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Abstract—As semiconductor process nodes continue to shrink,
the cost and complexity of manufacturing has dramatically
risen. This manufacturing process also generates an immense
amount of data, from raw silicon to final packaged product.
The centralized collection of this data in industry informa-
tion warehouses presents a promising and heretofore untapped
opportunity for integrated analysis. With a machine learning-
based methodology, latent correlations in the joint process-
test space could be identified, enabling dramatic cost reduc-
tions throughout the manufacturing process. To realize such
a solution, this work addresses three distinct problems within
semiconductor manufacturing: (1) Reduce test cost for analog
and RF devices, as testing can account for up to 50% of the
overall production cost of an IC; (2) Develop algorithms for
post-production performance calibration, enabling higher yields
and optimal power-performance; and, (3) Develop algorithms
for spatial modeling of sparsely sampled wafer test parameters.
Herein these problems are addressed via the introduction of a
model-view-controller (MVC) architecture, designed to support
the application of machine learning methods to problems in
semiconductor manufacturing. Results are demonstrated on a
variety of semiconductor manufacturing data from TI and IBM.

I. INTRODUCTION
The advent of the modern integrated circuit has created

a immense market for semiconductor devices, surpassing
the $300 billion mark in 2011. Semiconductors are wholly
pervasive in today’s world, and are integrated into a wide
spectrum of products. These products present dramatically
different design constraints. For consumer electronics, low cost
is the key driver; despite high manufacturing volume, profit
margins are typically small. On the other hand, automotive and
defense applications demand high reliability and security, with
considerably lower manufacturing volume. Although increas-
ingly sensitive to power consumption, traditional server and
desktop computing applications remain primarily performance
driven. Finally, the emergence of mobile devices has created a
demand for semiconductor products with extremely low power
consumption. Manufacturing such products that meet all of
these constraints has proven to be extremely challenging.

Manufacturing semiconductor devices that meet the per-
formance targets of such a broad range of applications is
very challenging. However, throughout the manufacturing and
test process, a tremendous amount of data is generated and
collected, from raw silicon through to final packaged product.
All of this data is collected and stored in semiconductor manu-
facturing information warehouses as part of the manufacturing
process, and it is used by many disparate engineering teams
during the manufacturing flow. The availability of this data is
laden with opportunities for improving the manufacturing flow
with statistical learning methods.

To date, the majority of statistical data analysis taking
place within semiconductor manufacturing has been stratified
throughout the manufacturing and test process, and limited
to within-group process or test team work. Process data
and inline measurements are typically employed to monitor
the process, drive yield learning, and track manufacturing
excursions. Beyond identifying device pass/fail status, test data
is often used to search for yield detractors, albeit in a rather
ad hoc fashion. As process variability dramatically increases
with smaller process nodes, studying data jointly from both
the manufacturing and test flow is becoming increasingly
important, as isolated statistical data analysis is likely to miss
important intra-process/test correlations.

In this work, a novel, integrated approach to semiconductor
data analysis is introduced, constructed as a model-view-
controller (MVC) framework. This design pattern, originally
described in [1] as a framework for user interfaces, is adapted
herein to semiconductor manufacturing and statistical data
analysis. The proposed approach synthesizes semiconductor
manufacturing practices with the latest advances in statistical
learning theory and modern software engineering disciplines
into a unified framework for solving data analysis problems
within semiconductor manufacturing and test. Herein, several
such problems are addressed, as case studies in the application
of the proposed framework.

The remainder of this paper is organized as follows. In
Section II, the model-view-controller framework is introduced
and discussed. In Section III, a set of statistical algorithms
addressing problems in low-cost testing of analog and RF
devices is discussed. In Section IV, algorithms for the post-
production calibration of analog and RF device performances
are introduced. Section V addresses spatial modeling of wafer
parameters via Gaussian process models. Lastly, Section VI
presents some conclusions.

II. MODEL-VIEW-CONTROLLER FRAMEWORK

In this work, a framework for applying modern machine
learning methods to semiconductor manufacturing is intro-
duced. The proposed solution addresses the data stratifica-
tion issues of semiconductor manufacturing by introducing
a set of useful abstractions for analyzing and constructing
integrated statistical models on semiconductor data. Moreover,
the proposed approach incorporates state-of-the-art software
engineering methods and statistical learning theory into a uni-
fied framework. To do this, we adopt the software engineering
design pattern known as model-view-controller (MVC) [1].
MVC is a design pattern that is already widely used throughout
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software engineering, albeit traditionally for architecting user
interfaces. Herein, we demonstrate that MVC is also a suitable
approach for solving machine learning problems in semicon-
ductor data analysis and detail the various components of a
proposed MVC architecture. We also describe an added fourth
layer of the proposed MVC framework, entitled Recipes.
Recipes, in the context of the proposed MVC framework, are
simply flows that describe compositions of Model, View, and
Controller components into solutions for semiconductor data
analysis.

1) Models: The “model” component of the proposed MVC
architecture describes a data representation constructed on top
of relational databases or flat data files. These models can ef-
fectively be considered as high-level abstractions that simplify
data flows, while avoiding issues of database infrastructure,
storage, and integrity. For example, a chip model may have
{x, y} coordinates, measurement data, and a wafer ID. A
wafer model then would be treated as a collection of chip
models, along with any inline parametric measurements. Thus,
models encapsulate key data segments from throughout the
entire semiconductor fabrication process, and form the atomic
elements that are transported and analyzed throughout the
MVC architecture.

2) Views: The “view” component of the MVC architecture
provides a means for the process or test engineer to directly
observe and interact with semiconductor data analyses during
execution. Views are comprised of graph, chart, or table-
generating code, collectively entitled presentation logic. In
the context of semiconductor data analysis, such views are
designed to provide the engineers with information on the
algorithms in use and present related statistical data. The
important feature of views is the complete separation of
presentation logic from the statistical algorithms deployed by
the system.

3) Controllers: The “controller” component of the MVC
framework performs atomic actions on data encapsulated in the
models. For semiconductor data analysis, the controllers we
have implemented as statistical algorithms, including both su-
pervised and unsupervised learning methods: linear regression,
linear discriminant analysis, k-Nearest Neighbors, support
vector machines (SVMs), etc. The controller implementations
are designed with simplicity in mind: the user may simply pass
a collection of chip objects to a controller, and the controller
will seamlessly construct appropriate statistical models with
sensible parameter choices. For many applications, some fine
tuning is beneficial, and the controller implementations pro-
vide complete parameterizations of the underlying statistical
algorithms to permit the user to modify all of the free
parameters. By implementing controllers in this fashion, the
complexity of statistical algorithms is only exposed when
necessary.

4) Recipes: The final component of the proposed MVC
framework is a “recipe”. Within the framework, a recipe
is a composition of models, views, and controller elements
into a solution for a particular problem. The core framework
has been built with a variety of recipes targeted at various

semiconductor data analysis problems. For example, an ATE
simulator recipe has been developed and included with the
MVC framework, which provides a chip iterator that regularly
emits chip objects from device data files.

In Figure 1, we display an overview of the framework
as applied to semiconductor manufacturing; the proposed
framework overlays seamlessly on top of the existing semi-
conductor manufacturing flow. In the following sections, the
versatility of the proposed framework is demonstrated through
its application to problems in low cost testing, performance
calibration, and wafer spatial modeling.

Fig. 1. MVC Framework: Overview

III. LOW-COST TESTING FOR ANALOG AND RF DEVICES

During semiconductor fabrication, every fabricated device
must be explicitly tested in order to guarantee that it meets
the original design specifications. For analog and RF devices,
the test process involves explicitly measuring specification
performances for every device. Such testing identifies latent
defects that are due to the various sources of imperfection
and variation in the fabrication process. Defects can present
as either catastrophic or parametric. Catastrophic defects typ-
ically lead to a complete malfunction of the device and are
consequently easily detected by inexpensive tests. Parametric
faults, which are caused by excessive process variations, are
considerably more difficult to detect.

To catch such parametric faults, RF circuits are typically
tested directly against the parametric specification perfor-
mances. Although this approach is highly accurate, it comes at
a very high cost, which can amount up to 50% of the overall
production cost. Given that RF circuits typically occupy less
than 5% of the die area, there is great industrial interest in the
reduction of RF test cost [2], [3], [4]. The high cost of RF
test is due to the expense of automated test equipment that is
required, and, on the other hand, the lengthy test times that
result from a sequential measurement approach. In response,
a variety of low-cost test methods have been introduced [5],
[6], [7], [8], [9]. In this section, various problems within the
low-cost testing space are addressed.
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A. Non-RF to RF correlation-based specification test
compaction

One way to address the high test cost for RF devices is to
remove all RF tests from the test set, and employ statistical
models to predict the untested measurement outcomes. The
framework of this non-RF to RF correlation-based specifica-
tion test compaction process is depicted in Fig. 2. The learning
phase relies on a training set of devices, on which both the
non-RF performances and the RF performances are explicitly
measured. Based on this information, statistical correlation
models are learned, predicting each excluded performance as
a function of the non-RF performances of a device, or a
subset of those performances. Subsequently, for every new
device in production, only the selected non-RF performances
are explicitly measured, while the untested non-RF and RF
performances are predicted through the learned correlation
models. A pass/fail decision is made by comparing the ex-
plicitly measured non-RF performances and the predicted
performances to their specifications. Thus, an RF ATE is
needed only for characterizing the small number of devices in
the training set but is not necessary during production testing.

Fig. 2. Non-RF to RF Correlation-Based Testing

However, this test compaction procedure is often subject
to prediction error beyond industrial acceptable ranges of test
escapes. Consequently, providing a confidence level indication
along with the predicted performances could go a long way.
Devices for which this confidence level is low can then be
identified and discarded or retested, as shown in the two-tier
test approach of Fig. 3.

Fig. 3. Retesting when prediction confidence is low

1) Confidence estimation: In this work, we introduce a
method termed confidence estimation for deciding whether
pass/fail predictions are sufficiently accurate. It employs an

additional learning phase, wherein a Support Vector Machine
(SVM) [10] is trained to separate the non-RF measurements
into regions that are trusted or untrusted with regards to the
pass/fail decisions of the correlation models.

To do this, correlation models are initially learned from
training set devices. Then, the learned correlation models are
used to make pass/fail predictions on a hold-out set, and
the devices in the hold-out set are relabeled as correctly or
incorrectly predicted. In the second step, an SVM is trained
to learn the boundary partitioning the predicted performance
space into two subspaces: the area wherein correct predictions
occurred (trusted), and the area wherein incorrect predictions
occurred (untrusted). Lastly, the utilization of the SVM during
the testing phase (for a toy two-dimensional example with two
non-RF features) is conceptually demonstrated in Figure 4.
The pass/fail prediction of the correlation models is accepted
only for devices that the SVM classifies as trusted, while the
rest of the devices are retested.

Fig. 4. Confidence estimation - Testing phase

2) Experimental results: In order to assess the relative
effectiveness of confidence estimation, we use production test
data from a zero-IF down converter for cell-phone applica-
tions, designed in RFCMOS technology and fabricated at IBM.
The device is characterized by 143 performances, 72 of which
are non-RF (i.e. digital, DC, low frequency) and 71 are RF.
The test dataset includes performance measurements for 4450
devices across 3 lots. Of these devices, 4141 pass all the
specification tests while 309 fail one or more specification
tests. The passing and failing devices are each randomly split
into three subsets of equal size, and used as the training set,
the hold-out set and the validation set, respectively. The results
for the proposed confidence estimation method are shown in
Figure 5. As can be observed, both the number of retested
devices and the test error of the confidence estimation method
are reduced as compared to existing prior art methods of defect
filtering [11], [12] and guard banding [13] methods.

3) Summary: Specification test compaction through non-
RF to RF performance correlation promises significant test
cost reduction. Yet, in order to meet industry-level DPM
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Fig. 5. Comparative results

standards, such compaction relies on efficient methods for
boosting the accuracy of the correlation models and exploring
the trade-off between the test error and the number of devices
that need to be retested through complete specification testing.
As demonstrated experimentally using production test data
from a zero-IF down-converter fabricated by IBM, the pro-
posed method facilitates an efficient exploration of the tradeoff
between test cost and test accuracy for non-RF to RF test
compaction, even in the region of very low DPM levels.

B. On Proving the efficiency of low-cost RF tests

Despite the number of alternative or low-cost RF test
approaches which have been proposed to date, the industry
is largely reluctant to replace traditional RF testing. The
primary reason is the lack of automated tools for evaluating
a new test approach fast and early at the design and test
development phases, before moving to production test. It may
be easy to estimate the area overhead incurred by a built-
in test solution and to study to what degree it degrades the
device performances, yet it is extremely difficult to estimate
the incurred indirect costs, that is, the resulting test errors. This
section presents a new method and case study of test metrics
estimation. Specifically, the aim is to prove the equivalence
of low-cost On-chip RF Built-in Tests (ORBiTs) [4] to the
traditional RF specification tests, based solely on a small
data set obtained at the onset of production. Our results are
validated on a much larger data set containing more than 1
million Bluetooth/Wireless LAN devices fabricated by Texas
Instruments.

A straightforward way to characterize the low-cost test
system under consideration and obtain accurate, parts-per-
million (ppm) test metric estimates is to take a very large set
of fabricated devices, say 1 million, and apply the test system
to each device, recording test metrics on each. However, given
the extremely high cost, this is not a sustainable practice for
evaluating candidate low-cost test systems. In this section,
we employ a general technique for obtaining ppm-accurate

test metric estimates, originally developed in [14], and we
examine for the first time its potential on a real-world case
study. This technique is able to elegantly achieve the objective
of providing such accurate estimates, without the extreme
cost associated with having to consider millions of fabricated
devices. It is based on the statistical methodology of non-
parametric kernel density estimation (NKDE), as shown in
Figure 6. The underlying idea is to rely on a small set of
representative devices to estimate the joint non-parametric
probability density function of specified performances and
low-cost tests. Thereafter, the estimated density is sampled
to generate a large synthetic set of device instances from
which one can readily compute test metrics using relative
frequencies. Moreover, we are able to provide a case study
demonstrating equivalence of our proposed system of Figure
6 and the true ppm metrics obtained via explicitly testing 1
million devices.

Alternative
Measurements Pass/Fail Label

Test Escapes &
Yield Loss

Xi

f(·)
yi

ϵ

Small Set of
Training Devices

Large Set of
Synthetic Devices

Non-Parametric Kernel 
Density Estimation

D1
D2

D1,000,000

Fig. 6. Low-cost method for obtaining parts-per-million test metric estimates

The ORBiTs have been proven to be generally very efficient
in such replacements, but this knowledge was acquired only
after measuring millions of RF device instances with the
dedicated built-in test circuitry. In this section, we try to
answer the following question: Is it possible to estimate values
of the test metrics close to true ones while employing in the
analysis a small set of RF devices that we obtain at the onset
of production? In this case, we will be able to decide on
the efficiency of the ORBiTs early in the process without
having to wait for a large volume of silicon data to reach
a safe conclusion. This type of proactive analysis is very
important in cases where the low-cost tests are found later
on to be inefficient. It allows to convince test engineers about
the efficiency of an approach, to identify shortcomings and
come up with remedies for refining an approach, or abandon
an approach altogether if it is deemed not to be equivalent to
the standard specification test approach.

1) Test metrics estimation method: It is in this context
that we introduce a novel methodology originally proposed in
[14] to obtain test metric estimates with ppm accuracy, while
side-stepping the cost associated with exhaustively testing
millions of devices. This technique, based on NKDE, permits
dramatically enriching the validation set with synthetic device
instances reflective of the true device population. With this
large synthetic device set in hand, we are able to produce test
metric estimates using relative frequencies. NKDE relies on a
small Monte Carlo run (e.g. on the order of a few thousands
devices) to generate a synthetic device sample with population
statistics nearly identical to the 106-order population. The
underlying idea is to estimate the joint probability density
function of ORBiTs and specification tests based on the
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small Monte Carlo run. The NKDE approach makes no a
priori assumptions about the parametric form of the generative
probability density function (e.g. Gaussian) and allows the
available simulation data to speak for themselves.

2) Feature selection: Often when dealing with early char-
acterization data sets, a large number of measurements are
available which are later pruned for the final test set. This
provides a wealth of data, but also presents a case of the well-
known “curse of dimensionality”, the law that by adding di-
mensions, one exponentially increases data sparsity. This data
sparsity can cause learning algorithms to have high-variance
classification boundaries and poor generalization capability. A
key component of our analysis was to perform feature selection
on the very high dimensional space of available ORBiTs,
projecting device test signatures into a lower dimensional
subspace. Herein we employ a supervised feature selection
method known as Laplacian score feature selection (LSFS)
[15] to rank ORBiTs and subsequently reduce dimensionality.

3) Experimental results: To confirm the efficiency of our
approach in providing early estimates of test metrics, we
employed a Texas Instruments data set from a total of more
than 1.1 million devices. The devices are collected from
176 wafers and each wafer has between 6,000 and 7,000
devices. For each device, the data set contains the ORBiT
measurements and the specified performances in the data sheet.
Specifically, there are 739 ORBiT measurements and 367 per-
formances. Some ORBiT measurements and performances are
discrete-valued. The test metrics estimation method discussed
in Section III-B1 is defined only for continuous variables.
Therefore, in our analysis we considered only the continuous
ORBiT measurements and performances, which number 249
and 264, respectively.

In our analysis, we focused on replacing the single most
sensitive specification test, that is, the test that corresponds
to most commonly failing performance across all wafers. We
denote this performance by P . To predict the test metrics,
we only use devices from the first wafer and we employ the
NKDE technique to generate 1 million additional synthetic de-
vices, in order to achieve ppm levels of accuracy, as illustrated
in Figure 6. We emphasize that our use of a single wafer is
purely to demonstrate the efficacy of the method in extremely
challenging circumstances; in reality this sample may include
an arbitrarily large training sample.

4) Removing Outliers: From the first training wafer, we
remove outliers via a “defect filter”, for two reasons. First,
we do not wish outliers with non-statistical signatures to have
leverage over the feature selection process; the retained fea-
tures should excel at discerning the more difficult parametric
fails rather than the relatively easy-to-detect catastrophic fails.
Second, the test metrics estimation method itself relies on
estimating a probability density function, thus we should avoid
using outliers for this purpose since they are non-statistical in
nature and are not generated by the same probability distribu-
tion which assumes only process variations. This procedure
results in the removal of approximately 3% of the device
instances from the first wafer training set. Note that this step

is necessary only for the training set, and subsequent outlier
fails are not removed in this fashion.

5) Feature Selection: Reducing the dimensionality of OR-
BiTs: Fitting a classifier boundary in a sparse, high dimen-
sional space can be error-prone due to the consequent variance
of the fitted class boundary. For this purpose, we employ LSFS
to reduce the dimensionality of the problem. In particular, for
each of the 249 ORBiTs, we compute and rank the Laplacian
scores. In this experiment, we retained 7 ORBiT features. It
should be noted that a lower dimensionality also maximizes
the efficacy of NKDE, as it is also vulnerable to the “curse of
dimensionality”.

6) Information-rich training set: It turns out that even in
relatively densely-populated spaces, classifier performance can
benefit by further increases in data density. Specifically, it is
not advisable to attempt to directly fit a classification boundary
to a severely unbalanced population, as the classifier tends
to always label subsequent instances as the dominant class
after training. To combat this effect and improve classifier
performance by increasing data density in the training set, we
also employed non-parametric density estimation to generate
synthetic training instances. To do this, we fit the joint proba-
bility density function of the instances from the first wafer. We
sample the empirical probability density function to generate
a much larger, information-rich training set that has a more
balanced population of good, faulty, and critical devices across
the decision boundary in a similar fashion to the approach
taken in [16].

7) Summary and Results: Assembling the preceding steps,
we arrive at the complete analysis approach shown in Figure
7. The training set is employed to train the SVM classifier to
assign limits on the 7 ORBiTs in the form of a hyper-surface
boundary. The limits are used to obtain the ground truth test
escape and yield loss values for each wafer, denoted by TE
and YL, respectively. These values are averaged to obtain the
ground truth ppm test escape and yield loss measured over the
complete device population in hand, denoted by TE and Y L,
respectively. The same limits are used on the synthetic device
set generated from the first wafer, in order to obtain early ppm
estimates of the test escape yield loss, denoted by T̂E and ŶL,
respectively.

Test Metrics Estimation Phase

739 ORBiT
367 Spec

Error Metric 
Estimates

f(·)

ϵ

First Wafer
249 ORBiT
264 Spec

Remove 
Discrete

7 ORBiT
1Spec

Feature 
Selection

Synthetic Balanced
Population

Training
Set

Trained
Classifier

-3%
Devices

Remove 
Outliers

f(·)

1 Million
Devices

Synthetic
Population

True
Error Metrics

f(·)

ϵ

1 Million
Devices

Actual
Population

Training Phase

Fig. 7. Summary of experimental approach

The results are shown in Figure 8. As can be observed, test
escape is slightly underestimated, and yield loss is very slightly
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overestimated. Specifically, the true values are TE = 0.7286%
and Y L = 4.387%, whereas the early estimates are T̂E =
0.4302% and ŶL = 4.401%, that is, a difference of ∆TE =
0.2984% and ∆YL = −0.014%. We remind that the objective
of the section is not to propose an SVM-based low-cost test
technique, but to evaluate a candidate low-cost test technique
at an early phase. Moreover, we evaluated the scenario where a
subset of ORBiTs replaces the most sensitive specification test,
and not the general case where the complete suite of ORBiTs
is used to replace irrespectively all specification tests.

Fig. 8. Prediction across all wafers

C. Summary

In this section we presented a method for providing accu-
rate, parts-per-million estimates of test metrics without incur-
ring the cost associated with simulating or testing millions
of devices. A comparatively small set of RF devices from a
single wafer tested at the onset of production coupled with
the proposed NKDE-based sampling are used to generate
one million synthetic device samples, on which we are able
to evaluate test escape and yield loss test metric estimates.
Furthermore, we have demonstrated our test metric estimates
to be very close to the true values measured on more than one
million devices from Texas Instruments.

IV. POST-PRODUCTION PERFORMANCE CALIBRATION

In modern analog device fabrication, circuits are typically
designed conservatively to ensure high yield. Otherwise, yields
may be low due to process variation driving devices beyond
specification limits. Thus, the analog designer often finds him-
self doubly constrained by performance and yield concerns.
However, the demand for high performance, high yield analog
devices is relentless. As such, recent interest has been shown
in producing analog devices that are tunable after fabrication
by introducing “knobs” (post-production tunable components)
into the circuit design. By adjusting the knobs, some devices
that would simply be discarded under the traditional analog
test regime can be tuned to meet specification limits and
thereby function correctly. These tunable devices would per-
mit analog designers to create aggressively high-performance

integrated circuits (ICs) with expectations of reasonable yield.
Alternatively, conservative designs could be produced with
nearly-perfect yields.

To date, post-production performance calibration has not
achieved widespread use due to the perceived complexity and
cost of implementation. This is not an unreasonable percep-
tion: knobs have apparently complex interdependent effects
on performances, and iterative specification test-tune cycles
to explore the large space of knob settings are prohibitively
costly. In this work, we outline several key observations which
appropriately constrain the free parameters of performance cal-
ibration methodologies to enable straightforward cost-effective
implementation. Moreover, we develop and present a cost
model which permits direct comparison of performance cali-
bration to specification test and other state-of-the-art practices.

Implementation of performance calibration requires selec-
tion of key parameters of the circuit (voltage, capacitance,
etc.) as knobs. Additional circuit elements are added to en-
able post-production modulation and on-chip storage of these
parameters. By setting knob values, the performances of the
circuit can be dynamically modified and improved to meet
specification limits. After the knobs are in place, a method for
circuit tuning must be devised. Herein we focus specifically
on addressing this problem. A first-order solution is to simply
iteratively test across all knob settings until a setting that
results in a passing device is found. Knob setting selection
can also be performed by attempting to find some optimum
for the circuit, i.e. searching for the lowest possible power
setting.

A. Midpoint low-cost test performance calibration

Clearly, these approaches are not economically feasible
given the high cost of specification test. Herein lies the
benefit of adopting alternate test as a basis for performance
calibration, as alternate tests can be an order of magnitude less
costly to perform. In this work we introduce a novel alternate
test-based performance calibration method, entitled midpoint
alternate test-based performance calibration. To manage the
cost of performance calibration, we must modify the exhaus-
tive test approach to reduce the large number of measurements
(alternate test or otherwise) which must be collected. We do
this by making an important observation: knob variation and
process variation orthogonally act on device performances.
Thus, we can separately model each axis of variation and
construct a composite model which accounts for both.

Alternate tests are designed to correlate well with device
performances. Implicitly, this means that we can already
model process variation from the alternate tests. To model
knob variation, we examine a simulated process-variation free
device. By modeling knob effects in simulation, we only
need to explicitly measure alternate tests at a single knob
setting in production test, where all knobs are set to their
respective midpoint values. This set of midpoint alternate test
measurements can be used to predict performances at all of
the knob settings, as shown in Figure 9.
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Fig. 9. Midpoint low-cost test performance calibration

B. Knob setting selection

Once we have modeled both knob effects and process
variation effects, the models must be employed to inform knob
setting selection decisions on each device in the test set, where
limited information about the device is available to us. In
our work, we have chosen to predict performances for each
knob setting for every device. This allows us to accomplish
two things. First, we partition the test set into unhealable and
healable regions by determining for every device in the test set
whether at least one knob setting is available which will heal
it. Second, for every healable device in the test set we predict
a family of knob settings which will heal it. In this work, we
use both Mahalanobis distance from specification planes and
predicted power as optimizing metrics to select the best knob
setting from this family of predicted-to-heal knob settings.

C. Experimental validation

To validate our methods, we designed a cascode low-
noise amplifier (LNA) in 0.18µm CMOS. In this section, we
document our design choices and show experimental results
for the proposed midpoint alternate test-based performance
calibration method. We selected the RF LNA as our platform
for experimental validation, as it is one of the most frequently
used components in commercial transceiver RFICs. Among
the numerous possible LNA architectures, we chose one of
the most widely-adopted designs, the cascode topology. To
perform post-production performance calibration, we modified
the LNA topology to include tunable circuit elements. In
our device design, we selected three key bias voltages to
include as tuning knobs, as these provided maximal control
over performances.

Along with the LNA, we designed and implemented an
on-chip amplitude sensor and on-chip signal generator, for
collecting alternate test data. With an appropriate choice of
input signals, the alternate test measurements produced by the
amplitude sensor/signal generator pair have been demonstrated
to be well-correlated with LNA performances.

The layout-level LNA was used to collect performance data
across all knob settings of each device. For the alternate test
data, two amplitude detectors were added at the input and

output of the LNA, and both were measured with stimuli
provided by the RF signal generator. Two different frequencies
of the RF signal generator were employed, for a total of
4 alternate test measurements collected per knob setting per
device.

1) Dataset: For our experiments, we created 1,000 in-
stances of the LNA with process variation effects included
to simulate a production environment. The 3 knobs in the
LNA designed for our experiment were assigned 3 discrete
settings (i.e., 1.6V, 1.8V, 2.0V) for a total of 33 = 27 possible
knob positions. On every device in our dataset, we collected
four performances: S11, Noise Figure (NF), Gain, and S22.
We also collected a power measurement and the four low-cost
amplitude sensor (peak detector) alternate test measurements.
Thus, for every device there are 9 figures of merit, such that
the entire dataset is a 1, 000×27×9 matrix. In production it is
infeasible to measure all circuit performances on every device
at every knob setting, so only some circuit performances
(elements of this matrix) are explicitly measured.

As stated previously, if we are to model the circuit response
to knob and process variation, an initial training set must be
generated which includes the relationships we wish to model.
For example, if we wish to predict circuit performances at
every knob setting, these performances must be explicitly
measured for a small training set in order to construct our
models. Once these models are constructed, they can be used
to predict circuit performances for the remaining circuits. For
the experiments which required training statistical models, we
split the dataset 50/50, training on data from 500 devices and
predicting on the remaining 500. We also performed 10 cross-
validations to ensure statistical stability of the reported results.

2) Performance calibration: midpoint alternate test: Using
the proposed performance calibration methodology, we clas-
sified devices as healable or unhealable, with a success rate
demonstrated in the confusion matrix of Table I. Thus, due to
the use of alternate test, an approximately 0.62% test escape
rate and a 0.48% yield loss rate are introduced, for a slightly
over 1% total error rate.

Actual
Unhealable Healable

Predicted Unhealable 1.98% 0.48%
Healable 0.62% 96.92%

TABLE I
MIDPOINT ALTERNATE TEST

a) Knob Setting Selection: As we outlined in Section
IV-B, once the healable devices have been identified using
midpoint alternate test, knob setting selection is performed by
employing the Mahalanobis distance or the predicted power
knob setting selection metric. Presented in Figure 10 is the
power vs. correct-heal tradeoff for the knob setting selection
optimality metrics: minimum power, median power, and max-
imum distance. As can be seen from the figure, the Maha-
lanobis distance metric achieves a near-perfect 99.2% correct-
heal rate, at the expense of high power consumption, whereas
minimizing power (as expected) substantially improves power
consumption, while slightly increasing error.
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Fig. 10. Power-Prediction Quality Tradeoff

D. Summary

We have demonstrated that appropriate modeling of knob
and process variation enables highly successful perfor-
mance calibration. The proposed midpoint alternate test is a
cost-effective means of introducing performance calibration
methodologies into an analog/RF device test flow. Indeed, it
overcomes the limitations of both iterative approaches and
two-model approaches by implementing a single model requir-
ing a single alternate test measurement step to perform tuning.
This method achieves highly accurate healable/unhealable
classification, with a 0.62% test escape rate and a 0.48% yield
loss rate, and a 99.2% correct-heal rate using the distance
metric to select a knob setting on the healable devices. Finally,
we have demonstrated experimentally that we can decouple
the training set size from the number of knob settings NK ,
requiring only a small random sample of alternate tests and
performances from a handful of devices to sufficiently learn
the statistics of knob and process variation.

V. WAFER SPATIAL MODELING

In the course of semiconductor manufacturing, various
wafer-level measurements are collected throughout the man-
ufacturing and test process. In this section, a statistical algo-
rithm that operates on sparsely sampled sets of measurements
is introduced. The proposed approach creates interpolative
models, enabling prediction of parameters spatially across a
wafer. While there are many use cases for spatial interpolation
of semiconductor manufacturing data, this section explores
two particularly important applications.

First, statistical interpolation for e-test measurements is
presented. During manufacturing, e-test measurements (also
known as inline or kerf measurements) are collected to monitor
the health-of-line and to make wafer scrap decisions preceding
final test. These measurements are typically sampled sparsely
across the surface of the wafer from between-die scribe line
sites and include a variety of measurements that characterize
the wafer’s position in the process distribution. The proposed
methodology permits process and test engineers to examine
e-test measurement outcomes at the die level, and makes no
assumptions about wafer-to-wafer similarity or stationarity of
process statistics over time.

Second, we present a statistical interpolation approach for
RF tests. Given the high cost of RF automated test equipment
(ATE) and lengthy test times, the incurred test cost per device
can be quite high. Various statistical methodologies have been
proposed to address this problem by attempting to reduce
the number of RF tests required (test compaction), introduce
new alternative tests [5], or build machine learning models to
learn classification boundaries separating passing and failing
populations of devices [9].

In this work, we introduce a Gaussian process model-
based probe test prediction method [17]. Instead of completely
eliminating all RF tests, we collect them on a small sample of
devices on each wafer. The probe test outcomes of these die are
then used to train spatial regression models, and subsequently,
these models are used to extrapolate probe test values for the
remaining die on a given wafer. In most cases, this small
sample is sufficient for us to extract wafer variation statistics
for each probe test parameter and accurately model probe test
outcomes at untested die locations.

A. Gaussian Process Models

Gaussian process models are birthed from the union of
Bayesian statistics and the kernel theory of Support Vector
Machines [10]. With Gaussian processes, we do not presume
the generative function f(x) is of linear form. Instead, we
define a Gaussian process as a collection of random variables
f(x) indexed by coordinates x, such that every finite set of
function evaulations over the coordinates is jointly Gaussian-
distributed. It can be shown [17] that this model form leads
to regression models with a variety of useful properties.

For e-test parameter interpolation, our objective is to build
per-wafer Gaussian process models that accurately estimate
e-test parameter outcomes at previously unobserved die loca-
tions. By modeling variation on a per-wafer basis, we sidestep
the need for the “median polishing” methodology of [18].
Our Gaussian process implementation was designed to record
spatial prediction error across the surface wafer and provide a
metric of prediction quality in terms of percent error.

For probe test measurements, we build per-wafer Gaussian
process models of spatial variation by training on a small
sample of explicitly tested devices and predicting all of the
remaining test outcomes at unobserved wafer die locations. As
with e-test interpolation, we capture the effectiveness of our
proposed methodology by recording the percentage prediction
error of our statistical model on each measurement and each
wafer. To train the Gaussian process model for a particular
wafer, we collect probe test data from a very small sample
(approximately 20) die. These die are then used as a training
set to train the Gaussian process model. The remaining die are
collected as the test set on which we apply the trained model.

B. Experimental results: e-Test Interpolation

In this work, we demonstrate results on e-test data collected
from industry HVM. Our dataset has in total 8,440 wafers, and
each wafer has 269 e-test measurements collected from 21
sites sampled across the wafer. Leave-one-out cross validation
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Fig. 11. Gaussian process prediction error for each e-test measurement

was used to characterize the prediction error at each of the 21
sites, and the mean cross-validation error across all 21 sites
was collected for each e-test measurement and each wafer.

In Figure 11 we present the Gaussian process model pre-
diction errors with 10%–90% error bars. The error ranges
are quite small across the majority of e-test measurements,
demonstrating that the variance of the errors is low over the
entire set of 8,440 wafers. Importantly, this shows that the
models are insensitive to process shifts over time, a result
that is attributable to the fact that we train and deploy our
models on a per-wafer basis. A tabular comparison of the
proposed Gaussian process model approach versus Virtual
Probe is provided in Table II, with overall mean error reported
alongside mean training and prediction time per wafer across
all e-test measurements. The timing measurements represent
the mean total time required to construct and predict with
all 269 × 21 = 5, 649 models for a given wafer. Note that
the proposed methodology consistently has lower error than
Virtual Probe, while incurring an order of magnitude less
runtime to construct and evaluate the predictive models.

Method Overall Mean Avg. Running Time
Percent Error (per wafer)

Virtual Probe 2.68% 116.2s
Gaussian Process Model 2.09% 16.43s

TABLE II
VIRTUAL PROBE & GAUSSIAN PROCESS MODELS COMPARISON

C. Experimental results: probe test interpolation

Our probe test results are shown using probe test data from
high-volume semiconductor manufacturing. The device under
consideration is an RF transceiver with four radios. Our dataset
has a total of 3,499 wafers with 57 probe test measurements
collected on each device. Each wafer has approximately 2,000
devices, and a training sample of 20 devices were used on each
wafer to train the spatial models. The models trained on these
20 devices were then used to predict the untested probe test
outcomes at the remaining die coordinates.

In Figure 12, we present the Gaussian process model pre-
diction errors with 10%–90% error bars. Note that the widths
of the error bars are quite small, indicating that the prediction

Fig. 12. Gaussian process prediction error for each probe test measurement

errors demonstrate low variance over the complete dataset of
3,499 wafers. Since we construct our statistical models on a
per-wafer basis using a small sample from each wafer, the
models are relatively insensitive to temporal process shifts.

The proposed methodology consistently outperforms Virtual
Probe by an average of 16.5%, and in a few cases by more than
25%. In absolute terms, the overall mean prediction error of
Virtual Probe across all probe test measurements and all wafers
is 18.2%, while the overall mean prediction error for Gaussian
process-based spatial models is only 1.71%, as shown in Table
III. The per-wafer training and prediction time for Virtual
Probe and Gaussian process models is also presented in Table
III; the proposed methodology is extremely fast and requires
less than a second to complete the full train-predict cycle for
an entire wafer. The timing measurements represent the mean
total time required to construct all 57 models and predict
performances for all die on a given wafer. In summary, the
proposed methodology consistently exhibits lower error than
Virtual Probe, while requiring dramatically less runtime to
construct and evaluate the predictive models.

Method Overall Mean Avg. Running Time
Percent Error (per wafer)

Virtual Probe 18.2% 422.5s
Gaussian Process Model 1.71% 0.586s

TABLE III
COMPARISON OF VIRTUAL PROBE & GAUSSIAN PROCESS MODELS

D. Summary

In this section, a Gaussian process model-based methodol-
ogy for generating spatial estimates of sparsely sampled e-test
and probe parameters was presented. For e-test parameters,
our Gaussian process model is able to generate extremely
accurate predictions across more than 8,000 HVM wafers. For
the majority of the parameters measured on these wafers, the
Gaussian process model-based methodology demonstrates less
than 4% error. Moreover, the distribution of prediction errors
is tightly clustered across all of the wafers, indicating that our
models are not affected by process shifts over time. Lastly,
the proposed approach consistently outperforms Virtual Probe,
on average by 0.5%, and in certain cases, by a significant
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margin of almost 5%, while requiring an order of magnitude
less runtime to evaluate on each wafer. Similar results are
obtained for probe test parameter predictions; the proposed
methodology enables dramatic reductions in probe test cost,
by avoiding the requirement for dense application of costly
probe tests. As demonstrated on more than 3,000 wafers, the
proposed methodology requires only a very small sample (on
the order of 1%) of die on each wafer to construct highly accu-
rate spatial interpolation models. Despite this sparse sampling,
a mean probe test prediction error of less than 2% is achieved,
an order of magnitude lower than the existing state-of-the-art.
Moreover, the proposed methodology is considerably faster to
apply, requiring less than a second to train and predict on each
wafer.

VI. CONCLUSION

In this work, an integrated solution for general data analysis
and machine learning problems in semiconductor manufactur-
ing was studied. The proposed MVC framework moderates the
complexity of machine learning systems. This enables rapid
iteration of candidate methods to find optimal solutions to
challenging statistical problems involving large datasets, and
forms a useful basis for solving general statistical problems
involving semiconductor data.

To demonstrate the efficacy of the MVC framework as a
solution for semiconductor data analysis, a set of challeng-
ing statistical problems in semiconductor manufacturing were
posed and addressed. These problems spanned the breadth of
semiconductor manufacturing, and incorporated both process
and test data from a number of different circuit designs.
Results were demonstrated on simulation data, as well as
on production data consisting of millions of fabricated de-
vices from two major semiconductor manufacturers: Texas
Instruments and IBM. In particular, three distinct subspaces
of semiconductor manufacturing data analysis were studied:

b) Low-Cost Testing: In this work, a set of solutions
were proposed that dramatically increase the efficacy of low-
cost test methods, by more optimally identifying confidence
estimates and by generating parts-per-million accurate early
estimates of test metrics for low-cost test systems.

c) Post-Production Performance Calibration: In this
work, a single-test, single-tune algorithm for selecting opti-
mal knob settings was proposed, enabling substantial yield
improvements without requiring iterative test-tune-test cycles.

d) Wafer Spatial Modeling: In this work, a Gaussian
process model-based predictive algorithm was proposed that
enables highly accurate spatial predictions of wafer measure-
ments at unobserved die locations. Moreover, the method was
extended to enable test cost reduction: expensive tests can
be sampled sparsely at only a few die locations per wafer,
and the expensive test performances can be predicted at the
unobserved die locations.
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