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Abstract—In the course of semiconductor manufacturing, var-
ious e-test measurements (also known as inline or kerf measure-
ments) are collected to monitor the health-of-line and to make
wafer scrap decisions preceding final test. These measurements
are typically sampled spatially across the surface of the wafer
from between-die scribe line sites, and include a variety of
measurements that characterize the wafer’s position in the
process distribution. However, these measurements are often only
used for wafer-level characterization by process and test teams, as
the sampling can be quite sparse across the surface of the wafer.
In this work, we introduce a novel methodology for extrapolating
sparsely sampled e-test measurements to every die location on
a wafer using Gaussian process models. Moreover, we introduce
radial variation modeling to address variation along the wafer
center-to-edge radius. The proposed methodology permits process
and test engineers to examine e-test measurement outcomes
at the die level, and makes no assumptions about wafer-to-
wafer similarity or stationarity of process statistics over time.
Using high volume manufacturing (HVM) data from industry,
we demonstrate highly accurate cross-wafer spatial predictions
of e-test measurements on more than 8,000 wafers.

I. INTRODUCTION

In modern high-volume semiconductor manufacturing, un-
controllable process variations are increasingly challenging
due to decreasing feature sizes. These variations often result in
device failures, impacting yield and the number of marketable
devices produced per wafer. Therefore, understanding and
monitoring these process variations is critical to the production
of semiconductor devices.

A traditional mechanism for monitoring process variation
effects during semiconductor manufacturing is via e-test mea-
surements, also known as inline or kerf measurements. These
e-test measurements consist of low-level circuit component
data sampled from test structures across the surface of each
wafer. The test structures are typically constructed in the wafer
scribe lines (that is, the areas of the wafer destroyed during
wafer dicing) although some on-die test structures may also be
employed. These measurements are typically associated with
wafer scrap limits to catch unacceptable process variations
early, before wafer processing is completed and expensive
fabrication steps are wasted. Consequently, e-test measure-
ments provide an indirect measure of the health of the wafer
under inspection. They are also frequently used to inspect
problematic stages of the fabrication process via wafer-level
commonality analysis against fabrication tools or chambers.

Despite the usefulness of these e-test measurements in pro-
viding a measure of circuit performance, they are only sparsely
sampled across each wafer, with only a handful of sites
explicitly measured on a wafer that may have many hundreds
or thousands of die. Explicitly collecting e-test measurements
from scribe line sites adjacent to every reticle shot would be
prohibitively time consuming, and more importantly, would
only marginally increase the amount of information provided
about circuit performance for wafer characterization.

In this work, we demonstrate that sparse wafer-level spatial
sampling of e-test measurements does not limit us to only
performing wafer-level correlation analyses. By employing a
regression technique known as Gaussian process modeling,
originating from the field of geostatistics, we introduce a
methodology for accurately extrapolating e-test measurement
observations from sampled scribe line structures to every
die location. The proposed method also incorporates domain-
specific knowledge via radial variation modeling. Our results
are demonstrated on HVM data, using measurements from
more than 8,000 production wafers.

The remainder of this paper is organized as follows. In
Section II, we discuss the importance of spatial interpola-
tion, in Section III, we discuss existing work on statistical
modeling for semiconductor manufacturing, and in Section IV
we describe the e-test measurements used to construct spatial
models. Section V introduces Gaussian process models and
their relevance to semiconductor manufacturing. In Section VI,
we provide experimental results, and conclusions are drawn in
Section VII.

II. SPATIAL INTERPOLATION OF E-TEST MEASUREMENTS

Without accurate die-level measurements, performing die-
level analysis and constructing die-level statistical models is
not possible. Consequently, the sparsity of e-test measurement
sampling prevents us from readily modeling relationships at
this level. As process variation increases with smaller geome-
tries at each technology node, this problem becomes even more
pronounced. Approximations can be made using simple linear
interpolation or k-nearest-neighbor methods, and sampled e-
test measurements may subsequently be extrapolated using
such models to obtain die-level estimates. For measurements
with approximately linear or constant variation across the
wafer, this may be sufficient to obtain low prediction error.
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However, in the case when e-test parameters show non-
linear or radial variations, simplistic approaches will be subject
to a high degree of error. We find theoretical justification for
this in the domain of decision theory [1]–[3]. Consider the
concept of capacity [1], defined informally as the complexity
of a model; a model with high capacity will outperform a
model with low capacity in modeling non-trivial correlations.
Using the Vapnik-Chervonenkis (VC) dimension [1] as a
capacity measure on various function classes, we can pursue
a modeling strategy known as Structural Risk Minimization
(SRM), whereby we rank order proposed models by con-
sidering a nested sequence of function classes with strictly
increasing VC dimension:

F1 ⊂ F2 ⊂ . . . ⊂ Fn (1)

For example, perhaps we consider an ordering where F1 is
the set of all constant models, F2 is the set of all linear
models, F3 is the set of all quadratic models, and so on.
By balancing generalization capability against capacity during
training, we can make an appropriate choice for F from the
nested sequence of Equation 1 which minimizes the empirical
risk. Gaussian process models, as described in Section V, have
sufficient capacity to handle very complex, non-linear behavior
in the training set, while elegantly accounting for noise in the
training data to avoid over fitting.

An overview of the proposed approach is shown in Figure 1.
We are provided some arbitrary, spatially-sampled data from
a wafer or set of wafers. From this data, we would like to
generate approximations of the sampled data extrapolated to
every die location. To do this, we build a statistical model
using our small set of samples, as shown in the center of
Figure 1, and use it to predict across the surface of the wafer,
as shown on the right of Figure 1.

Sample e-test
Measurements

Construct 
Interpolation

Model

Cross–Wafer
Extrapolation

Fig. 1. Overview of Proposed System

III. PRIOR WORK

There is a great deal of literature involving statistical mod-
eling of semiconductor manufacturing test data. The alternate
test approach [4], [5] uses a spline regression model to link in-
expensive test measurements to high-cost counterparts during
final test, thereby reducing overall test cost. Machine learning-
based low-cost testing [6], [7] solves a similar problem, via
construction of ontogenic neural networks to predict final test
outcomes. Both of these approaches address the high cost

of semiconductor device testing by reducing the test set or
replacing it with inexpensive alternative measurements, and
rely on statistical models to recover the original test set or
predict pass/fail labels. However, neither of these approaches
involve spatial correlation, as test cost reduction involves
solving a slightly different problem that does not presently
target cross-wafer variation statistics.

In terms of spatial interpolation of semiconductor statistics,
the most prominent methodology in the literature is an ap-
proach known as “Virtual Probe” [8], [9]. In [9], the authors
extend Virtual Probe to address the same test cost reduc-
tion problem targeted by alternate test or machine learning-
based low cost testing, but by performing wafer-level spatial
sampling of expensive tests instead of completely removing
them, to find a different tradeoff between test cost and the
test escape or test error rate. In general, the spatial modeling
problem addressed by Virtual Probe has similar properties
to the problem addressed in this work. However, it takes a
fundamentally different algorithmic approach, reasoning from
the domain of compressed sensing rather than geostatistics.
The core modeling approach of Virtual Probe is a discrete
cosine transform (DCT) that projects spatial statistics into the
frequency domain. The main assumption of this approach is
the spatial patterns of process variations are smooth and they
can be represented by a few dominant DCT coefficients at low
frequencies [10]. In this work, we employ Gaussian process
models that perform a more general projection via kernel
functions. A complete empirical comparison of the proposed
methodology and Virtual Probe is provided in the experimental
results.

A predecessor of this work can be found in [11], where
the author lays the groundwork for applying Gaussian Process
models (also known as “kriging”) to spatial interpolation
of semiconductor data based on Generalized Least Squares
fitting and a structured correlation function. The computational
method combines empirical data fitting and unconstrained
optimization. In this work, we extend the key ideas of [11] by
introducing modeling of radial variation and by introducing a
function-space derivation of Gaussian process models. More-
over, we demonstrate our experimental results on the largest
industrial case study of semiconductor spatial modeling to-
date.

IV. E-TEST MEASUREMENTS

E-test measurements are a set of process characterization
parameters collected from scribe line test structures. These test
structures are drawn in the areas of the wafer that are destroyed
during wafer dicing, as shown in Figure 2, and therefore can
only be measured before circuit packaging, at the wafer test
stage or earlier. A subset of e-test measurements is typically
collected from these structures after completing a layer or two
of metallization, and the remainder are collected later, during
wafer acceptance testing. The e-test structure is often associ-
ated with several die within a reticle, as it typically is drawn
to the full height of the reticle. For example, the illustration
of Figure 2 shows a 2x2 die reticle, and consequently the
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e-test structure spans two die in the y-dimension. The e-test
measurements collected from these scribe-line structures are
designed to capture a very broad set of process statistics, and
generally include parameters such as:

1) Vth, Tox, Gm, Ioff , measurements for all types of
NMOS/PMOS transistors (e.g., high Vth, low Vth, etc.)

2) N-well / poly resistor measurements
3) Diode Vf and parasitics
4) Capacitor unit cell measurements and parasitics
5) Inductor L and Q and parasitics
6) General parasitics
7) Physical process dimensions

Device

Device

Sampled e-Test SiteReticle

Fig. 2. e-Test Measurement Site Diagram

Clearly, these types of measurements capture a great deal
of information about the health of the process and particular
wafers. However, most semiconductor manufacturing usage
is traditionally limited to collecting a few samples of these
measurements from around the wafer. As shown in Figure 3,
the e-test sites may be sampled only one or two dozen times
on a wafer with several thousand die. This has effectively
limited the scope of statistical models that can be applied using
the data to wafer-level correlation, or to zonal analysis of the
wafer, grossly batching sets of die with the nearest neighbor e-
test sites. In this work, we demonstrate a novel methodology to
generate highly accurate extrapolations of e-test measurements
from a small set of sample sites, vis-à-vis Figure 3, to every die
location on a wafer, without making unnecessary assumptions
about manufacturing process stationarity or wafer-to-wafer
statistics.

e-Test Measurement
Samples

Fig. 3. e-Test Measurements

V. GAUSSIAN PROCESS MODELS

Gaussian process regression modeling [12] is an inductive
regression approach targeted at extrapolating a function over
a Gaussian random field based on limited data observations.
Gaussian process models have their foundations in Bayesian
statistics and share a common basis in kernel theory with
Support Vector Machines [1], [13], [14]. In this section, we
describe the theoretical basis for Gaussian process models, and
develop our Gaussian process regression-based methodology
for extrapolating e-test measurements to every die location on
a wafer.

Consider the monolithic linear regression formulation t =
f(x) + ε, where f(x) = x>w and ε represents indepen-
dent and identically distributed (i.i.d.) additive noise. In this
formulation, w is a vector of weights associated with each
dimension of x; that is, larger elements of w corresponds to
more “important” features in the model. Note that by enforcing
such a model, we impose structure on the problem space and
reduce model variance at the cost of increased model bias.

Such a model performs well when the true generative model
happens to be linear, but this is often not the case. To see
why this can be problematic, consider the following scenario.
Suppose we attempt to use a linear model to extrapolate
an e-test measurement t over Cartesian wafer coordinates
x = [x, y]. By adopting a linear model, we are making the
assumption that the underlying generative function is fully
parameterized by linear coefficients, and can be represented
as a simple 2D plane. If the true generative function is non-
linear, the predictions made by this model will present high
bias and consequently high prediction error.

Feature SpaceInput Space

Fig. 4. Overview of Gaussian Process modeling

With Gaussian processes, we do not presume the output
f(x) is necessarily of linear form, as shown by the one-
dimensional input space curve on the left side of Figure
4. Instead, we define a Gaussian process as a collection of
random variables f(x) associated with points x, such that
every finite set of n functions {f(x1), f(x2), . . . , f(xn)} is
jointly Gaussian-distributed1. To derive a Gaussian process
model for inductive regression, we first consider a noise-free

1In this section, we adopt notation similar to [12] for convenience.
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linear model, shown by the right side of Figure 4, which has
the form:

t = f(x) = φ(x)>w (2)

where φ(x) is a function of the inputs mapping the input
columns into some high dimensional feature space, shown by
the bottom plane on the right side of Figure 4. For example,
a scalar input x could be projected into the feature space:
φ(x) = (1,x,x2)>. We assign a Bayesian prior on the
weights such that w ∼ N (0,Σp). As the realizations of
the Gaussian process at points {f(x1), f(x2), . . . , f(xn)} are
jointly Gaussian, we can fully specify the Gaussian process
with mean and covariance functions:

E[f(x)] = φ(x)>E[w] = 0, (3)

E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′)

= φ(x)>Σpφ(x′) (4)

A. Kernel Covariance Functions

Recall that our ultimate goal of building a Gaussian process-
based regression model is to somehow capture spatial varia-
tion in t as a function of the coordinates x. The following
discussion demonstrates how we can accomplish this task by
modeling our data as drawn from a process with a covariance
function that depends on spatial location. By taking this
approach, proximal data points are modeled as being highly
covariant, and distant points are modeled with low covariance.
This codifies our intuition and a priori knowledge of the
domain: we expect the variation of e-test measurement data
to strongly correlate to spatial coordinates. In Section V-D
we explain how we can easily extend this reasoning to non-
Cartesian coordinate spaces; in particular, to model radial
variation of e-test parameters.

Consider the covariance function specified in Equation 4.
Now, since covariance matrices are by definition positive semi-
definite (see proof in the appendix), we can redefine Σp as
(Σ

1/2
p )2, and rewrite Equation 4 as:

E[f(x)f(x′)] = φ(x)>Σpφ(x′) (5)

= φ(x)>(Σ1/2
p )>Σ1/2

p φ(x′) (6)

We now introduce the parameter ψ(x) by defining ψ(x) =

Σ
1/2
p φ(x), and subsequently rewrite the covariance of Equa-

tion 4 as:

E[f(x)f(x′)] = φ(x)>(Σ1/2
p )>Σ1/2

p φ(x′) (7)

= 〈ψ(x), ψ(x′)〉 (8)

Crucially, this covariance function is formed as an inner prod-
uct, permitting us to leverage the kernel trick [15] and express
Equation 8 as a kernel function k(x,x′). In other words, the
covariance between any outputs can be written as a function
of the inputs using the kernel function without needing to
explicitly computing φ(x), as shown in Figure 4. Many kernel
functions exist, and any function k(·, ·) that satisfies Mercer’s
condition [1] is a valid kernel function. However, only a
handful of kernels see widespread use. Among these common

kernels, the most prevalent is the squared exponential, also
known as the radial basis function kernel. In this work, we
employed a squared exponential kernel of the form:

k(x,x′) = exp

(
− 1

2l2
|x− x′|2

)
(9)

where l is some characteristic length-scale of the squared
exponential kernel, | · | denotes the Euclidean distance. Em-
ploying this kernel is equivalent to training a linear regression
model with an infinite-dimensional feature space. Substituting
our squared-exponential covariance function into the definition
of the Gaussian process, we arrive at a Gaussian process
formulation as:

t = f(x) ∼ GP(0, k(x,x′)) (10)

The following section describes how to employ this process
to derive predictive distributions, as well as how to manage
the inclusion of additive noise in the model.

B. Training and Prediction

Suppose that we are provided a training set of n data points
X = {x1,x2, . . . ,xn} observed in an N -dimensional space,
e.g., each vector in X is xi = {x1, x2, . . . , xN}. So, X is an
n×N matrix of inputs. With these input points, we are also
given a set of predictive targets, t = {t1, t2, . . . , tn}. Now,
we wish to model the observed data as a noise-free Gaussian
process and define, as before, y = f(x) ∼ GP(0, k(x,x′)).

To derive the predictive distribution of this Gaussian pro-
cess, we first write the joint distribution of the training set
targets and a new test function value as:[

t
f∗

]
∼ N

(
0,

[
K k∗
k>∗ k(x∗,x∗)

])
(11)

Where x∗ is a location we wish to extrapolate to, and where
we have defined K = K(X,X ′) as the matrix of the kernel
function k(x,x′) evaluated at all pairs of training locations.
We have also defined k∗ = K(X,x∗) as the column vector
of kernel evaluations between the test point and the entire
set training points, and lastly, k(x∗,x∗) as the variance of
the test function value at the observation point x∗. With this
distribution, we can condition the test function value on the
observed data to obtain the predictive distribution (we omit
the derivation for brevity):

f∗|X, t,x∗ ∼ N (k>∗ K
−1t,

k(x∗,x∗)− k>∗ K
−1k∗ (12)

In this work, we primarily concern ourselves with point
predictions, and so we use simply the distribution mean
f̄∗ = k>∗ K

−1t to generate a point prediction from the
predictive distribution. This corresponds to decision-theoretic
risk minimization [1], [3], [13] using a squared-loss function.
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C. Regularization

To avoid overfitting, a technique known as regularization
[3] is often employed in decision-theoretic empirical risk
minimization. In a traditional linear regression model, regu-
larization typically involves penalizing the L1 or L2 norm
of the model coefficient estimates β̂ to ensure the “slope”
of the model is not too large. This ensures that extrapolative
predictions are not too extreme.

Gaussian process models handle regularization somewhat
differently. Instead of penalizing coefficients, we consider our
predictive targets t = {t′1, t′2, . . . , t′n} as affected by additive
noise such that t′i = ti + ε, where we make the usual
i.i.d. assumptions about the additive noise ε ∼ N (0, σ2

n). To
incorporate this into our Gaussian process model, we update
Equation 10 to model additive noise in the observations:

y = f(x) + ε ∼ GP(0, k(x,x′) + σ2
nδx,x′) (13)

where δx,x′ is the Kronecker delta function. This, in turn,
affects the joint distribution of Equation 11:[

t
f∗

]
∼ N

(
0,

[
K + σ2

nI k∗
k>∗ k(x∗,x∗)

])
(14)

as well as the predictive distribution:

f∗|X, t,x∗ ∼ N (k>∗ (K + σ2
nI)−1t,

k(x∗,x∗)− k>∗ (K + σ2
nI)−1k∗ (15)

resulting in a point prediction for new observations of f̄∗ =
k>∗ (K + σ2

nI)−1t. This constrains the fitted model to avoid
extreme predictions. For example, consider the univariate fit
of Figure 5, shown with 4 monotonically increasing noise
parameters σ2

n = {0, 0.0001, 0.01, 0.5}. The blue line is
the fit model, the red dots are the original data, and the
dotted red line is the true generative function. As this noise
parameter increases, the model gradually flattens, and for very
large σ2

n, approaches a constant fit. Applying a model with a
σ2
n = 0 is equivalent to the hypothesis that our observations

are noise-free. Therefore, employing a non-zero σ2
n captures

our intuition that real-world data measurements are affected
by noise, and that we should not expect to fit a model exactly
through each observed data point. As a practical matter, we
have found empirically that σ2

n = 0.1 works well for our data.
In the general case, this parameter should be adjusted to the
particular application using a hold-out set of data.

In Figure 6, we show the effects of incorporating
additive noise on example wafer data, with σ2

n =
{0, 0.00001, 0.01, 0.1}. As can be seen from the figure, model-
ing observations as noise-free leads to extreme variation in the
model as it fits the response surface exactly through each point
observation, and relaxing this constraint leads to smoother
response surfaces.

D. Modeling Radial Variation

A key contribution of this work is the extension of Gaus-
sian process modeling over Cartesian coordinates to a joint
Cartesian-radius space, capturing our intuition that wafer

Fig. 5. Regularization Example

Fig. 6. Wafer Regularization

variance is often radial. By including a radius feature, we
canonicalize the notion that any set of die drawn from a
wafer-centered ring should present similar e-test measurement
profiles.

An advantage of using Gaussian process regression is the
ability to apply a Gaussian process over arbitrary index sets.
Thus far, we have been describing a Gaussian process imple-
mentation that estimates e-test parameters over a 2D Cartesian
plane, but we are free to use any other field. As noted above,
many parameters will manifest radial variation patterns due
to the physical realities of semiconductor manufacturing. To
accommodate this in our Gaussian process model, we can
simply update our coordinates from x = [x, y] to include a
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radius r =
√
x2 + y2:

x =
[
x, y,

√
x2 + y2

]
Now, applying the Gaussian process regression model over this
space will result in a model that takes radial variation patterns
into account. In Figure 7, we show the effect this has on the
prediction outcomes.

Without Radius With Radius

Fig. 7. Radial Modeling

E. Gaussian Process Models for e-test Interpolation

Our objective with using Gaussian process regression for
e-test parameter inductive interpolation is to build per-wafer
models that accurately estimate e-test parameter outcomes at
previously unobserved wafer [x, y] locations. By modeling
variation on a per-wafer basis, we sidestep the need for the
“median polishing” methodology of [11].

Our Gaussian process implementation was designed to
record spatial prediction error across the surface wafer and
provide a reasonable metric of prediction quality in terms of
percent error. The output of our Gaussian process implemen-
tation is a j × k matrix E composed of prediction errors εjk,
where εjk is the prediction error of the model for the j-th
wafer and the k-th e-test parameter.

To train the Gaussian process model for a particular wafer
j, we employ leave-one-out cross validation. Specifically,
consider observations of the k-th e-test parameter at sites
t
(i)
k , i ∈ {1, 2, . . . , n}, where each site has an associated xi =

[x, y] location consisting of Cartesian e-test site coordinates.
We select the l-th example t(l)k as a test case, and subsequently
train a model on the remaining observations t(i)k , i 6= l. This
model is then used to produce an estimate:

t̂
(l)
k = f̄∗ = k∗

>(K + σ2
nI)−1t (16)

This process is then repeated for every e-test site, leaving
out a single observation as a test set and training on the
rest to produce an estimate for the test observation. Given
these predictions, we compute test error as the mean absolute
percent error across all predictions:

εjk =
1

n

n∑
i=1

∣∣∣(t̂(i)k − t
(i)
k )/t

(i)
k

∣∣∣ (17)

Thus, εjk represents the mean percent error of predicting the
k-th e-test parameter for all sites on a particular wafer j.

Applying the model in this fashion for all wafers and all e-
test parameters, we populate the matrix E that completely
characterizes the performance of the Gaussian process models
on the dataset at hand. We can also summarize mean prediction
error for a particular e-test parameter by computing the mean
error over all wafers:

εk =
1

Nwafers

Nwafers∑
i=1

εik (18)

VI. EXPERIMENTAL RESULTS

In this work, we demonstrate results on e-test data collected
from industry HVM. Our dataset has in total 8,440 wafers, and
each wafer has 269 e-test measurements collected from 21
sites randomly sampled across the wafer. Clearly, increasing
the number of sites per wafer would provide more information
about the health of the process and particular wafers, at the
expense of longer testing time. Leave-one-out cross validation
was used to characterize the prediction error at each of the 21
sites, and the mean cross-validation error across all 21 sites
was collected for each e-test measurement and each wafer, as
described in Section V-E. Consequently, the resultant matrix
of errors E had 8, 440× 269 elements.

A. Virtual Probe

As a baseline reference, we first provide experimental
results for Virtual Probe. In Figure 8, we present a histogram
of mean prediction errors across all wafers, as computed via
Equation 18. The black line overlaid on the histogram repre-
sents the cumulative percent of e-test measurements included
in each successive bin. Virtual Probe performs quite well, with
more than 85% of the e-test measurements realizing less than
4% mean prediction error.

In Figure 11 we present an overview of the prediction
errors with 10%–90% error bars shown for all 269 e-test
measurements, sorted by median Virtual Probe prediction
error. Each index on the x-axis corresponds to a single e-
test measurement, and the y-axis shows the prediction error in
percent incurred by Virtual Probe.

B. Proposed Method: Gaussian Process Models

In Figure 9, we display a histogram of the mean (across
all wafers) e-test measurement prediction errors, again as
computed via Equation 18. As can be seen from the figure,
the Gaussian process model prediction errors are even lower
than Virtual Probe, with more than 90% of e-test measurement
predictions below 4% error.

In Figure 12 we present the Gaussian process model pre-
diction errors with 10%–90% error bars. Again, a qualitative
comparison to Figure 11 shows that the errors are generally
lower and the error bars tighter than for Virtual Probe. The
error ranges are quite small across the majority of e-test
measurements, demonstrating that the variance of the errors
is low over the entire set of 8,440 wafers. Importantly, this
shows that the models are insensitive to process shifts over
time, a result that is attributable to the fact that we train and
deploy our models on a per-wafer basis.
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Fig. 8. Virtual Probe prediction error across all wafers

Fig. 9. Gaussian process model prediction error across all wafers

Figure 10 presents a zoomed-in version of Figure 12 with
the best-predicted 30 measurements, e.g., the left-hand side
of Figure 12. The x-axis shows the 30 e-test parameters;
these include a mixture of diode, capacitor, and NMOS/PMOS
transistor parameters. The y-axis is again percent error—for
these 30 measurements, the mean prediction error is less than
0.2%, indicating that we can very successfully interpolate
these parameters across the surface of the wafer.

In Figure 13 we present another zoomed-in version of
Figure 12, in this case with the worst-predicted 30 e-test mea-

Fig. 10. Prediction error for best 30 e-test measurements

Fig. 11. Virtual Probe prediction error for each e-test measurement

Fig. 12. Gaussian process prediction error for each e-test measurement

surements, or the right-hand side of Figure 12. The parameters
shown here are the most challenging for us to predict with our
Gaussian process models, in some cases reaching more than
40% prediction error. These parameters are largely comprised
of a) Gds drain-source conductance measurements of various
transistors, and b) various resistance measurements. Both tend
to have high cross-wafer variation, or even die-to-die variation.
Consequently, high prediction error for these parameters is
relatively unsurprising. However, for most of these worst-
case prediction errors the error is under 10%, which is still
within an acceptable range for most use cases. A possibility
to improve the prediction errors for these parameters is to
increase the number of samples during the training.

C. Comparison to Virtual Probe

In Figure 14 we present a comparison of the two method-
ologies, with Virtual Probe set as the baseline at 0%. The
proposed methodology consistently outperforms Virtual Probe
by an average of 0.5%, and in some cases, by almost 5%. The
overall mean prediction error of Virtual Probe across all e-test
measurements and all wafers is 2.68%, and the overall mean
prediction error for Gaussian process-based spatial models is
2.09%.

A tabular comparison of the proposed Gaussian process
model approach versus Virtual Probe is provided in Table

Paper 5.1 INTERNATIONAL TEST CONFERENCE 7



Fig. 13. Prediction error for worst 30 e-test measurements

I, with overall mean error reported alongside mean training
and prediction time per wafer across all e-test measurements.
The timing measurements were collected on a 2010 Core
i5 2.4GHz, and represent the mean total time required to
construct and predict with all 269× 21 = 5, 649 models for a
given wafer. Note that the proposed methodology consistently
has lower error than Virtual Probe, while incurring an order of
magnitude less runtime to construct and evaluate the predictive
models.

Fig. 14. Comparison of Gaussian Process Regression vs. Virtual Probe

Method Overall Mean Avg. Running Time
Percent Error (per wafer)

Virtual Probe 2.68% 116.2s
Gaussian Process Model 2.09% 16.43s

TABLE I
VIRTUAL PROBE & GAUSSIAN PROCESS MODELS COMPARISON

VII. CONCLUSION

In this work, we presented a Gaussian process model-based
method for generating spatial estimates of e-test parameters
across the surface of wafers, enabling extraction of per-die
estimates of e-test parameters. In general, our Gaussian pro-
cess model is able to generate extremely accurate predictions
for e-test performances across more than 8,000 HVM wafers.
For 90% of the parameters, the Gaussian process model-based
methodology demonstrates less than 4% error, and for the
majority of the parameters the prediction error is much lower

still. Moreover, the distribution of prediction errors is tightly
clustered across all of the wafers, indicating that our models
are not affected by process shifts over time. Lastly, our Gaus-
sian process model-based approach consistently outperforms
Virtual Probe, on average by 0.5%, and in certain cases, by a
significant margin of almost 5%, while requiring an order of
magnitude less runtime to evaluate on each wafer.
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