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Abstract—Monitoring the semiconductor manufacturing pro-
cess and understanding the various sources of variation and their
repercussions is a crucial capability. Indeed, identifying the root-
cause of device failures, enhancing yield of future production
through improvement of the manufacturing environment, and
providing feedback to the designer toward development of design
techniques that minimize failure rate rely on such a capability.
To this end, we introduce a spatial decomposition method for
breaking down the variation of a wafer to its spatial constituents,
based on a small number of measurements sampled across
the wafer. We demonstrate that by leveraging domain-specific
knowledge and by using as constituents dynamically learned,
interpretable basis functions, the ability of the proposed method
to accurately identify the sources of variation is drastically
improved, as compared to existing approaches. We then illustrate
the utility of the proposed spatial variation decomposition method
in (i) identifying the main contributor to yield variation, (ii)
predicting the actual yield of a wafer, and (iii) clustering wafers
for production planning and abnormal wafer identification pur-
poses. Results are reported on industrial data from high-volume
manufacturing, confirming the ability of the proposed method to
provide great insight regarding the sources of variation in the
semiconductor manufacturing process.

I. INTRODUCTION

As complexity of modern Integrated Circuits (ICs) increases
and minimum feature sizes continue to shrink, uncontrol-
lable process variations constitute a mounting challenge in
semiconductor manufacturing. Variability is introduced by
various sources during manufacturing and each step, such
as lithography, ion implantation, thermal treatments, etc.,
can be considered as a source of variation. For example,
rotation of wafers to increase process uniformity can result
in radial spatial variation, thermal gradients can result in
linear or polynomial spatial variation, and reticle size can
result in discontinuous effects in wafer-level measurements.
With excessive process variations being a major contributor
to yield loss during IC manufacturing [1], monitoring and
understanding such variations is crucial for identifying the
root-cause of device failures, enhancing yield for future device
production, and providing valuable feedback to the designers.

A key step toward this end is the identification of the
various sources that contribute to process variations and their
repercussions. Prior literature commonly models the impact of
process variations on wafer-level measurements as the sum of
a systematic spatial component and a random component [2].
While random variation may be relatively easy to monitor by
analysis of variance (ANOVA) methods [3], [4], systematic
variation is much more intricate to model and deal with.
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In this work, we propose a novel approach for identifying
and analyzing systematic process variation through wafer-level
spatial decomposition. More specifically, we employ a spatial
decomposition method for breaking down the systematic vari-
ation of a wafer to a set of weighted basis functions, based on
a small number of measurements from sampled die locations
across the wafer. Figure 1 depicts this concept through an
example of wafer-level spatial variation decomposition. In this
example, the total variation on the wafer is decomposed into
three distinct basis functions with the corresponding weight
vector A = [a1, az,as]. The main challenge in this effort is
to identify an appropriate set of basis functions which can not
only accurately reflect the spatial variation but which also have
interpretable meaning which can assist the process engineer in
understanding and moderating the source of variation. Accord-
ingly, a key novelty of the method proposed herein over prior
efforts is that, instead of employing a fixed set of statically-
defined basis functions, it uses domain-specific knowledge to
dynamically learn the most appropriate basis functions from
the data. Thereby, its ability to pinpoint sources of variation
and to provide actionable information to the process engineer
is drastically improved.

As we demonstrate herein, the set of identified basis func-
tions along with the vector of coefficients can be used to:

o identify the most prominent spatial variation component
and the main contributor to yield variation by analyzing
the correlation between the estimated weight vector and
the yield,

« predict yield using correlation functions which map the
estimated weight vector to the actual yield, and

o classify wafers through clustering analysis in order to
detect abnormal wafers and plan future production.

The groundwork for applying wafer-level spatial variation
decomposition was laid in [5], wherein the authors used a
set of predefined basis functions. Herein, we extend the key
ideas of [5] by introducing domain-specific knowledge in
learning the basis functions and we demonstrate that, thereby,
the capability of identifying sources of variation is greatly
improved. Recent work on variation decomposition is also
described in [6], wherein random process variation is removed
and a single pattern of systematic spatial variation is exposed.
In contrast, the method proposed herein delves into further
decomposing the systematic process variation into domain-
specific, interpretable basis functions.
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Fig. 1.
with the corresponding weight vector A = [a1, a2, a3]

The remainder of this paper is organized as follows. In
Section II, we discuss in detail prior work on wafer-level spa-
tial correlation modeling and variation decomposition, using
statistical analysis. In Section III, we introduce the proposed
approach for understanding the various sources of wafer-
level process variation and decomposing it into its spatial
constituents. Experimental results which demonstrate the ef-
fectiveness of the proposed method using industrial data from
high-volume manufacturing are provided in Section IV, and
conclusions are drawn in Section V.

II. PRIOR WORK
A. Spatial correlation modeling of wafer-level measurements

Recent research on modeling spatial measurement correla-
tion has shown great promise in capturing wafer-level spatial
variation and, thereby, reducing test cost [4], [7]-[11]. The
underlying idea is to collect measurements for a sparse subset
of die on each wafer and subsequently train statistical spatial
models to predict performance outcomes at unobserved die
locations. In [4], the expectation-maximization (EM) algorithm
is used to estimate spatial wafer measurements, assuming
that data comes from a multivariate normal distribution. The
Box-Cox transformation is used in case data is not normally
distributed. The “Virtual Probe” (VP) approach [7]-[9] models
spatial variation via a Discrete Cosine Transform (DCT) that
projects spatial statistics into the frequency domain. Similarly,
the author of [10] builds spatial models based on Generalized
Least Square fitting and a structured correlation function. As
recently shown in [11], [12], using Gaussian Process (GP)
models can dramatically improve both prediction accuracy and
computational time, as compared to the VP approach.

The utility of spatial interpolation models of wafer-level
measurements has been demonstrated in various contexts. In
[12], the authors extrapolate scribe line e-test measurements
using spatial correlation models based on GP. In [11], the
authors use GP to build spatial correlation models which
dramatically reduce test time for probe-test specification mea-
surements of RF devices. Handling discontinuous process
variation effects in building spatial correlation models is also
discussed in [13], wherein the authors employ a k-means
clustering algorithm to ensure high prediction accuracy for
measurements exhibiting spatially discontinuous effects.

B. Wafer-level spatial variation decomposition

The aforementioned work on spatial correlation modeling of
wafer-level measurements shows the capability of extracting
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An example of wafer-level spatial decomposition, where the total systematic variation on the wafer is decomposed into three distinct basis functions

principal spatial variation patterns based on a sparse subset of
die samples. Once these patterns are identified, they can be
further analyzed to monitor process variation. The traditional
analysis of variance (ANOVA) method provides an efficient
way of quantifying the contribution of within-die, die-to-die,
wafer-to-wafer or lot-to-lot variation to the total variation of a
wafer [3], [4]. However, it cannot distinguish between wafers
exhibiting the same total variation when the spatial distribution
of this variation differs. To this end, a wafer-level variation
decomposition method has been proposed, which takes into
account the contribution of spatial variation patterns to the
total variation. As mentioned earlier, the impact of process
variations on wafer-level measurements can be modeled as
the sum of a systematic spatial component and a random
component [2]:

m(z,y) = g(z,y) +e€ (1)

where m(z,y) is the measurement under consideration, ex-
pressed as a function of a wafer’s Cartesian coordinate (z,y),
g(x,y) is the systematic spatial variation component, and € is
the random component often modeled as € ~ N(0, 02). Notice
that a constant term C' can also be added to (1) to represent
wafer-to-wafer and lot-to-lot offset.

In [14], spatial variation of wafer-level measurements is
decomposed into within field, field-to-field, across wafer, and
random variation. A statistical filter is used to select various
types of variation in the frequency domain using discrete
Fourier transform. In [15], spatial variation is modeled by
a combination of interpolation and regression models. The
Nearest Neighbor Residual approach proposed in [16] aims
at reducing the variance of spatially distributed wafer-level
measurements to improve the detection of outliers. In [17],
wafer-level spatial decomposition is accomplished by sub-
tracting the effect of random variation from the mean value
within a reticle. A dynamically learned linear plane spatial
function is proposed to capture gradient effect caused by bake
plate thermal gradients over different lots. Yet many other
functions need to be incorporated in the overall analysis. All
the above-mentioned approaches analyze wafer-level variation
by taking all available measurements on the wafer, which
could lead to high computational cost. In [6], a sparse subset
of die samples are used to decompose systematic and random
variations by projecting data into the frequency domain using a
discrete cosine transform. The method described therein aims
at identifying a spatial pattern which carries a unique signature
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in the frequency domain via sparse regression. In [5], spatial
variation across a wafer is modeled by a linear combination
of distinct basis functions representing different sources of

variation:
ng

m(z,y) =Y aibi(z,y) + € ©)
=1

where b;(z,y) denotes the i-th spatial basis function, «;
denotes the coefficient of the i-th basis function, and n,
denotes the number of considered basis functions. Coefficients
«; are estimated using a linear regression method [18] and
the null/alternative hypothesis method is used to determine
the existence of a spatial pattern on a wafer. The residual of
the model is used to represent random variation. As discussed
earlier in the introduction, the choice of basis functions is
crucial to the success of this method. Authors in [5] chose
a set of predefined basis functions, while the work presented
herein used domain-specific knowledge to dynamically learn
the most appropriate basis functions from the data prior to
performing spatial variation decomposition.

III. PROPOSED APPROACH

The proposed approach consists of three principal phases:

o Pre-decomposition learning, during which appropriate
basis functions are learned from a hold-out set of wafers.

o Decomposition, during which a target measurement is
sampled on a small percentage of die-locations across
each wafer under consideration and appropriate weights
are attributed to each basis function, through a process
similar to the one described in [5].

o Post-decomposition analysis, during which the correla-
tion between the various sources of variation (as reflected
in the basis functions) and yield is statistically learned, in
order to identify the main contributors to yield variation.
The estimated coefficients of the basis functions can also
be used to predict the actual yield of a wafer, as well as
to perform wafer clustering analysis.

Details for each of the three phases are provided next.

A. Pre-decomposition learning

Variability is introduced by several different sources during
semiconductor manufacturing. While each piece of equipment,
each knob, and each step in the process can be considered
as a distinct source of variation, in practice the effects of
variability can be cumulatively reflected through a relatively
small set of basis functions. Such basis functions constitute a
mechanism for communicating to process engineers what is
being observed at probe in way that has interpretable meaning
and be acted upon. Let b;(z,y) denote the i-th considered
basis function as specified in (2). Examples of interpretable
b;(x,y) include:

1) Linear basis function: This type of basis function rep-
resents linear spatial variation of wafer-level measurements,
caused, for example, by thermal gradients. It can be expressed
as

bi(z,y) = ax + by 3)
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where a and b are used-defined coefficients which can be
learned using a hold-out set of wafers. The basis function with
coefficient vy shown in Figure 1 is an example of a linear basis
function.

2) Cosine basis function: This type of basis function rep-
resents radial spatial variation of wafer-level measurements,
caused, for example, by wafer spinning. It can be expressed
as [5]

27
bi(x,y) = cos(n—r) “)
dy
where d,, is the usable wafer diameter, 7 is the distance from
the center of the wafer, and n is a user-defined parameter
which can also be learned using a hold-out set of wafers. The
basis function with coefficient c; shown in Figure 1 is an
example of a cosine basis function.

3) Discontinuous basis function: This type of basis func-
tion represents discontinuous spatial variation of wafer-level
measurements, which can be caused by a number of reasons.
For example, the reticle shot that produces several die patterns
at the same time in the lithography process may result in
individual rectangular regions. Similarly, a multi-site testing
strategy may lead to systematic variations for die that are tested
at the same time. If & denotes the number of “levels” caused
by a discontinuous effect, then a discontinuous basis function
can be expressed as

Mam:émk 5)
where [ denotes the discontinuous “level” that the die on wafer
coordinate (z,y) belongs to, and my, denotes the measurement
value of the highest “level”. The basis function with coefficient
oz in Figure 1 is an example of discontinuous basis functions.

A key contribution of this work is the use of domain-specific
knowledge to learn basis functions. For example, to accurately
learn the function in (5), we need to determine which “level”
a die in coordinate (x,y) belongs to. Our experience with
production test data shows that, for measurements which
exhibit discontinuous effects, the spatial components are often
relatively stationary across wafers (though the actual variation
is certainly not). In other words, for a given measurement,
most wafers exhibit very similar spatial discontinuous patterns.
Based on this observation, we propose to learn the function in
(5) by a k-means clustering algorithm using a single wafer (or
a small set), on which all measurements for all die locations
are explicitly collected. Formally, let the set

M = {my,mao,...,mu} (6)
include the values of the i-th measurement on all die of a
wafer, with m; denoting the measurement on the j-th die and
n denoting the total number of die which are to be clustered.
The k-means clustering algorithm aims to partition M* into k
sets (k < n): {S1,S9,...,Sk} so as to minimize the expected
distortion D, which is defined as the sum of squared distances
between each observation and its dominating cluster mean:
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D =" |lmug) — mylf? (7
J

where my(;) denotes the nearest cluster mean value for ob-
servation m;. In this work, we use the most common iterative
refinement technique to refine the choices of cluster means in
order to reduce the distortion D. The technique involves the
following steps shown in Algorithm 1 [19].

1. Set k cluster means {/mq,mo,...,
values.

2. Assign each measurement in M? to the cluster with
the nearest cluster mean. The assigned p-th cluster is
denoted by Sp:

My} to random

Sp = {m; : [mj —mpl* < m; —mg|*, V1 < g <k}
®)

3. Compute the new cluster means.

Z m; ©)

mJES

where n,, is the number of observations in the p-th
cluster.
4. Repeat steps 2 & 3 until the assignments do not
change.
Algorithm 1: k-means algorithm for partitioning a wafer
to clusters caused by discontinuous effects

The k-means clustering algorithm is a simple, unsupervised
learning approach which allows us to separate the die on a
wafer into k different clusters caused by various discontinuous
effects, without assuming the shape of clusters. Notice that
the clusters cannot be obtained by simply examining test
site information or other reverse-engineering method, mainly
because cluster shapes are often formed by multiple sources of
variation, including discontinuous, radial or linear variations.

The question that naturally arises next concerns the choice
of k. This choice is crucial in the k-means clustering algo-
rithm. Underestimating £ would result in clusters that still con-
tain discontinuous patterns, while overestimating k& would re-
sult in basis functions not reflecting the real underlying spatial
pattern. The authors of [20] conducted a very comprehensive
comparative study of 30 methods for determining the number
of clusters in data. Among the variety of examined methods,
the approach suggested in [21] generally outperformed the oth-
ers. This approach consists of choosing an optimal value for &
by maximizing the between-cluster dispersion and minimizing
the within-cluster dispersion. Formally, the optimal value for
k is defined as [21]

k = argmax CH(g) (10)
g

where C'H(g) is the Calinski and Harabasz index when ¢
clusters are considered and is defined as

where n is the total number of die on the wafer, and B(g) and
W (g) are the between- and within-cluster sums of squared
errors computed as

= ny(my, —m)(m, —m)" (12)
Z > (my—mp)(m; —mp)")  (13)

m; €Sy

where n,, denotes the number of samples in the p-th cluster,
M, denotes the cluster mean of the p-th cluster, and /m denotes
the mean of all measurement samples in M*.

Equation (10) allows us to automatically choose an optimal
value for k for a particular measurement without making any
assumptions about its discontinuity trends.

B. Decomposition

Once all the basis functions are specified, we can read-
ily use them to identify different sources of variation in
manufacturing. In particular, we analyze each wafer under
consideration by taking wafer-level measurements from a
sample of die on the wafer and using them to compute a
weight for each basis function. For this purpose, we use
robust regression [22] to estimate the weight of each basis
function, which allows us to minimize the influence of outliers
in the estimation. Formally, let b; denote the basis function
vector on the j-th Cartesian coordinate (z;,y;) of a particular
wafer: b; = [bo, bi(x;,v;), ..., bn, (2;,y;)], where b;(z;,y;)
denotes the value of i-th basis function, n; is the number
of considered basis functions and by is a constant term, and
let @ = [ag,q,...,ap,] denote the corresponding weight
coefficient associated with each basis function. Let m; denote
the considered measurement value on the j-th coordinate. Then
m; can be expressed as

mj = ozb;r + 7 (14)

where 7; is the residual of the estimation on the j-th coordi-
nate. In robust regression, we estimate ¢ by minimizing the
objective function:

> pr) = plm

where p(-) is a function which gives the contribution of each
residual to the objective function (for example, for least-square
estimation, p(r;) = rf), and n,,, is the number of die locations
used to estimate ««. We minimize the function in (15) w.r.t. «
by taking derivatives,

Zw

where v = p'. If we define the weight function w(r) =
¥ (r)/r, then the estimating equation (16) may be written as

i—ab)) (15)

i—abl)b] =0

J

(16)

B(g)(g —1) ™ () (e — b/ )bl =0 17
CH(g) = 22— 7). (11) > w(ri)(m; —ab])b] = (17)
)= W —g) <
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In this work, we use Huber’s weight function which has the

form:
w0 ={ 1

where k, is a user-defined tuning constant specifying the
boundary of “bad” observations. Also, to solve (17), we
use the iteratively reweighted least squares method shown in
Algorithm 2.

if |r| <k

if r| > k (18)

1. Set initial estimates (*) using least-square estimates.
2. At each iteration ¢, calculate residual rl(t) and
associated weights wgtfl) =w (rftil) .
3. Solve for new weighted-least-squares estimates
-1
alt) = [B’W“*UB} BWEDm (19
where B is the model matrix B = [by,..., b, ],
W1 = diag{wz(t_l)}, and m = [my,...,m,, | .
4. Repeat steps 2 and 3 until the estimated coefficients
converge.
Algorithm 2: Tteratively reweighted least squares method

Equation (19) allows us to estimate the coefficient of each
basis function, based on measurements taken on a subset of
die locations (n,, samples) of a particular wafer.

C. Post-decomposition analysis

1) Identifying main contributor to yield variation: Once
the weight vector, &, is estimated, we can use it to identify
the most “important” spatial variation component and the
main contributor to yield variation by building the correlation
functions that map & to actual yield. Let yy; denote the yield
of the k-th measurement on the [-th wafer, and let &; denote
the coefficient vector of the basis functions, estimated on the
l-th wafer for the k-th measurement. Then yy; is expressed as

yr = f(Qwr) + €

:f(d07&17"';dnb)+e (20)

where e denotes additive stochastic error, whose expected
value is defined to be zero, and f denotes a function mapping
& to yi;. By effectively learning f using a set of training
samples, the impact of different sources of variation on the ac-
tual yield can be learned. In this work, we use the Multivariate
Adaptive Regression Splines (MARS) regression method [23]
to estimate f, where yy; is expressed as a weighted sum of
individual functions

vkt = Y fildi)
+ > fi(@u,dy)
+ ) fign(Gi, dy, 6m)

The first term in (21) denotes the sum of all individual
functions involving only &;, the second term denotes the sum
of all individual functions involving only &; and ¢&;, and so on.

2y
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Note that ¢, 7 and h vary from 1 to n,. As suggested in [23],
the “importance” of each input variable &; can be assessed by
computing the standard deviation of f;(&;), computed across
all considered wafers:

Ny

1 LN F A
N1 2 (@) = i)

=1

o(fi(ds)) = (22)
where f!(é&;) denotes the value of f;(&;) estimated on the
[-th wafer, N,, denotes the number of considered wafers in
the data set, and f;(&4;) denotes the sample mean of f;(é;)
computed across N,, wafers. In this work, we omit the second
and higher order interaction analysis for brevity. Note that
the “importance” of these interaction terms can be computed
similarly as in (22). The greater the o(fi(d;)), the more
important the &; in the model. We then define the principal
yield contributor v, as

ay, = argmax o (f;(d;)) (23)

J
The above equation allows us to identify the principal

contributor to yield variation, which can be further explored

by process engineers to improve process and enhance yield.

2) Yield prediction: Once the correlation function f that
maps & to y is learned, we can use it to accurately predict yield
for new wafers, using Equation (20). Note that predicting yield
can also be accomplished by employing spatial correlation
models to predict measurements at untested die locations, as
discussed in Section II-A. In this work, we show that by
using the estimated & and the correlation function f, the
yield can be accurately predicted without explicitly estimating
measurements of untested die.

3) Wafer clustering analysis: In order to understand the
impact of sources of variation on the wafers over time and
different production lots/sites, the estimated & can also be
used as a signature to classify wafers into different bins.
A k—clustering approach similar to Algorithm 1 in Section
ITI-A3 can be used on a training set of wafers to identify the
common types of produced wafers and define a number of
clusters/bins. Then, for each wafer coming out of production,
the vector & is computed and classified into the appropriate
cluster. By monitoring the distribution of wafers into bins,
we can identify abnormal wafers and process excursions, as
well as obtain useful information to assist planning of future
production runs.

IV. EXPERIMENTAL RESULTS

We now demonstrate results of applying the proposed
method on semiconductor data from high-volume manufactur-
ing. The device under consideration is an RF transceiver with
multiple radios built in a 65nm technology. Our dataset con-
tains a total of 690 wafers, each of which has approximately
2,000 devices, with 78 probe test measurements collected
on each device. For each wafer, 10% randomly chosen die
locations are used to estimate ¢. In this case study, we employ
4 basis functions, namely linear, cosine, discontinuous #1, and
discontinuous #2, thus n; = 4. Figure 2 shows the normalized
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Normalized wafer map of the 4 considered basis functions

Fig. 2.
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Fig. 3. Estimated coefficient & of measurement 61 computed for all the 690
wafers, using (a) proposed approach (b) approach in [5]

wafer map of the 4 considered basis functions. The parame-
ters of basis functions by (z,y) and bs(x,y) are dynamically
learned on the first wafer using equations (3) and (4), while
the number and shape of clusters in the discontinuous basis
functions bs(x,y) and bs(z,y) are dynamically learned using
the procedure described in section III-A3.
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(@)

Fig. 4. Normalized wafer map of two statically chosen discontinuous basis
functions

Fig. 5. Wafer maps of two randomly chosen wafers for a measurement having
ba(z,y) as the most prominent basis function and yield variation contributor

A. Identification of sources of variation

As discussed in Section III-C, the principal contributor to
yield variation can be identified by analyzing the constituents
of the regression function mapping & to y. Accordingly, since
these constituents are interpretable by the process engineer,
actions to reduce process variability and enhance yield can
be taken. Consider, for example, Figure 3(a), which plots the
estimated coefficient & for measurement 61, wherein by (z, y)
is considered the principal contributor to yield variation, as
computed through (23). The estimated coefficient vector & is
computed for all the 690 wafers and the weights of the four
basis functions are shown in different colors in this figure.
As may be visually observed, ¢, exhibits the highest variance
and the highest absolute value for most wafers, i.e., the yield
variation for this particular measurement is mainly contributed
by by(x,y), which is in-line with the results of the prominent
variation source identification analysis using (23).

1) Comparison to wafer decomposition approach in [5]: In
order to demonstrate the effectiveness improvement achieved
through the use of dynamically-learned basis functions, Figure
3(b) plots the estimated coefficient & of the same measure-
ment, using only statically defined basis functions to represent
discontinuous spatial variation, as introduced in [5]. In other
words, instead of using the learned discontinuous basis func-
tions shown in Figure 2(c)(d), this time we use the two basis
functions shown in Figure 4, which seek to capture the same
types of discontinuity in a more generic fashion. The estimated
coefficients for all the 690 wafers are shown in Figure 3(b).

As can be observed even through visual inspection, the
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TABLE I
COMPARISON OF ABSOLUTE MEAN VALUE OF BASIS FUNCTION
COEFFICIENTS FOR MEASUREMENT 61

ap | g | a3 Qg
Proposed approach | 0.17 | 0.2 | 0.14 | 0.57
Approach in [5] 0.18 | 0.2 | 0.12 | 0.1

decomposition method using the statically defined functions
is unable to accurately pinpoint the main source of variance,
with linear and radial basis functions exhibiting the highest
variance and the highest absolute values for most wafers,
while the contribution of the discontinuous functions appears
to be significantly smaller. Table I justifies this observation,
by computing the absolute mean value of each coefficient:
a@;,t =1,...,4 over the 690 wafers. It can be observed that
the proposed approach provides the highest value for &y, while
the approach in [5] has the lowest value for &y, implying that
by(z,y) has the lowest contribution to total variation.

Finally, in order to verify that the dynamically-learned basis
function by (z,y) is indeed the most prominent one, Figure 5
shows the wafer maps of two randomly chosen wafers for
this measurement. A simple visual inspection of Figure 5
and contrasting to Figure 2(d), corroborates the finding of
our method and underlines the benefits of using dynamically-
learned basis functions.

2) Comparison to wafer decomposition approach in [6]:
The spatial variation decomposition approach proposed in [6]
uses a discrete cosine transform that projects wafer spatial data
into the frequency domain, in order to decompose process
variation into systematic spatially correlated variation and
uncorrelated random variation. For example, Figures 6(a) and
(b) show the wafer decomposition of measurement 1 in our
dataset, computed from the same 10% sampled die locations
on the wafer, using the approach in [6]. The original wafer
map is shown in Figure 6(a) and the estimated systematic
variation pattern is shown in Figure 6(b). As may be observed,
the estimation captures very well the underlying systematic
variation, which is a radial spatial pattern. To further justify
this observation, in Figure 7 we plot the estimated coefficients
of basis functions for measurement 1, as computed by the
method proposed herein. Evidently, our method identifies the
radial basis function as the principal spatial pattern for this
measurement, which is in agreement with the wafer-maps of
Figures 6(a) and (b).

While the approach proposed in [6] performs very well in
identifying radial spatial variation, it is not as efficient when
dealing with discontinuous spatial patterns. This is demon-
strated in Figures 6(c) and (d) for the case of measurement 61
in our dataset. The original wafer map for this measurement
is shown in Figure 6(c) and the estimated systematic variation
pattern identified by the approach in [6] is shown in Figure
6(d). As may be observed, the underlying systematic spatial
variation cannot be correctly captured in this case. However,
using the approach herein, the discontinuous spatial pattern
is accurately captured, as was shown in Figure 3(a). Another
advantage of using the proposed approach over the method
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(d)

Fig. 6. Wafer spatial variation decomposition using [6], (a) original wafer
map of measurement 1, (b) estimated spatially correlated systematic variation
of measurement 1, (c) original wafer map of measurement 61, (b) estimated
spatially correlated systematic variation of measurement 61
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Fig. 7. Estimated coefficient & of measurement 1 computed for all the 690
wafers using the proposed approach

described in [6] is the fact that the basis functions employed
provide more actionable information. In other words, instead
of showing a single systematic pattern (which could potentially
be further broken down to frequency-domain components), the
proposed approach decomposes the systematic variation into
domain-specific basis functions which can be easily interpreted
by process engineers towards improving yield.

B. Yield prediction

To demonstrate the ability of the proposed method to accu-
rately predict yield for each measurement from the coefficient
vector &, we split our wafers into two sets and generated the
following data:

e The set S; contains data collected from 345 wafers. The
[-th wafer contains ¢y estimated by (19) for all 78
measurements: kK = 1,...,78, using 10% of the available
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Fig. 8. R? coefficient between estimated and actual yield for each
measurement, averaged over all 345 wafers in the validation set .S,

die locations randomly chosen on the wafer. The actual
yield of the k-th measurement on the [-th wafer yy; is also
computed using all available die locations on the wafer.
Thus, S; = {(&w, yr)}, k=1,...,78,1=1,...,345.

o The set .S, contains data collected from other 345 wafers.
As before, the basis function coefficient vector éy,; for
the k-th measurement on the [-th wafer is estimated
using 10% of the available die locations randomly chosen
on the wafer. Thus, S, = {au},k = 1,...,78,l =
346, ...,690.

We use S; to train the regression functions f mapping & to
1y, as shown in (20). S, is then used to validate the accuracy of
yield prediction through the learned functions. Figure 8 shows
the R? coefficient between the estimated and actual yield for
each measurement, averaged over all the 345 wafers in the
validation set S,. As may be observed from Figure 8, most
measurements have R? coefficient close to 1, which indicates
an excellent ability of our method in predicting yield from &. It
should also be noted that the yield prediction is less accurate
with R? at around 0.5 for a handful of measurements, for
which random variation tends to dominate systematic spatial
variation.

To gain further insight about yield prediction, Figures 9(a)
and (b) plot the actual and estimated yield' for two randomly
chosen measurements, with 0.9 and 0.98 as their corresponding
R? coefficient, respectively. The reported yield is computed for
all 345 wafers in S,,. As may be observed, the predicted yield
accurately tracks the actual yield for all wafers in S,,.

C. Wafer clustering analysis

As discussed in Section III-C, the estimated & can also
be used as a signature to classify wafers, in order to plan
production and/or detect process excursions resulting in abnor-
mal wafers. To illustrate the effectiveness of wafer clustering
using &, we consider measurement 73 in our dataset, for
which by(x,y) was identified by our method as the primary
source of variation. Using & as the signature we run k—means
clustering (see Algorithm 1 in Section III-A), using (10) to
select the optimal k, which in this case is £ = 3. Figure 10

IAn NDA with Texas Instruments prohibits us from disclosing actual yield
figures, hence the “High” and “Low” markers on the Y-axis of the plots.
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Fig. 9. Actual and estimated yield for two randomly chosen measurements,
computed for all 345 wafers in set S,,.

depicts two randomly chosen wafers from each of the three
clusters, (a)/(b), (c)/(d), and (e)/(f), respectively. As may be
observed, wafers in the same cluster have a very similar spatial
variation pattern, while wafers in different clusters are clearly
distinguishable. This example demonstrates that the coefficient
vector & is, indeed, a powerful spatial signature for performing
wafer clustering.

To gain further insight on wafer clustering, we arrange the
estimated vector & of measurement 73 for all wafers in a
4 x 690 matrix A. We then perform a Principal Component
Analysis (PCA) on A, resulting in a transformed 4 x 690 matrix
Ap, in which rows are linearly uncorrelated. In Figure 12,
we project the wafers on the first 2 principal components of
Ay, color-coding the cluster to which each wafer belongs. As
may be observed through simple visual inspection, wafers in
different clusters are clearly separated in this space.

We can also use & as a signature to detect abnormal wafers,
as discussed in Section III-C3. Any outlier wafer can be easily
detected by computing d,,, which is defined as the Euclidean
distance between the considered wafer and the nearest cluster
center in the space of &. By setting a threshold value d;;,, we
can classify a wafer as an outlier if d,, > d;,. Note that dy,
can be properly learned using a hold-out set in manufacturing.
To illustrate this outlier wafer detection capability, we generate
a synthetic outlier wafer?, by randomly choosing the estimated
& of one wafer, multiplying the coefficient cs of by(z,y) by
10, and generating its wafer map using Equation (2), which
is shown in Figure 11. In this way we generate realistic

2Qur dataset does not contain any outlier wafers.
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Fig. 10. Wafer clustering for measurement 73: Pairs (a)/(b), (c)/(d) and (e)/(f)
show two randomly chosen wafers from each cluster, respectively

outlier wafer by considering excessive variance in radial basis
function bo(z, y).

This outlier wafer is detected correctly by the procedure
described above. The red dot shown in Figure 12 shows the
projection of this wafer on the first two principal components
using the same PCA transform. As may be observed, the
outlier wafer is clearly separated from other wafers and does
not belong to any cluster, demonstrating the utility of & as a
signature for detecting outlier wafers.

V. CONCLUSION

Wafer-level spatial variation decomposition offers excellent
insight into the impact of process-induced uncertainty in semi-
conductor manufacturing. By breaking down the systematic
wafer-level variation into a set of weighted spatial basis func-
tions, the method described herein identifies and assesses the
importance of different process variation sources. Its key nov-
elty lies in the use of domain-specific, dynamically-learned,
interpretable basis functions, which drastically improve its
ability to accurately pinpoint variation sources over existing
approaches. Using industrial high-volume manufacturing data,
we demonstrated the utility of the proposed wafer-level spatial
decomposition method in identifying prominent yield variation
contributors, predicting yield, and clustering wafers based on
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Fig. 11. Wafer map of synthetic outlier wafer
T o3r : : 1
g « Cluster 2 \
S | oCluster3 Outlier wafer .. |
g 02k i i ! J
o
= I J
=
o T ]
o L ke ° . v b & il
~ OfF o o i
02 0 0 0.1
1st principal component
Fig. 12. Projection of wafers on the first two principal components

their spatial variation pattern, in order to plan production and
to detect process excursions resulting in abnormal wafers.
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