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Abstract—Wafer-level spatial correlation modeling of probe-
test measurements has been explored in the past as an avenue to
test cost and test time reduction. In this work, we first improve
the accuracy of a popular Gaussian process-based wafer-level
spatial correlation method through two key enhancements: (i)
confidence estimation-based progressive sampling, and, (ii) inclu-
sion of spatio-temporal features for inter-wafer trend learning.
We then explore a new application of the enhanced correlation
modeling method in estimating High Volume Manufacturing
(HVM) yield from a small set of early wafers and we demonstrate
its effectiveness on a large set of actual industrial test data.

I. INTRODUCTION

Recent research on modeling spatial measurement correla-
tion has shown great promise in capturing wafer-level spatial
variation and, thereby, reducing test cost of electrical mea-
surements [1]–[7]. The underlying idea, as shown in Figure
1, is to collect measurements for a sparse subset of die on
each wafer and subsequently train statistical spatial models to
predict performance outcomes at unobserved die locations. For
example, in [2], the expectation-maximization (EM) algorithm
is used to estimate spatial wafer measurements, assuming that
data comes from a multivariate normal distribution and the
Box-Cox transformation is used in case data is not normally
distributed. The “Virtual Probe” (VP) approach [3] models
spatial variation via a Discrete Cosine Transform (DCT) that
projects spatial statistics into the frequency domain. The author
of [1] laid the groundwork for applying Gaussian Process (GP)
models to spatial interpolation of semiconductor data based on
Generalized Least Square fitting and a structured correlation
function. This fundamental model has been further enhanced
using radial feature inclusion, multiple kernel evaluation and
introduction of a regularization parameter [5], [6], as well as
a clustering approach to handle spatial discontinuous effects
[7]. The resulting comprehensive GP model has significantly
improved both prediction accuracy and computational time, as
compared to the VP model, and is therefore our starting point.

In the work presented herein, we first seek to improve the
accuracy of the state-of-the-art wafer-level spatial correlation
modeling methods. To this end, we introduce two enhance-
ments, namely progressive sampling and spatio-temporal fea-
ture inclusion. Progressive sampling aims at improving the

Fig. 1: Wafer measurement spatial interpolation [5]

statistical information available in the sample based on which
a spatial correlation model is constructed. This is achieved by
starting with measurements from a small set of die locations,
which is iteratively augmented with more samples. In each iter-
ation, the accuracy of the spatial correlation model is improved
by selecting new samples from regions where the confidence of
the previous model is low. Spatio-temporal feature inclusion,
on the other hand, extends the concept of correlation modeling
across wafers, asserting that the spatial variation observed on
a wafer reveals useful information for other wafers in the
same lot. Accordingly, we construct a single spatio-temporal
correlation model which captures variation of a parameter
across all wafers in a lot as a function of die coordinates and
wafer time-index. Furthermore, these two enhancements can
also be combined, as they use different means to improve the
accuracy of the correlation models.

Besides the straightforward objective of improving the ac-
curacy of the models used for test cost / test time reduc-
tion, we also explore another application of the improved
spatio-temporal correlation modeling with progressive sam-
pling method. Specifically, we seek to employ such models in
predicting the HVM yield of a device from measurements ob-
tained on a sample of die from a small set of wafers available
in early production. This resembles the typical problem faced
in post-silicon validation, where the performance distribution
of HVM devices needs to be extrapolated from a few sample
die obtained from a few engineering wafers produced over the
period of a few months. To address this problem, we propose
to use these samples in order to build a spatio-temporal model
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that predicts the distribution of each parameter of interest in
HVM production. In essence, the proposed method leverages
better the information available on the few early wafers, even
though only a few die are sampled on each such wafer.
Accordingly, better statistical models can be derived either in
isolation or in conjunction with previously developed synthetic
population generation/enhancement methods [8].

The remainder of this paper is organized as follows: in
section II, we discuss the Gaussian Process model for captur-
ing wafer-level spatial correlation. In section III, we introduce
the two proposed enhancements, namely progressive sampling
and inclusion of spatio-temporal features. Then, in section
IV, we explore the utility of the enhanced spatial correlation
modeling method in accurately predicting HVM yield from
a small number of early silicon wafers. Experimental results
demonstrating the effectiveness of the proposed methods on
industrial data are presented in section V and conclusions are
drawn in section VI.

II. GAUSSIAN PROCESS

In this section, we briefly present the Gaussian process
model; a detailed explanation can be found in [9]. A Gaussian
process is a collection of random variables, any finite number
of which exhibits a joint Gaussian distribution. A Gaussian
process is fully specified by its mean function and its kernel-
based covariance function. Consider a training set D of nt data
points, D = {(xi, f(xi))|i = 1, . . . , nt}, where x denotes an
input vector (in this work, the input vector is the Cartesian
coordinate of a die denoted as x = [x, y]) and f(x) is the
output (herein, a measurement value). Accordingly, a Gaussian
process can be viewed as a group of random variables f(xi)
with joint Gaussian distribution:

f(x1), ..., f(xn) ∼ N (0,K) (1)

where element Kij of the covariance matrix K is the co-
variance between values f(xi) and f(xj). This covariance
function can be formed as an inner product, permitting us
to leverage the kernel trick [10] and express it as a kernel
function k(xi,xj). Thus, the covariance between the outputs
can be written as a function of inputs using a kernel function.
Many kernel functions exist, and any function k(·, ·) that
satisfies Mercer’s condition [11] is a valid kernel function.
However, only a handful of kernels are commonly used.
Among these common kernels, the most prevalent one is the
squared exponential, also known as the radial basis function
kernel. In this work, we employ a squared exponential kernel
of the form:

k(xi,xj) = exp

(
− 1

2l2
|xi − xj |2

)
(2)

where l is some characteristic length-scale of the squared expo-
nential kernel. This function expresses that neighbor instances
will have highly correlated outputs. Employing this kernel
is equivalent to training a linear regression model with an
infinite-dimensional feature space. Substituting our squared-
exponential covariance function into the definition of the

True Function
Prediction Mean

Prediction
Variance

Fig. 2: Distribution prediction using Gaussian process

Gaussian process, we arrive at a Gaussian process formulation
as:

f(x) ∼ GP(0, k(xi,xj)) (3)

For a new data point with input x∗, the predictive dis-
tribution of the output f∗(x∗) can be computed by using
conditional distributions of the joint Gaussian distribution:

f∗|X, t,x∗ ∼ N (k>∗ K
−1t,

k(x∗,x∗)− k>∗ K
−1k∗ (4)

where X is the input training matrix, t is a training output
vector, x∗ is a test point, k∗ = K(X,x∗) which is the kernel
evaluation between the test point and all training instances,
K is the matrix of the kernel function evaluated at all pairs
of training points and k(x∗,x∗) is the variance of the kernel
function at test point x∗.

The original GP method is primarily concerned with point
predictions, so it simply uses the distribution mean f̄∗ =
k>∗ K

−1t to generate a point prediction from the predic-
tive distribution. This corresponds to decision-theoretic risk
minimization [12] using a squared-loss function. However,
in addition to simply providing a prediction with a fixed
value, this approach also reports a confidence level for the
prediction by computing the distribution of predicted values
at unobserved locations. Figure 2 illustrates the distribution
prediction using the Gaussian process. This feature will be
leveraged in the next section in order to improve the model
through intelligent selection of the samples from which the
model is learned.

III. PROPOSED ENHANCEMENTS

In this section, we introduce two enhancements to the afore-
mentioned Gaussian Process model. The first enhancement
seeks to improve the information available in the sample
from which the model is learned, by starting with a small
set and progressively selecting additional samples in areas
where confidence of the learned model is low. The second
enhancement seeks to expand the correlation model across
wafers within the same lot by introducing a spatio-temporal
feature, namely the order of the wafer within the lot. The
combination of these two enhancements is also explored.
Finally, practical considerations related to the deployment of
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these enhancements in the context of test cost / test time
reduction are discussed.

A. Progressive Sampling (GP-PS)

Selecting a sample of die locations that accurately reflect the
spatial variation across a wafer is crucial in any wafer-level
spatial correlation modeling method. To date, most methods
rely on a set of randomly selected die locations. Attempts to
guarantee sufficient coverage by employing a Latin hypercube
sampling approach to evenly choose random sample points
over the entire wafer have also been made [3]. Yet all samples
are usually taken at once, without taking into consideration
any a priori knowledge of spatial variation patterns on the
wafer. In contrast, herein we propose an iterative progressive
sampling approach, in order to select training samples which
better represent the spatial variation pattern across a wafer.
To achieve this, we leverage the ability of the GP model
to provide a confidence level for all predicted samples in
each iteration. Algorithm 1 outlines the proposed progressive
sampling approach.

In particular, we begin the sampling procedure with n′

samples randomly chosen on the wafer. Note that n′ is set
to be significantly smaller than the total number of samples,
n, allowed in our budget for building the model. Using these
samples we build a GP model and we predict the values
along with the prediction confidence level at each unobserved
die location. This confidence level is then used to guide our
sampling at the next iteration, towards reducing the uncertainty
and improving the accuracy of the GP model. Specifically,
we identify a set of k locations for which the predictions
have the highest uncertainty and lowest confidence level, we
sample them to obtain the true values, and we then use them
to augment our training sample. We note that the selection of
these k new locations also uses their Euclidean distance as
a metric, in order to distribute the new samples across many
areas of low confidence. This progressive sampling process is
repeated until a stopping criterion is reached. In Figure 3, we
illustrate an example of progressive sampling in 2 iterations.
As can be observed, carefully selecting a new sample in the
training set can significantly improve the accuracy of the
spatial correlation model.

The stopping criterion of Algorithm 1 depends on the
application and prediction problem. There are two standard
methods: i) when the highest uncertainty of prediction drops
below a given threshold, or ii) when a given budget of samples,
n, is reached. In this work, we use the latter stoping criterion
and all experiments are based on a given sampling budget
(i.e. 10%) of die on a wafer. The number of samples added in
each iteration, k, is also problem-dependent. In this work, we
chose to add the same number of samples (i.e. 2.5%) in each
iteration, resulting in 4 iterations of the progressive sampling
algorithm, until our sampling budget is reached.

B. Spatio-Temporal Feature Inclusion (GP-ST)

A key contribution of this work is the extension of Gaussian
process modeling over spatial coordinates to a joint spatio-

1. Randomly select n′ samples on the wafer as initial
training set: S = {x1|t1, · · · ,xn′ |tn′}
2. Build spatial GP model using set S and predict values
and confidence at unobserved die locations (set U )
3.1 For each xi in U , calculate
di = min{|xi − xj |2,∀xj ∈ S}
3.2 Select location xi which has highest variance and
maximum Euclidean distance from current training set
3.3 Add xi to the set S and remove it from set U and
obtain corresponding true value txi

3.4 Repeat 3.1-3.3 until k locations are added to the
training set
4. Augment the training set
S = {S,xh1

|th1
, · · · ,xhk

|thk
}

5. Repeat steps 2-4, until stopping criterion is reached

Algorithm 1: Progressive sampling of information-rich
training locations in spatial correlation modeling

Highest variance
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Fig. 3: Example of progressive sampling with prediction at (a)
iteration i and (b) iteration i+ 1

temporal space, capturing our intuition that wafer-level spatial
variance is also time-dependent. Indeed, we expect that wafers
processed together, such as wafers within the same lot, will
exhibit similar intra-wafer spatial variation and will also
exhibit time-dependent inter-wafer variation which would be
beneficial to include in our model. Essentially, our conjecture
is that a single spatio-temporal model learned from samples
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Time t1 t2 t3

Fig. 4: Time-dependent spatial variation

across all wafers in a lot, could be more accurate than
individual models learned from the same samples for each
wafer. An advantage of using Gaussian process regression is
the ability to apply a Gaussian process over any arbitrary index
set. Thus far, we have been describing a Gaussian process
implementation that estimates wafer-level measurements over
a 2D Cartesian plane; however, we are free to use any
other field. As noted above, we expect wafer-level spatial
measurements to exhibit time dependence in manufacturing.
To accommodate this in our Gaussian process model, we can
simply update our coordinates from x = [x, y] to include a
time feature t:

x = [x, y, t]

Applying Gaussian process regression over this space will
result in a model that takes time dependent variation into ac-
count. In Figure 4, we illustrate the concept of time-dependent
wafer-level spatial variation. Evidently, the spatial variation
exhibited by each of these three consecutively produced wafers
is not only similar but also exhibits a temporal trend (i.e. a
linear gradient that intensifies over time).

C. Spatio-temporal GP w. Progressive Sampling (GP-ST-PS)

Combining the two new enhancements to wafer-level cor-
relation modeling is also a plausible direction. Specifically, it
is possible that the accuracy of a spatio-temporal model can
be improved by employing progressive sampling. Indeed, the
two enhancements are orthogonal, in the sense that progressive
sampling seeks to provide a training set which better reflects
the underlying statistics of the problem, while spatio-temporal
modeling explores the correlation which exists both within
a wafer (spatial variation) and across wafers (time-dependent
variation), to establish a more comprehensive model. In order
to assist GP in learning time-dependent variation, we modify
the sampling strategy such that the initial portion of the
sampling budget covers common locations over all the wafers
in a lot. Then, the progressive sampling method is applied
to the entire lot as a whole for the remaining portion of the
sampling budget. Again, our conjecture is that wafers in a
lot have both spatial and temporal correlations which can be
effectively learned by a spatio-temporal GP model, hence we
train one GP model for all the wafers in a lot. While by
combining these two models we can improve the prediction
accuracy, this would require multiple insertion of wafers which

might not be practical. In the next section, we discuss practical
considerations of the proposed models.

D. Considerations for Production Test Deployment

Spatial correlation models have primarily been seeking to
achieve test-cost / test-time reduction at probe, by landing on
a limited set of die locations and then using the correlation
models to predict the performances of the unobserved die. The
progressive sampling method outlined in Section III-A adds a
complication to this flow, since the wafer will need to remain
on the probe equipment while the models are constructed
and applied, and samples will need to be obtained iteratively
through multiple passes. This iterative procedure may become
overly time-consuming and may eventually counterbalance
the time reduction achieved by the spatial correlation model.
Clearly, this trade-off between test time and prediction ac-
curacy needs to be considered in order to decide whether
progressive sampling makes sense in an HVM test.

Spatio-temporal modeling, on the other hand, as described
in Section III-B, brings about a different challenge. Specif-
ically, after measurements on a sparse sample of die are
obtained at probe, the wafer will leave the probe equipment
without the ability to make decisions on the unobserved
locations. Indeed, one will have to wait until all wafers have
passed through the probe equipment, so that the obtained
samples can be used to build the spatio-temporal model, which
will then be used to predict the unobserved measurements for
all wafers in the lot. While the technical capabilities for coding
this in modern ATE are available, if the overall confidence
of the model is low and the rest of the locations on each
wafer need to be explicitly measured, then the wafers will
have to be subjected to a second test insertion. Therefore, the
use of spatio-temporal models should be sparingly deployed
for measurements that tend to exhibit strong correlation.

Evidently, in the case where spatio-temporal GP models are
combined with progressive sampling both of these considera-
tions will have to be taken into account. Overall, individually
applying either spatio-temporal modeling or progressive sam-
pling results in practical and effective solutions for pass/fail
label determination. However, the combined model may not be
practical to deploy for production testing in an HVM environ-
ment where throughput is crucial, since it requires multiple test
insertions. Nevertheless, the accuracy improvement that the
combined model brings about can be leveraged in a different
application, which we outline next.

IV. HIGH VOLUME MANUFACTURING YIELD ESTIMATION

Prior to commencing High Volume Manufacturing (HVM),
die samples from early silicon wafers are obtained and sub-
jected to thorough characterization. The objective of such
characterization is manyfold and includes post-silicon design
validation as well as HVM performance and yield estimation
with better accuracy than what pre-silicon Monte Carlo simu-
lations may offer [13]–[15]. Indeed, such tasks are crucial as
they rely on a few die in order to make both manufacturing
and marketing decisions that affect the production lifetime
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of a device. In reality, only a small number of engineering
wafers are available for such analysis and only a small number
of die are measured from each such wafer. Typically, such
early silicon is only repeated a few times over a fairly short
period of time prior to HVM. However, analysis of such die
is extensive and is done in dedicated characterization labs
without the time and throughput constraints of production
testing, which were outlined in Section III-D. This setting
lends itself naturally to the proposed GP-ST-PS method, as
it is possible to progressively sample die across available
wafers and repeat the process every time new engineering
wafers are received, in order to obtain a coherent picture of the
performance distribution and expected yield of the product.

Essentially, given a small set of observations over a few
wafers, our objective is to infer the probability density function
(PDF) of the entire population from the limited observations
available. In general, density estimation approaches are cat-
egorized into parametric and non-parametric. In parametric
methods, assumptions about the form of density are made,
while in the non-parametric no such assumptions are made.
Herein, we use the latter, since we have no information
regarding the form of the density function. Two options are
explored, namely a simple histogram-based estimation method
and a more advanced kernel density estimation method.

A. Histogram with Random Sampling

A simple and straightforward method for density estimation
from a small set of samples is a histogram. To create a
histogram, the range of n observations is divided into bins
and the number of samples which fall in each bin is counted.
The probability density is, then, estimated as:

f ′(x) =
nb
n ∗ h

for lb ≤ x ≤ ub (5)

where nb is the number of observations in bin b, ub and lb
are the upper and lower limits of bin b, and h = ub − lb.

Evidently, the accuracy of this estimate depends on the
choice of the random sample and, more specifically, by how
accurately it reflects the statistics underlying the observed
phenomenon. In the context of our problem, the randomly
chosen die may be limited in representing the statistical
distribution across the available wafers, let alone across the
entire HVM production, especially since no notion of spatial
or temporal correlation is captured in a histogram.

B. Histogram with GP-ST-PS

To address this limitation, we can improve the quality of the
sample that is used to generate the histogram by employing
the proposed spatio-temporal Gaussian process method with
progressive sampling (GP-ST-PS). Instead of estimating the
histogram using a random set of n samples from few available
wafers, we employ the GP-ST-PS method to intelligently select
these n samples in order to build an accurate spatio-temporal
GP model which can subsequently be used to accurately
predict the values of all unobserved die locations across the
available wafers. In this sense, we increase the number and
utility of available points (i.e. both observed and predicted) for

building the histogram and estimating the probability density
function, without increasing the cost of sampling. Assuming
that the GP-ST-PS method provides accurate estimates by
leveraging the spatio-temporal correlation across the available
wafers, the new histogram should yield a more accurate den-
sity function than the one obtained from only the n observed
die samples.

C. Kernel Density Estimation

While the histogram method is easy to implement and
straightforward to interpret, it has several disadvantages. For
example, the choice in the number and distribution of bins
dominantly affects the estimation. Furthermore, the tails of
the distribution, which have a very low likelihood of being
represented in the sample, will remain insufficiently modeled.
To address these issues, the concept of kernel density esti-
mation (KDE) has been proposed for density estimation and
enhanced synthetic population generation. In order to generate
a large volume of synthetic data which accurately reflects the
distribution of measurements in high-volume production from
a small number of observations, we use a non-parametric KDE
method [8]. This method relies on the estimation of the den-
sities f(~t), using the available observations ~ti, i = 1, · · · ,M ,
where M is the number of available samples used to build
the density. We do not make any assumption regarding its
parametric form (e.g. normal). Instead, we use non-parametric
KDE, which allows the observations to speak for themselves.
The kernel density estimate is defined as [16]

f̂(~t) =
1

M × hd
M∑
i=1

Ke(
1

h
(~t− ~ti)) (6)

where h is a parameter called bandwidth, d = nm is the
dimension of ~t, and Ke(m) is the Epanechnikov kernel

Ke(m) =

{
1
2c
−1
d (d+ 2)(1−mTm) if mTm < 1

0 otherwise
(7)

and cd = 2πd/2/(d · Γ(d/2)) is the volume of the unit
d-dimensional sphere. The kernel density estimate can be
interpreted as the normalized sum of a set of identical kernels
centered on the available observations for the 1-dimensional
case. The bandwidth h corresponds to the distance between the
center of the kernel and the kernel’s edge, where the kernel’s
density becomes zero.

In this work, we use an adaptive version of (6). In particular,
we allow the bandwidth h to vary from one observation ~ti to
another, allowing larger bandwidths for the observations that
lie at the tails of the distribution. The adaptive kernel density
estimate is defined as [16]

f̂α(~t) =
1

M

M∑
i=1

1

(h · λi)d
Ke(

1

h · λi
(~t− ~ti)) (8)

where the local bandwidth factors λi are defined as

λi = {f̂(~ti)/g}−α, (9)
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f̂(~ti) is the pilot density estimate given in (6), g is the
geometric mean

log g = M−1
M∑
i=1

log f̂(~ti) (10)

and α is a parameter which controls the local bandwidths.
The larger the α, the larger the measurement space where the
density f̂(~t) is nonzero.

Once the probability density f̂(~t) is estimated, we can
sample f̂(~t) to generate a large synthetic data set sn =
{~t1, . . . ,~tM ′},M ′ � M , which will better reflect the dis-
tribution tails.

Of course, in the context of our problem, KDE can be used
either with the initial n die samples as the starting point (i.e.
KDE with Random Sampling), or with the enhanced sample
as predicted by the GP-ST-PS method (KDE with GP-ST-PS
Sampling). The expectation here is that GP-ST-PS method will
provide a better starting point for KDE, which will ultimately
lead to a more accurate estimation of the probability density.

V. EXPERIMENTAL RESULTS

We now evaluate the effectiveness of the proposed methods
using a 65nm analog/RF device1 currently in HVM production.
Our dataset comprises a total of 300 time-stamped wafers,
grouped in lots of 8-12 wafers, and produced over a period
of 6 months. Each wafer has approximately 5500 devices, on
which 39 parametric probe test measurements are collected.
Our experiments seek to (i) quantify the accuracy improve-
ment achieved by progressive sampling and spatio-temporal
modeling in predicting probe tests using wafer-level spatial
correlation, and (ii) assess the ability of the enhanced model
in predicting HVM yield based on measurements from a small
number of early production wafers.

A. Accuracy Improvement of Enhanced Model

In all of the experiments described below we sample 10%
of the die locations on each wafer for training the correlation
models, which are subsequently used to predict the values
on the remaining 90% of non-sampled die locations. The
predicted values are then compared to the actual values that
we have in our dataset, in order to calculate and report the
prediction error of each of the compared models. In the
case of the baseline spatial correlation model, which is used
as a reference point, the 10% sample is randomly selected
across the wafer. In the case of progressive sampling, this
10% sampling budget is reached in multiple steps, where the
selection of samples added in each step is guided by the
models constructed using the samples of all previous steps.
In the case of the spatio-temporal models, each lot of wafers
is treated holistically. Specifically, we use the 10% sample of
(randomly or progressively selected) die from each wafer in
the lot to construct one spatio-temporal correlation model for
the entire lot, which is subsequently used to predict the values

1Details regarding the device cannot be released due to an NDA under
which this dataset has been provided to us.

on the remaining 90% of die locations on each of the wafers
in the lot. In summary, the four prediction models that we
compare in our experiment are the following:
• Gaussian Process (GP): Given a wafer, randomly select

10% of the die on this wafer, measure the parameter of
interest and train a Gaussian Process model to predict this
parameter as a function of die coordinates on the wafer.
Then, use this model to predict this parameter for the
remaining 90% of die on the wafer.

• GP with Progressive Sampling (GP-PS): Given a wafer,
select die locations using the progressive sampling al-
gorithm (Algorithm 1) in increments of 2.5%. In each
iteration, use all available samples to identify the die
locations where model confidence is low, in order to
select the next die sample increment. Once the overall
sampling budget of 10% is reached (i.e. after 4 iterations),
use the final model to predict this parameter for the
remaining 90% of die on the wafer.

• GP with Spatio-temporal Features (GP-ST): Given a
lot of wafers, randomly select 10% of die from each wafer
and train one spatio-temporal Gaussian Process model
(i.e. a model that expresses a parameter as a function
of die coordinates as well as the temporal order of a
wafer within its lot) for the entire lot. Then use this
spatio-temporal model to predict this parameter for the
remaining 90% of die on all wafers in the lot.

• GP with Spatio-temporal Features & Progressive
Sampling (GP-ST-PS): Given a lot of wafers, select die
locations on each wafer using the progressive sampling
algorithm in increments of 2.5% per lot. In the first
increment, the same random locations are chosen on
each wafer, in order to help the model capture time-
dependent correlation. Subsequent sample increments are
chosen across all wafers in the lot based on the predic-
tion confidence level of the spatio-temporal correlation
model constructed using all previous samples from all
the wafers. Once the overall sampling budget of 10%
is reached (i.e. after 4 iterations), use the final spatio-
temporal correlation model to predict this parameter for
the remaining 90% of die on all wafers in the lot.

In order to assess the accuracy of each model, we compare
the values for the predicted die locations (90%) to the actual
probe test outcomes and we capture the discrepancy using the
absolute percentile error metric:

ε =
|t′ − t|

Specification Range
(11)

where t is the probe test outcome for a die, t′ is the corre-
sponding predicted value for that die and Specification Range
is the range of that measurement across the wafer after outlier
removal using a ±3σ filter.

Figure 5 presents the impact of the introduced correlation
model enhancement methods on a randomly chosen parameter
(i.e. measurement 16) among the 39 probe-tests in our dataset,
on one randomly chosen wafer. Figure 5(a) shows the actual
wafer map while Figures 5(b)-(e) show the predicted wafer
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(a) Actual wafer map (b) Predicted wafer map (GP) (c) Predicted wafer map (GP-PS)

(d) Predicted wafer map (GP-ST) (e) Predicted wafer map (GP-ST-PS) (f) Prediction error

Fig. 5: Actual and predicted wafer maps and prediction error for measurement 16

maps using each of the four methods, i.e. GP, GP-PS, GP-ST
and GP-ST-PS, respectively. Even though the differences are
subtle, they are still visible through the wafer maps, where it
may be observed that the predictions by GP-PS, GP-ST, and
GP-ST-PS are better than the prediction of the original GP
and become progressively more accurate with respect to the
actual wafer map. The box-plot of Figure 5(f) quantifies this
improvement by reporting the prediction error for each of the
four models. The y − axis shows the percentile prediction
error, with the black dot on each bar representing the mean of
the prediction error across all die on the wafer.

Figure 6 shows the prediction error of the four methods
for measurement 16 across all 300 wafers. The mean error
is 7.3%, 6.9%, 5.9% and 5.6% for GP, GP-PS, GP-ST and
GP-ST-PS, respectively. We note that the proposed models not
only generate a lower prediction error in the test data, but
also result in tighter error bars than the baseline model, which
indicates that the variance of error is also smaller.

Finally, Figure 7 summarizes the mean error of the four
methods for all 39 measurements across all 300 wafers. As
may be observed, the enhancements proposed herein consis-
tently result in lower prediction error for all measurements.
In order to demonstrate the average improvement over the
original GP model, we use the difference in mean relative
error (MRE) as defined below:

δ-MRE =

∣∣∣∣GP Error− Proposed Method Error
GP Error

× 100

∣∣∣∣

Fig. 6: Measurement 16 prediction error over all wafers

Accordingly, we calculate the δ-MRE between GP and

GP-PS, GP-ST, and GP-ST-PS as 2.6%, 11%, and 16%,
respectively.

Based on the above results, we observe the following:
• Enhancing the original Gaussian Process based wafer-

level spatial correlation method with temporal inter-wafer
information and progressive sampling results in a notable
improvement in the accuracy of the prediction model.

• The improvement obtained by spatio-temporal modeling
is significantly higher than the improvement obtained by
progressive sampling. This is attributed to the fact that the
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Fig. 7: Prediction error for 39 measurements over all wafers

locations sampled on each wafer in a lot are different;
therefore, since wafers in the same lot are expected to
be affected by the same systematic variation sources,
sampled locations in a wafer carry valuable information
regarding the same locations on other wafers, which
were not included in the sample. Thereby, the collective
statistics for the entire wafer are significantly improved.

B. HVM Yield Estimation

In the experiments described below, which seek to demon-
strate the effectiveness of the proposed method in estimating
HVM yield from a few early silicon wafers, we use the
first wafer from each of the first 5 lots -chronologically-
in our dataset, as our early silicon samples. Our sampling
budget remains 10% of the die locations as in the previous
experiments. Using these samples, we estimate the probabil-
ity density function (PDF), the cumulative density function
(CDF), and the yield for each of the 39 probe tests in our
dataset using the methods described in Section IV. For the
entire dataset of the remaining 295 wafers, we also calculate
the actual density and the actual yield for each of the 39 probe
tests. For the purpose of this study, since the specification
limits for each probe test were not disclosed to us, the actual
yield is computed by setting the lower and upper specification
limits at the [L,U] = ±3σ range of each measurement across
the 295 HVM wafers. The same limits are also used to predict
the yield from the estimated PDF/CDF and compare to the
actual yield, so that the accuracy of the proposed methods can
be assessed. The actual data and the four estimation methods
considered in our experiment are summarized below:
• Actual: All die of all HVM wafers (295 wafers) are used

to compute the actual yield and density for each of the
39 probe tests.

• Histogram with Random Sampling (Hist-RS): Given
the 5 early silicon wafers, randomly select 10% of the die
from each wafer and create a histogram with 20 uniformly
distributed bins. The percentage of sampled die across
these 5 wafers that falls in the [L,U] range will reflect
the yield for each probe test.

• Histogram with Spatio-temporal GP and Progressive
Sampling (Hist-GP-ST-PS): Given the 5 early silicon
wafers, select die locations on every wafer using the

progressive sampling algorithm in increments of 2.5%.
Ensure that the same die locations are picked on each
wafer in the first iteration and guide the selection of sub-
sequent iterations using the prediction confidence level
of a spatio-temporal GP model built using all previously
selected samples. Once the 10% sample budget is reached
(i.e. after 4 iterations) use the final GP-ST-PS model
to predict the parameter of interest for the unobserved
90% die across the 5 early wafers. Finally, use both the
sampled and the predicted die to create a histogram with
20 uniformly distributed bins. The percentage of all die
across these 5 wafers that falls in the [L,U] range will
reflect the yield for each probe test.

• KDE with Random Sampling (KDE-RS): Given the 5
early silicon wafers, randomly select 10% of the die from
each wafer and estimate the density of these samples
using KDE. Then sample the estimated distribution in
order to generate one million synthetic die instances.
The percentage of synthetic die instances that falls in the
[L,U] range will reflect the yield for each probe test.

• KDE with Spatio-temporal GP and Progressive Sam-
pling (KDE-GP-ST-PS): Given the 5 early silicon
wafers, select die locations on every wafer using the
progressive sampling algorithm in increments of 2.5%
until the 10% sampling budget is reached, following
the same procedure described above for Hist-GP-ST-
PS. Then use the final GP-ST-PS model to predict the
parameter of interest for the unobserved 90% die across
the 5 early wafers. Subsequently, use all sampled and
predicted values to estimate the density of the distribution
using KDE. Then sample the estimated distribution in
order to generate one million synthetic die instances.
The percentage of synthetic die instances that falls in the
[L,U] range will reflect the yield for each probe test.

To evaluate the effectiveness of these methods, we first
compare the estimated distributions. Figure 8(a) shows the
actual PDF and the estimated PDFs using the Hist-RS and the
Hist-GP-ST-PS methods for a randomly selected among the 39
probe-tests (i.e. measurement 24). Similarly, Figure 8(b) shows
the actual PDF and the estimated PDFs using the KDE-RS
and the KDE-GP-ST-PS methods for the same measurement.
Although the differences are subtle, one can still observe that
the GP-ST-PS method provides a more accurate sample and
results in a better estimation both with the simple histogram
method and with the advanced KDE method. As expected,
one can also observe that KDE is a very powerful method for
estimating the actual distribution. Nevertheless, it still benefits
from having a better starting point, as provided by the GP-ST-
PS method.

In order to quantitatively compare the quality of estima-
tion, we use the Kolmogorov-Smirnov (KS) test [17] as a
goodness-of-fit metric. KS test is a nonparametric test for
one-dimensional probability distributions that can be used to
compare a sample to a reference. In KS, the comparison metric
is the maximum distance between the CDF of the estimated
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(a) Estimated PDF using histogram-based approach
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(b) Estimated PDF of KDE-based approach

Actual
RS
GP_ST_PS

Measurement 147
(c) CDF of histogram-based estimation approach

Measurement 147

Actual
RS
GP_ST_PS

(d) CDF of KDE-based estimation approach

Fig. 8: PDF and CDF estimated by histogram-based and KDE methods for measurement 24

density and the actual CDF. A smaller distance (i.e. closer
to 0) indicates a better fit between the real distribution and
the estimated one. Figure 8(c) shows the actual CDF and
the estimated CDFs using the Hist-RS and the Hist-GP-ST-
PS methods for measurement 24, while Figure 8(d) shows
the actual CDF and the estimated CDFs using the KDE-RS
and the KDE-GP-ST-PS methods for the same measurement.
Based on these CDFs, in Table I we compute the KS metric
for each of the four predicted CDFs in contrast to the actual.
The results corroborate our claim that the information added
by GP-ST-PS helps in better estimating the actual distribution,
both for the histogram-based and for the KDE-based method.

Finally, we compare the yield estimated by each of the
four methods to the actual HVM yield and we compute the
corresponding yield estimation error as the absolute difference
between the two. Figure 9 shows the yield estimation error for
each of the four aforementioned methods for each of the 39
probe tests, as a percentage on the y − axis. Additionally,
Table II shows the average yield error over all 39 mea-
surements. Once again, the results confirm the effectiveness

TABLE I: KS metric of estimated CDFs for measurement 24

Histogram Histogram KDE KDE
(RS) (GP-ST-PS) (RS) (GP-ST-PS)

Distance 0.25 0.23 0.11 0.087

of enhancing the initial sample using the GP-ST-PS method
towards improving the accuracy of HVM yield estimation.

VI. CONCLUSION

Progressive sampling and inclusion of spatio-temporal fea-
tures constitute powerful enhancements to the popular Gaus-
sian process wafer-level spatial correlation modeling method.
As demonstrated using a comprehensive dataset from an in-
dustrial device, their combination leads to much more accurate
predictions of parametric measurements from an intelligently
assembled sample of die across the wafers of a lot, than
the original method. Furthermore, these enhanced models can
be used in a post-silicon validation environment to estimate
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Fig. 9: Yield estimation error for 39 measurements

TABLE II: Average error of HVM yield estimation

Histogram Histogram KDE KDE
(RS) (GP-ST-PS) (RS) (GP-ST-PS)

Yield error 1.16% 0.63% 0.61% 0.21%

the HVM yield of a device from a small number of early
silicon wafers. Indeed, as our experiments corroborate, the
correlation models constructed through the proposed methods
reflect better the overall statistics of HVM production than a
random sampling of die from the available early silicon wafers,
either in isolation or in conjunction with previously proposed
powerful synthetic population enhancement methods.
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