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Abstract—We present a novel methodology for protecting in-
core microprocessor memory arrays from Multiple Bit Upsets
(MBUs). Recent radiation studies in modern SRAMs demonstrate
that up to 55% of Single Event Upsets (SEUs) due to alpha
particle or neutron strikes result in MBUs. Towards suppressing
these MBUs, methods such as physical interleaving or periodic
scrubbing have been successfully applied to caches. However,
these methods are not applicable to in-core, high-performance
Content-Addressable Memories (CAM) arrays, due to compu-
tational complexity, high delay and area overhead, and lack of
information redundancy. To this end, we propose a cost-effective
method for enhancing in-core memory array resiliency, called
Vulnerability-based Interleaving (VBI). VBI physically disperses
bit-lines based on their vulnerability factor and applies selective
parity to these lines. Thereby, VBI aims to ensure that an MBU
will affect at most one critical bit-field, so that the selective
parity will detect the error and a subsequent pipeline flush will
remove its effects. Experimental results employing simulation of
realistic MBU fault models on the instruction queue of the Alpha
21264 microprocessor in a 65nm process, demonstrate that a
30% selective parity protection of VBI-arranged bit-lines reduces
vulnerability by 94%.

I. INTRODUCTION

In order to support out-of-order, superscalar execution, mod-
ern microprocessors employ several in-core memory arrays,
such as branch predictors, register allocation tables (RAT),
instruction queues, reorder buffers, etc. One of the most
common ways to implement such high-performance storage
elements, is the use of Content Addressable Memory (CAM)
and Random Access Memory (RAM) structures [1]. Indeed,
the latest microprocessors incorporate several CAM/RAM-
based structures [2] since they achieve power savings of 36%,
on average, as compared to latch-based memory structures
[3]. These structures are built using Static RAM (SRAM)
technology, with a typical CAM cell consisting of two SRAM
cells [4]. Hence, similarly to SRAMs, in-core memory arrays
become vulnerable to single- and multi- bit errors in modern
technology nodes.

Single event upsets (SEUs) due to alpha particle or neutron
strikes [5] have been extensively studied over the last decade
and various countermeasures have been developed to address
the concomitant transient errors [6]. However, as process
feature sizes continue to shrink, it has become more likely
that adjacent cells may also be affected by a single event
[7], thereby causing a multiple-bit upset (MBU). An MBU

is defined as an event that causes more than one bit to be
upset during a single measurement [8]. During an MBU,
multiple bit errors in a single word, as well as single bit
errors in multiple adjacent words may be introduced [9].
While, in the past, MBUs were only encountered in space
applications [7], advanced memory structures now exhibit a
dramatically increasing multi-bit failure rate [10], [11], [12],
[13], [14], highlighting the need for incorporating MBUs in
accurate vulnerability analyses. Specifically, in [10], experi-
ments show that only 45% of the upsets affect only 1 bit;
the rest may affect a greater number of bits, as shown in
Figure 1. This failure rate is further accelerated by reduced
power supply voltage, increased clock frequency, crosstalk
and electromigration effects [15]. Importantly, [12] shows that
MBU rates increase as technology shrinks from 180nm to
65nm. Therefore, mechanisms for protecting in-core memory
arrays from both SEUs and MBUs become essential.

Advanced Error Correcting Codes (ECC), such as Double
Error Correction - Triple Error Detection (DEC-TED) [16] or
Error-Locality-Aware Coding [17], can be very effective in
terms of MBU protection in SRAMs. However, checkword
generation incurs significant area overhead and, more impor-
tantly, its computational complexity prohibits the use of ECC
for protecting the extremely fast CAM/RAM arrays, which
operate at clock speed. Thus, ECC is limited to the protection
of the > 10x slower caches and main memory. Physical
interleaving [18], [19], as shown in Fig. 2, is the most com-

Fig. 1. Frequency distribution of number of faulty bits generated per SEU
for different process sizes [10]
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Fig. 2. Physical interleaving [18]

monly used technique to protect SRAM cells against MBUs.
Interleaving encompasses the creation of logical checkwords
from physically dispersed locations in the memory array,
forcing MBUs to appear as multiple single-bit errors, instead
of a single multi-bit error. However, as physical interleaving
implies the use of powerful ECC codes, it can also not be
used to protect in-core CAM/RAM arrays. Finally, in [20],
the authors suggest periodic scrubbing in order to reduce the
multi-bit error rate in caches. However, as scrubbing reuses
information that is replicated in higher-levels of memory, it
can only be applied to cache hierarchies and not to in-core
memory arrays.

In this paper, we present a novel method to increase the
resiliency of in-core microprocessor arrays against MBUs,
called Vulnerability-based Interleaving (VBI). VBI leverages
the different vulnerability factors of individual bits in order to
minimize the impact of MBUs. Critical bit columns are placed
physically apart, and low-cost parity is used to protect against
errors. Note that error detection is sufficient for error-free
operation in this case, since we can leverage the speculative
execution mechanisms inherent in modern microprocessors
and flush the pipeline to prevent architectural state corruption.
Evidently, to support VBI, a method for assessing vulnerability
of individual bits in in-core microprocessor memory arrays in
the presence of MBUs is required. Such vulnerability assess-
ment is discussed in Section II, followed by the presentation
of the VBI algorithm for generating MBU-hardened memory
arrays in Section III. Our experimental infrastructure for
evaluating the effectiveness of VBI is described in Section IV
and results are presented in Section V, followed by conclusions
and future directions in Section VI.

II. VULNERABILITY ASSESSMENT

The vulnerability of a microprocessor, expressed as the
Soft Error Rate (SER), is defined as the product of the
raw Failures In Time (FIT) rate and the probability that a
fault results into a visible user error. The FIT rate can be
calculated through sophisticated models, usually as a function
of elevation, technology node [21], supply voltage, etc. Typical

Fig. 3. Typically observed fail bit patterns [10]

rate numbers vary between 0.001 - 0.01 FIT/bit [5]. However,
calculating the probability that a fault results in a visible
user error is not trivial and researchers have followed various
approaches to provide accurate estimates.

In [22], Architecture Vulnerability Factor (AVF) is defined
as the probability of a bit-flip in a microprocessor structure
leading to a user visible system error. The authors calculate
AVF by tracking the subset of the microprocessor state bits
required for architecturally correct execution (ACE). Wang
et. al [23] investigated the accuracy of ACE analysis through
extensive Statistical Fault Injection (SFI) experiments. Their
results corroborated that ACE analysis overestimates micro-
processor vulnerability, mostly due to less detailed structures
available in the performance model employed in [22]. Further-
more, recent studies with proton and neutron irradiation tests
showed that SFI measurements closely match in-field exposure
[24]. Finally, [25] introduced a method called Global Signal
Vulnerability (GSV) analysis to approximate AVF using single
stuck-at fault simulations. GSV provides the same relative
ranking of structures, in terms of their vulnerability, as AVF
does, yet in much shorter time.

All of the above state-of-the-art methodologies for estimat-
ing microprocessor core vulnerability employ a single error
model. In terms of microprocessor vulnerability to MBUs,
multiple, non-concurrent faults are discussed in [26], in order
to evaluate the efficiency of design diversity. The study in
[10] triggered the definition of a new probabilistic framework
for incorporating vulnerability of memories to different fault
multiplicities into AVF [27]. Finally, [15] investigates the
effects of multiple faults on the operation of a microprocessor.
However, none of the aforementioned studies discusses the
vulnerability of in-core memories to MBUs.

In order to evaluate the vulnerability of in-core memory
arrays to MBUs, accurate and realistic modeling of multiple
faults is required. Typically observed fail bit patterns, as
presented in Figure 3, indicate that multi-bit upsets do not
manifest as multiple bit-flips randomly spread across rows
and columns; instead, they are clustered in double stripes
perpendicular to the word-lines and manifest as ‘force-to-0’
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Fig. 4. Compact mirror layout of arrays [27]

or ‘force-to-1’ effects. This is attributed to the ‘battery effect’
described by Osada [28]. Figure 4 shows a highly compact
layout of bit cells widely used in the design of such arrays.
Since the p-well is shared among every pair of columns,
in case a particle strikes and causes charge collection, the
generated charge raises the potential of the bulk and turns
on a parasitic bipolar transistor. Hence, the circuit node is
shorted to the bulk and the contents of the cell are flipped.
There is also a probability that parasitic bipolar transistors
in neighboring cells sharing the same p-well will turn on,
effectively generating an MBU. Depending on the node hit
by the particle, the value of the cell may or may not change.
For example, in case node Q is struck when the bit is holding
0, the bit cell will not be affected; the same applies when node
QB is struck when the bit has a value of 1. Consequently, about
50% of the upsets will not result into bit flips.

Towards supporting the VBI method proposed herein, we
extend the existing vulnerability analysis methods, such as
AVF and GSV, to incorporate the effects of MBUs using
realistic multi-bit fault dispersion models, as we describe in
Section IV-B. A similar fault model was used to characterize
MBUs in memories [27].

III. VULNERABILITY-BASED INTERLEAVING

The main idea presented in this study is a method for inter-
leaving individual bit cells based on their probability of affect-
ing instruction execution. This method, called Vulnerability-
based Interleaving (VBI), rearranges the position of certain
bit lines in the stored word. Throughout this paper, bit lines
refer to the columns of a memory array (vertical lines), and
word lines refer to the rows (horizontal lines) (Fig. 2). VBI
aims to improve design resiliency by exploiting the fact that
important bit lines are usually adjacent, rendering the memory
array susceptible to multiple bit errors. Experimental results
presented in Section V confirm this observation. Thus, by
physically dispersing the critical bit lines and protecting only
those with selective parity, VBI greatly improves the resiliency
of a given design.

While parity does not offer error correction, microprocessor
speculative execution provides the framework to suppress error
effects. Thus, when an error is detected by parity, the pipeline
is flushed, the instruction queue is cleared and execution
restarts from the last committed instruction. Therefore, since

(a) Initial order of bit lines

(b) Order of bit lines after VBI

(c) Post-VBI word line including parity bit

Fig. 5. Example of Vulnerability-based Interleaving

we are targeting in-core memory arrays, expensive ECC pro-
tection is not required.

An example of VBI appears in Fig. 5. A common layout
of the information stored in a typical out-of-order instruction
queue consists of a bit for the validity of the instruction, a
bit indicating whether the instruction has been issued to the
functional units, bits storing the location of the instruction in
memory (Program Counter - PC), bits storing the instruction
operands, bits storing the predicted branch direction, etc.
Evidently, not all fields are equally critical: for example, an
error affecting the issue and valid bits, which are usually
the first bits stored in the instruction queue, will certainly
result in instruction corruption. However, the PC information
is rarely used, thus the likelihood of errors in these bits
affecting instruction execution is very low. Fig. 5a shows the
initial layout of bit-fields in the stored word, where darker
coloring implies higher probability to affect workload output.
A possible rearrangement based on VBI appears in Fig. 5b:
More critical bit fields are spread throughout the word, thus
minimizing the probability that an MBU will affect more than
one of them. With the addition of selective parity protection,
as shown in Fig. 5c, the vulnerability of the memory array is
expected to decrease, as the critical bit lines are protected and
the probability of an MBU affecting more than one critical bit-
line is very low (and dependent on the interleaving distance).

Horizontal MBUs (i.e. multiple errors in the same word) are
now detected by the parity bit of the corresponding word, and
vertical MBUs (i.e. multiple errors propagating along the bit
lines) are detected by the individual parity bits of each word.

A. VBI algorithm

The proposed method for rearranging the bit lines appears
in Algorithm 1. The inputs of the algorithm consist of the
memory array to be protected, the percentage B of bit-lines to
be protected with parity (given a specific resiliency budget),
as well as a vulnerability figure for the individual cells of
the memory array. These vulnerability figures are obtained

Paper 19.2 INTERNATIONAL TEST CONFERENCE 3



through fault simulation, using the MBU fault model defined
in Section IV-B. The first step of the algorithm is to calculate
the individual vulnerability factor for each vertical bit-line, by
summing the vulnerability factors of each bit in this bit-line.
Then, the algorithm ranks the list of bit-lines in decreasing
order of vulnerability. The next step is to pick the top B
percent of this rank-ordered list, and physically disperse them
equidistantly along the word line.

The final step is to allocate the remaining bit-lines. In order
to minimize the effect of MBUs, the sum of vulnerability
factors of the bit-lines placed in between parity-protected bit-
lines should be minimized. Thus, the algorithm traverses the
ranked list from the end, and allocates the least important
bit-lines adjacent to the parity-protected ones, in a circular
fashion. For example, if bit-fields a, b and c are protected, then
the algorithm assigns the least critical bit-fields to positions in
the following order: a+1, b+1, c+1, a−1, b−1, c−1, a+2,
b + 2, c + 2, etc. The algorithm continues until all bit-fields
are assigned. While this assignment may slightly increase the
routing overhead of the design, experimental results presented
in Section V-C indicate that application of VBI incurs minimal
power and no area overhead.

IV. EXPERIMENTAL SETUP

We now discuss the specifics of the large-scale MBU
simulation-based study which we performed in order to assess
the effectiveness of the proposed VBI method.

A. Injected modules
The test vehicle used in this study is an RTL model of an

Alpha 21264 microprocessor [29]. The Alpha processor incor-
porates all the features present in current commercial micro-
processors, such as aggressive out-of-order scheduling, deep
12-stage pipeline, superscalar execution, etc. The instruction
queue, which is part of the instruction scheduler, is the main
target of this study. A block diagram of the scheduler appears
in Figure 6. The instruction queue features a 32-slot, 219-
bit array for storing up to 4 incoming instructions per cycle,
which arrive from the rename logic. The embedded scoreboard
resolves data hazards and checks operand availability. When an
instruction is ready, it is dispatched to one of the 6 functional
units. One instruction can be assigned to each functional unit
per cycle.

The information stored in the instruction queue is presented
in Table I. The first 32-bits contain the instruction word,
fetched from the instruction cache. The fetch unit appends
information about the location and the target of the instruction
and feeds the renaming logic. During the rename stage of the
pipeline, several fields are added to the instruction in-flight,
i.e., functional unit destination, renamed registers, branch
information, etc. When the instruction reaches the scheduler,
the ROB id as well as the issue and valid bits are appended
before the instruction is stored in the queue for execution.

B. MBU fault model
In Section II, we discussed how MBUs propagate as clus-

tered ‘force-to-0’ or ‘force-to-1’ effects. Of course, particle

Algorithm 1: VBI algorithm

1 Assume AMxN is the target memory MxN array;
2 Assume VFMxN is the vulnerability factor for each bit

of the array;
3 Assume AVBI is the output of the VBI algorithm;
4 Assume B is the percentage of bit-lines to be protected;

/* Find bit-line vulnerability */
5 for i = 0; i < M ; i + +; do
6 VFcoli = 0;
7 for j = 0; j < N ; j + +; do
8 VFcoli + = VFi,j ;
9 end

10 end
/* Sort columns by vulnerability */

11 Sort(VFcol, key = VFcoli);
/* Initialize output column order list */

12 for i = 0; i < M ; i + + do
13 AVBIi = −1;
14 end

/* Distribute the first B columns */
15 placed = 0;
16 for i = 0; i < M ; i+ = 1/B; do
17 index(AVBIi) = index(VFcolplaced);
18 placed + = 1;
19 end

/* Fill in the gaps by placing the least important bits
around the parity-protected ones */

20 offset = 1;
21 for i = M ; i > B ∗M ; i−−; do
22 for j = 0; j < M ; j+ = 1/B; do
23 index(AVBIj+offset) = index(VFcoli);
24 end
25 if offset > 0 then
26 offset = − offset;
27 else
28 offset = abs(offset) + 1;
29 end
30 end

effects will not manifest exclusively as 1, 2, 3 or 4 BUs,
but rather as a distribution of MBUs of different cardinality.
Using the data extracted by radiation experiments performed in
[10] (appearing in Figure 1), we define a representative MBU
distribution based on the frequency distribution of MBUs for
the 65nm process node. This distribution (65nmRD) consists
of 45% 1 BU, 18% 2 BUs, 10% 3 BUs and 27% 4 BUs.
Given the continuous technology scaling, the 65nm model,
which includes 45% MBUs, is representative of today’s in-
field memory corruption profile.

The fault effect radius of the defined representative distri-
butions is limited to 4 bits. Additional experiments showed
that the vulnerability does not increase significantly for upset
radius of more than 4 bits. This can be attributed to the
timing of the strike and the possible inactivity of the affected
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Fig. 6. Block diagram of Alpha 21264 instruction scheduler

TABLE I
BIT FIELDS OF THE INSTRUCTION STORED IN THE INSTRUCTION QUEUE

Instruction Instruction Instruction
after fetch after rename after issue

Name Bits Name Bits Name Bits
ARCH DEST 4:0 NEEDS DEST REG 161 ROBID 216:203

OP FUNC 11:5 BRANCH 162 ISSUED 217
OPLIT 12 SIMPLE 163 VALID 218

LIT 15:13 COMPLEX 164
SRCB 20:16 MULTIPLY 165
SRCA 26:21 MEMORY 166

OPCODE 31:26 WRITES TO DEST 167
FETCH PC IN 95:32 LOAD 168

FETCH PCTAG IN 159:96 USES SRCA 169
VALID FETCH 160 USES SRCB 170

ARCH DEST 175:171
CONDITIONAL BR 176

UNCONDITIONAL BR 177
INDIRECT BR 178
MEM OP SIZE 180:179

MEM UN OR CMOV 181
DEST PHYS 188:182

OLD DEST PHYS 195:189
SRCA PHYS 202:196
SRCB PHYS 209:203

structure. Specifically, 3+ BUs will most probably affect the
outcome of the simulation, as long as the structure is in use.
Thus, 5+ BUs can be approximated by 4 BUs for saving
simulation time.

C. Fault injection

Hierarchical statistical fault injection [30] was employed for
the large-scale fault injection campaigns performed. Specifi-
cally, a 3-level hierarchical design is used: Scheduler, Out-Of-
Order cluster, Full chip.

Using the MBU fault model discussed in IV-B, up to
4 MBUs were injected using a uniform distribution across
location and time. For each fault model used, a minimum of
250 injections per bit were performed. In total, the results
were acquired after approximately 10M fault simulations. The
simulations were performed using two servers featuring two
Quad-Core Xeon processors with 16GB of RAM.

TABLE II
SPEC BENCHMARK STATISTICS

Workload Masked SDC Stall TLB miss
bzip2 84.57% 0.11% 14.93% 0.39%

cc 90.20% 0.10% 9.22% 0.48%
gzip 84.77% 0.25% 14.72% 0.26%

parser 89.19% 0.03% 10.44% 0.34%
vortex 93.64% 0.00% 6.10% 0.26%

Average 88.47% 0.10% 11.08% 0.35%

D. Benchmarks and fault outcomes

In order to meet in-field reliability expectations, vulnerabil-
ity analysis should rely on employing real life applications.
For the purpose of this study, we utilize 5 SPEC benchmarks,
namely bzip2, cc, gzip, parser and vortex.

In the presence of an injected SEU/MBU fault, workload
execution can be affected in four different ways:

• Fault masked: The output of the SPEC benchmark is
correct, thus the fault was masked by the architecture
or the application.

• Stall: The fault caused the microprocessor to stall, either
due to an invalid state, instruction commitment halt or
unhandled instruction exception. Typically, a stall appears
to the user as a system error or crash.

• Silent Data Corruption (SDC): The application finished
successfully, but the output is erroneous.

• TLB miss: The fault changed the memory access location
to an invalid one, leading to a system crash. The TLB
miss includes both data and instruction TLB misses.

In the results presented in the next section, an erroneous
execution encompasses the superset of Stall, SDC and TLB
miss outcomes. As presented in Table II, the architecture
and application successfully mask, on average, 88.47% of
the injected faults. This number is consistent with the figures
appearing in recent studies [29]. The majority of the faults
affecting execution stall the microprocessor. Very few errors
escape as TLB miss or SDC, but the latter is the most
important possible outcome, requiring elaborate protection
mechanisms. Summarizing, the instruction scheduler of the
Alpha 21264 has an average AVF of 0.12.

V. RESULTS AND DISCUSSION

Figures of merit for the proposed VBI methodology are
provided in this section, including vulnerability improvement
and the corresponding overhead for the instruction queue of
the Alpha 21264 instruction scheduler.

A. VBI performance

We first demonstrate the effectiveness of the VBI method
in protecting the Alpha 21264 instruction queue. Figure 7a
shows the initial order of bit-lines, before application of VBI.
Darker color indicates higher vulnerability factors. Figure 7b
presents the new order of bit-fields, after dispersing the bit-
lines using the VBI algorithm, assuming a parity protection
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(a) Initial order of bit-lines in the instruction queue

(b) Order of bit-lines after VBI

Fig. 7. Pre- and Post-VBI order of bit-lines in the instruction queue (10% parity-protected bit-lines)

Fig. 8. Vulnerability reduction estimates for different parity schemes

budget of B = 10% (i.e. 22 bits). As expected, the most
critical bit-lines are placed at a maximum distance, based on
the given percentage of parity protected bits.

The vulnerability reduction achieved by VBI deployment
appears in Fig. 8. For example, using VBI placement with 30%
selective parity offers a vulnerability factor reduction of 94%,
which exceeds by 26% the vulnerability reduction offered by
the original placement and selective parity (68%). The results
corroborate that VBI and parity deployment provide better
results in terms of vulnerability reduction as compared to a
parity-only configuration, for any number of protected bit-
lines.

Another interesting observation in Fig. 8 is that the fault
coverage figure drops when more than 30% of the bit-fields
are used to form the selective parity. This result is attributed
to the small interleaving distance between the protected bit-
lines in such configuration. When including more than 30% of
the parity bits, the interleaving distance is less than 4. Thus,
MBUs with a radius of 3 and 4 bits (horizontally) will corrupt
two parity protected bit-fields, effectively masking the error
effect on the parity bit. Evidently, given the model of expected
in-field failures, which includes such 3 and 4 bit horizontal
MBUs, exceeding 30% of bits included in the formation of
selective parity is not advisable.

As discussed in Section III, after an error is detected by
parity, error correction is performed by removing the pending
instructions from the pipeline and resuming execution from the

last error-free instruction. This leads to a performance penalty,
as errors are not corrected on the fly and execution needs to
be restarted. However, since the expected error rate is very
small, this penalty is negligible.

B. Selective parity overhead

The trade-off between the number of bit-fields included in
the selective parity and the corresponding logic and delay
overhead is summarized in Table III. The overhead figures
are relative to the size of the instruction scheduler (which
occupies 11% of the Alpha 21264 core). The parity trees were
synthesized using Synopsys Design Compiler, with one parity
tree added per instruction word (for a total of 32 trees).

As expected, the logic overhead is proportional to the
number of parity-protected bit-fields, yet it is overall very
low, amounting to 6.79% of the instruction scheduler when
the optimal value for B = 30% is used. The delay overhead
incurred for evaluating the parity bit is slightly higher, amount-
ing to 9.02% for the same configuration. These relatively low
overhead figures highlight the benefits of applying VBI to
modern microprocessor arrays, especially when one points out
that what one gets in return is a 94% vulnerability reduction
for in-core memory arrays, wherein ECC is not applicable due
to its excessive delay.

C. VBI overhead

Lastly, we estimate the overhead of applying VBI to the
instruction scheduler of the Alpha 21264 microprocessor. As
described in Section IV-A, the scheduler features a 32-slot,
219-bit wide instruction queue for storing the incoming in-
structions (up to 4) from the renaming logic, and can dispatch
up to 6 instructions to the corresponding functional units. We
synthesized the Alpha 21264 scheduler using Synopsys Design
Compiler and we generated a floorplan and layout using
Synopsys Integrated Circuits Compiler. The target library was
the Synopsys Generic Library which includes 9 metal layers.
The floorplanning for the instruction scheduler was initialized
to match the actual layout used for the commercial Alpha
21264, as shown in Fig. 9 (INT IBOX). The instruction queue
SRAM array is placed on the top of the module, and the
scoreboard on the bottom.

We then repeated the process, this time using the new bit-
line arrangement for the instruction queue, as dictated by the
VBI algorithm, while keeping the floorplan and the I/O port
location the same. The modified order of incoming bits re-
sulted in an increase in total wire length within the instruction
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TABLE III
OVERHEAD FOR DIFFERENT PARITY SCHEMES

Percentage Number Parity-only Parity+VBI
of bit-fields of bits Logic Delay vulnerability vulnerability
protected protected overhead overhead reduction reduction

5% 11 0.02% 2.27% 31.47% 34.16%
10% 22 0.20% 6.70% 45.77% 52.54%
15% 33 1.85% 8.15% 56.76% 71.32%
20% 44 3.99% 8.40% 61.28% 78.07%
25% 55 5.53% 8.85% 65.63% 86.83%
30% 66 6.79% 9.02% 68.60% 94.26%
35% 77 8.01% 9.05% 67.22% 73.82%
40% 88 8.76% 9.08% 67.22% 73.82%

Fig. 9. Alpha IBOX [31], [32]

scheduler, as well as extra buffers which the synthesis and
layout tools added in order to meet the timing constraints
set forth (in our experiments the clock frequency was set
to 1GHz). However, the results show that no area overhead
was incurred by applying VBI. This can be explained by
observing that the instruction scheduler has a large number
of I/O ports, due to which the utilization of the control logic
area is rather low. This, in turn, allows for efficient routing
and buffer addition even in the case of a completely random
rewiring of the incoming bits. The added wires and buffers,
however, do cause an increase in the power consumed by
the design. Specifically, after applying the VBI algorithm, the
total dynamic power of the control logic increased by 0.09%.
Given that the IBOX consumes 33% of the total power of the
microprocessor (Fig. 9), this overhead is negligible. Overall,
the area and power overhead incurred by the VBI algorithm is
minimal and is well justified given the achieved vulnerability
reduction.

VI. CONCLUSIONS - FUTURE DIRECTIONS

Recent irradiation studies in contemporary process nodes
reveal a significant increase in multiple bit upsets, highlighting
the need for revisiting vulnerability analysis and developing
novel methods for protecting modern microprocessor core
memory arrays against MBUs. To this end, we introduced

a new method called Vulnerability-based Interleaving (VBI),
which rearranges the bit-lines of the words stored in such
arrays based on their relative vulnerability, in order to max-
imize the effectiveness of a selective parity approach in
suppressing MBUs. In order to evaluate the effectiveness of
VBI, we employed a fault model that includes MBUs based
on the findings of recent irradiation studies. Experimentation
with realistic multi-bit faults in the instruction queue of the
the Alpha 21264 scheduler elucidates that, when combined
with low-cost selective parity protection, VBI can lead to
vulnerability reduction of 94% with minimal overhead. The
benefits of employing VBI are expected to increase further, as
smaller process nodes exhibit greater vulnerability to MBUs.

Towards further exploring and improving the effectiveness
of the VBI method, our future research plans include various
directions. First, we believe that VBI can be refined by using
back-annotated information from the physical layer during bit-
line rearrangement, in order to further contain logic and power
overhead. Second, we see an opportunity for extending VBI
beyond detection of horizontal MBUs, which is its current
focus. Indeed, vertical MBUs are currently detected by sepa-
rate parity bits, yet one can envision word-line interleaving or
even efficient creation of parity trees from the entire memory
array. Third, formation of more than one parity bits per word
may allow further exploration of the effectiveness vs. overhead
trade-off, especially with respect to delay. Finally, we intend
to apply VBI to various other in-core memory arrays, such as
the Reorder Buffer, in order to further evaluate its potential.
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