from the ATE may
not activate the fault, since the ATE may not be fast enough
in applying the second request after the acknowledge signal
arrives. Hence, the second request may arrive after the sec-
ond stage latch is closed and the data overrun fault will not
be activated.

Now let us prove that, in the faulty case, the primary out-
put req5 is guaranteed to be zero. If the data overrun fault
exists in the second stage, both requests will pass through
the latch of the second stage. There are three possible cases
for the propagation of the two requests. In the first case, the
two requests are captured successively by the next stage,
as in normal operation. Then, they propagate, as usual, to
the last pipeline stage sequentially, and afterack5 acknowl-
edges the first request onreq5, the final response onreq5 is
zero. In the second case, the two requests cancel each other
and disappear from the line. In this case, the primary out-
put req5 remains at zero. In the third case, if neither of the
previous cases happens and the two requests pass through
all the stages together, thenreq5 is still zero in the end. In
conclusion, the primary outputreq5 is guranteed to be zero
in the presence of the data overrun fault.

Data overrun faults in other pipeline stages can be tested
in a similar way. Since there areN−2 multiplexers inserted
in anN -stage pipeline, there is a total ofN − 2 select in-
puts to these multiplexers. To control them through a single
primary input pin, we introduce a shift register to which
we connect them, as shown in Figure 7. The shift register
may operate either synchronously or asynchronously in test
mode, so we ommit showing its control signals in Figure 7.

By shifting a one through the register, we can test succes-
sively the data overrun faults of all pipeline stages.

Table 2 lists the test patterns required for testing three
single data overrun timing constraint violation faults in the
MOUSETRAP pipeline of Figure 7. The first 5 patterns are
used for testing the data overrun fault in the second stage,
the next 5 for the one in the third stage, and the last 4 for
the one in the last stage. Signalregshift is the control sig-
nal of the shift register; a high level on this signal causes
a one-bit shift. Note that race conditions may exist in the
circuit when the 6th pattern is applied, however, they do not
influence the response. The data overrun fault of the first
stage is ignored here, mainly because new requests and data
are applied from the environment, which usually has higher
delay than the internal path.

The proposed DFT method incurs overhead both in hard-
ware and in performance. The additional multiplexers
and shift registers contribute to the hardware overhead in,
roughly, linear proportion to the number of pipeline stages.
In terms of performance, the proposed method has no influ-
ence onforward latency, but increasescycle time. Forward
latency is the time it takes a data item to pass through an ini-
tially empty pipeline. Thus, the pipeline latency per stage,
L, is the sum of the latch delay and the logic delay, as in the
original case:

L = tLt + tlogic (2)

Cycle time is the interval between successive items emerg-
ing from the pipeline when it is operating at maximum
speed. Since a multiplexer is inserted in the path from the
acknowledge signal to theXNOR gate in each stage, it in-
creases the cycle time of a stageN , which is now:

T = 2× tLt + tlogic + tMUX + tXNOR↑ (3)

In order to reduce this performance overhead, we are cur-
rently looking into ways to optimize the proposed DFT by
merging the inserted MUXs with the attached XNOR gates.
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Test Pattern Good Response Faulty Response
No. reqin reqshift hold req1 ack5 ack1 req5 ack1 req5 Comments

1 1 1 1 0 0 0 0 0 0 Close 2nd latch
2 0 0 1 1 0 1 0 1 0 Apply 1st request
3 0 0 1 0 0 1 0 1 0 Apply 2nd request
4 0 0 0 0 0 0 1 0 X Pass 1st request through 2nd latch
5 0 0 0 0 1 0 1 0 0 Observe the response
6 0 1 1 0 1 0 0 0 0 Pass 2nd request, then close 3rd latch
7 0 0 1 1 0 1 0 1 0 Apply 3rd request
8 0 0 1 0 0 0 0 0 0 Apply 4th request
9 0 0 0 0 0 0 1 0 X Pass 3rd request through 3rd latch
10 0 0 0 0 1 0 1 0 0 Observe the response
11 0 1 X 0 1 0 0 0 0 Pass 4th request, then close 4th latch
12 0 0 X 1 1 1 0 1 0 Apply 5th request
13 0 0 X 0 1 0 0 0 0 Apply 6th request
14 0 0 X 0 0 0 1 0 0 Pass 5th request, observe the response

Table 2. Test Patterns for Timing Constraint Violation Faults in MOUSETRAP

Other timing constraints must also be satisfied for cor-
rect operation of MOUSETRAP. Thesetup timeconstraint
requires that once a latch is enabled and receives new data
at its inputs, it must remain transparent long enough for the
data to pass through. This means that the path fromreqN to
deassertingEnN must be longer than the setup time,tsu:

treqN→doneN
+ tXNORN↓ > tsu (4)

Also, the standard asynchronousbundled datascheme re-
quires thatreqN must arrive at stageN after the data inputs
of this stage have stabilized. Therefore, the latency of the
delay element must match the worst-case delay through the
combinational block. Testing these constraints is relatively
simple, since any violation will lead the latches to lock er-
roneous data, which will propagate to the primary outputs.

Suppose that we are testing the setup time constraint for
the latch in the second stage, which drives data linea as
shown in Figure 9. First we test if the setup time constraint
holds for a rising transition. Consider the combinational
logic C obtained by removing the pipeline latches and cas-
cading the processing logic blocks. Test generation pro-
ceeds in two phases. In the first phase, we find a test pattern
v1 for the combinational logicC that sets linea to zero.
Then, in the second phase, we find a test patternv2 for C
that detects a stuck-at zero fault on linea. During test appli-
cation,v1 is first applied to the empty pipeline without any
request signals. Since the pipeline is empty, all latches are
transparent and thus, after applyingv1, line a is set to zero.
Then, the latches in the second stage are closed through the
inserted multiplexer. After that, test patternv2 is applied
with a request signal. Finally, the latches in the second stage
are opened. Sincev2 detects a stuck-at zero fault on linea,
it causes a rising transition on linea. Therefore, if the setup
time constraint is violated, the latch drivinga will latch a
zero instead of a one, activating the fault. Again, sincev2 is
able to detect a stuck-at zero fault on linea in C, the fault ef-
fect propagates all the way to the primary outputs, and thus,
the timing constraint violation fault is detected. Notice that

we close the latches in the second stage before applyingv2.
Otherwise, the data may go through the latches of the sec-
ond stage and set linea to one before the request arrives to
the second stage, in which case the timing constraint viola-
tion fault will not be activated. If the circuit has asymmetric
rising and falling delays, we can test the setup time con-
straint for a falling transition in a similar way. Also, since
either a rising or a falling transition may represent a request
event, the test should be performed under both types.

Lastly, we illustrate how to test the timing constraint in
the basic asynchronous bundled data scheme. Suppose there
is asegment delay faultin the third stage of the pipeline, as
shown in Figure 9, and this fault causes the delay of the
processing logic of the third stage to exceed the delay of
the request signal. In order to generate test patterns for this
fault, we target the segment delay fault in the combinational
logic C obtained by removing the pipeline latches and cas-
cading the processing blocks of each stage. The obtained
test patterns, sayv1 andv2, are the main patterns needed
for testing this timing constraint. Test application is similar
as in the previous case of testing the setup time constraint.
First,v1 is applied to an empty pipeline without any request
signals. Then, the latches of the third stage are closed. After
that,v2 is applied, and then the latches in the third stage are
opened. At this time, the segment delay fault is activated
and if the delay in processing logic exceeds the delay of the
request signal, erroneous data is latched in the fourth stage.
Since the patterns are able to detect the segment delay fault
in C, the fault effect propagates to the primary outputs and
the timing constraint violation fault is detected.

6 Conclusion

The latest ultra-high-speed asynchronous pipeline archi-
tectures impose new test requirements for ensuring their op-
erational health. These requirements are not sufficiently ad-
dressed by previously proposed test methodologies, which
focus on the traditional micro-pipeline architecture. The
test method described in this paper fills this gap by pro-
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Figure 9. Testing Other Timing Constraints in Asynchronous Pipelines

viding the ability to test for both stuck-at and timing as-
sumption violation faults in modern ultra-high-speed asyn-
chronous pipelines. The proposed ATPG and DFT methods
are evaluated on MOUSETRAP, demonstrating their effi-
ciency and pinpointing several directions for improvement.
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