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Abstract—We introduce a Concurrent Hardware Trojan Detec-
tion (CHTD) methodology for wireless cryptographic integrated
circuits (ICs), based on continuous extraction of a side-channel
fingerprint and evaluation by a trained on-chip neural classifier.
While similar statistical side-channel fingerprinting methods have
been extensively studied in the past, they operate either before
an IC is deployed or, periodically, during idle times, after an
IC is deployed. Therefore, they can be easily evaded by a
hardware Trojan which remains dormant at all times except
during normal operation. In contrast, the proposed methodology
operates concurrently with the normal functionality of the IC and
is, therefore, much harder to evade. The proposed methodology is
demonstrated using a hybrid experimentation platform consisting
of (i) a custom-designed wireless cryptographic IC, infested with
hardware Trojans that are controllable to be either active or
dormant, (ii) a Spice-level simulation model of the fingerprint
extraction circuit, and (iii) a custom-designed programmable
analog neural network IC. Experimental results corroborate that
the proposed CHTD methodology effectively identifies hardware
Trojans when they are active, while not incurring any false
positives when they are absent or dormant.

I. INTRODUCTION

As semiconductor companies have largely become fabless,
with IC manufacturing outsourced to foundries located in low-
cost-of-labor parts of the globe, trustworthiness concerns about
chips fabricated through this model have ensued. Specifically,
ensuring that a manufactured IC has not been subjected to
malicious modifications (a.k.a hardware Trojans) capable of
undermining its operation, producing erroneous results, or
stealing sensitive information, has become a problem of con-
temporary interest [1], [2]. Accordingly, numerous hardware
Trojan detection methods have been recently proposed [3].
Most such methods are applicable during manufacturing test-
ing, prior to IC deployment. A few methods have also followed
the Built-in Self-Test (BIST) paradigm, seeking to periodically
examine a circuit during idle times after its deployment. All
of them, however, can be evaded by hardware Trojans which
are active only when an IC performs its normal operation and
dormant at all other times.

In an effort to overcome this limitation, herein we propose a
concurrent hardware Trojan detection (CHTD) method which
is applied continuously and in parallel with normal IC op-
eration. To this end, we borrow the fundamental operating
principles of concurrent error detection (CED), a well-studied
area for both analog and digital ICs [4], [5], which intends to
detect run-time errors instigated by transient, intermittent, or
aging-induced sources. CED methods are based on the concept

of invariance, which is a property that holds true if and only
if the circuit operates correctly. Circuitry is added to continu-
ously extract that property during normal operation and check
its compliance. The simplest example is Identity, which can
be extracted through a circuit duplicate and checked through
an equality comparator [6]. Other examples include the use of
parity and other error detecting codes along with appropriate
checkers [7]. While CHTD has a similar objective as CED,
namely detection of run-time deviation from trusted operation,
its task is harder since it aims at identifying the impact of
unknown and carefully hidden culprits rather than modeled
and well-understood phenomena. Therefore, assuming that
the adversary stages the hardware Trojan attack through an
untrusted foundry, we advocate that the invariant property
used for CHTD and the criterion employed to evaluate its
compliance should not be publicly known. In fact, to prevent
the adversary from reverse engineering them from the layout
file, their exact details should be withheld from the design
and should be introduced and individualized to each chip after
fabrication, through non-volatile memory (NVM).

II. CONCURRENT HARDWARE TROJAN DETECTION

The general idea of the proposed CHTD method, which is
based on a popular hardware Trojan detection method, namely
statistical side-channel fingerprinting [8]–[14], is shown in Fig.
1. Programmable circuitry is added for extracting and checking
an invariant property of the circuit monitored for hardware
Trojans alongside its normal operation. The checker, which
asserts the CHTD output when the invariance is violated, is
implemented as an on-chip one-class classifier. This classifier
is individually trained for each chip after fabrication, using
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Fig. 1: Concurrent hardware Trojan detection overview
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Fig. 2: Experimentation platform

trusted side-channel fingerprints obtained at test time, when the
targeted hardware Trojans are dormant. The trained classifier
can, then, be used to examine compliance of runtime observa-
tions of the invariant property, by comparing their footprint in
the side-channel fingerprinting space to the learned boundary.

The underlying premise of this method is that any distortion
imposed by an active hardware Trojan on the parametric
profile of an IC has to be systematic and above noise-level, in
order to be of utility to an adversary. However, by individually
training the decision boundary for each chip, the only margins
left for a hardware Trojan to exploit are measurement noise
and non-idealities of the invariance extraction and checking
circuitry and the training algorithm. Therefore, evading detec-
tion becomes particularly challenging.

The proposed CHTD method is introduced in the context of
wireless cryptographic ICs. Such circuits receive and transmit
information, typically encrypted, over public channels. Hence,
they constitute an appealing target because they offer a tangi-
ble hardware Trojan objective (i.e., to leak secret information)
and because no physical access to the actual chips is needed.

III. EXPERIMENTATION PLATFORM

The experimentation platform which we implemented and
used for this study is shown in Fig. 2. Our platform involves
Trojan-free and Trojan-infested versions of a wireless cryp-
tographic IC [15], along with external instrumentation for
measuring parameters from which an invariant property can
be constructed. These measurements are then used as stimuli
for performing Spice-level simulation of the circuit that im-
plements the invariant property. The results of the simulation
are then passed on to a programmable neural network IC,
which implements a classifier (checker) that decides whether
the invariant property is violated and drives the CHTD output.

Below, we first introduce the Trojan-free version of the
wireless cryptographic IC. Then, we describe the invariant
property which we use for the purpose of CHTD, along with
its hardware implementation. Next, we introduce the on-chip
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Fig. 3: Block diagram of wireless cryptographic IC

checker which is employed for examining compliance of the
invariant property. Lastly, we demonstrate that the CHTD
circuitry does not introduce false-positives, i.e. it correctly
remains silent in a hardware Trojan-free chip, even in the
presence of measurement noise.

A. Wireless Cryptographic IC

Our wireless cryptographic IC includes a digital and an ana-
log part. The digital part consists of an Advanced Encryption
Standard (AES) core and an output buffer. The AES core
receives plaintext in blocks of 128 bits, which is encrypted
using a 128-bit key that is stored on-chip. The width of
the encryption key determines the number of transformation
rounds to which the plaintext is subjected during encryption.
In this case, after 10 rounds of transformation, the plaintext
is encrypted into ciphertext, which is stored in the output
buffer in blocks of 128 bits, until it is transmitted. The analog
part is a small and easy to integrate Ultra-Wide-Band (UWB)
transmitter, which includes a baseband pulse generator and
an RF pulse generator, as shown in Fig. 3. In our design,
frequency-shift keying (FSK) is used to distinguish the polarity
of a bit, while on-off keying (OOK) is used to separate
adjacent bits. Bit values of ‘0’ and ‘1’ are separated and
converted to RZ (return-to-zero) format in the baseband pulse
generator. An example of a typical transmission of a ‘1’ and a
‘0’ is shown in Fig. 4. We note that transmission of signal ‘1’
has higher frequency and lower amplitude than transmission
of signal ‘0’. This wireless cryptographic IC was fabricated
in TSMC’s 0.35µm process, with each die including one
Trojan-free version and two Trojan-infested versions, which
we discuss further in Section IV.

B. Invariance

In order to identify an invariant property with a high proba-
bility of being violated by an active hardware Trojan, we point
out that, in our threat model, the only entity an attacker has
access to in a wireless cryptographic IC is transmission power.
Therefore, hardware Trojans will have to leak information by
manipulating the parametric profile (i.e. amplitude, frequency,
phase, or combinations thereof) of transmission power. To
evade detection, such manipulation needs to be hidden within
the margins allowed for process variations, therefore no extra
bits can be transmitted and no analog/RF specifications can
be violated. In other words, the transmitted signal will appear
perfectly legitimate, yet the knowledgeable adversary who
knows how it has been manipulated, will be able to extract
the leaked information.
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Fig. 4: Transmission power while sending a ‘1’ and a ‘0’

Manipulating transmission power, however, has a direct
impact on the current drawn by the UWB transmitter. Hence,
the invariant property that we chose to construct is based on
power supply current monitoring1. Specifically, we leverage
the fact that every time the UWB transmitter transmits a
ciphertext bit of ‘1’, it is expected to draw the same current,
IC1 , and every time it transmits a ciphertext bit of ‘0’, it
is expected to draw the same current, IC0 . Accordingly, we
continuously monitor the transient current drawn from the
power supply and convert it to voltage, which we then integrate
to obtain a value VC1

and VC0
when transmitting a ‘1’ and a

‘0’, respectively. Of course, since these are analog quantities,
integrated voltage equality across consecutive transmissions
of the same ciphertext bit value is subject to a small differ-
ence, which accounts for measurement noise and other non-
idealities. Based on the above, our invariant property seeks to
ensure such consistency, anticipating that a hardware Trojan
which systematically manipulates transmission power in order
to leak information will violate the invariance.

We now describe the details of our invariant property. Let
Vint(k,m) = m · VC1

+ (k −m) · VC0
denote the integrated

voltage required for transmitting k bits, of which m bits are ‘1’
and k−m bits are ‘0’. Let us also assume that we monitor the
transmitted ciphertext bit-stream and we integrate the voltage
for the first m ‘1s’ and the first k − m ‘0s’, resulting in a
cumulative integrated voltage VA(k,m). Note that more than k
bits may have been transmitted by the time we meet the above
conditions. We then store VA(k,m) and repeat the process for
the next m ‘1s’ and k−m ‘0s’, obtaining a second cumulative
integrated voltage reading VB(k,m). Accordingly, we expect
that the following invariance should hold true:

|VA(k,m)− VB(k,m)| = δnoise (1)

where δnoise reflects measurement noise and non-idealities.
Generalizing further, we can use different k and m values

for the two integrated voltage observations. Then, the invari-
ance becomes:

|VA(kA,mA)− VB(kB ,mB)| = δnoise+

|(mA −mB) · VC1
+ [(kA −mA)− (kB −mB)] · VC0

| (2)

where the second line of this equation is a constant.

1We note that, as is typical in mixed-signal designs, the power supplies of
the analog and digital portions of the chip are separate.

01100101011101011010111010000100...

Observation A 
  (kA=8 mA=3)

Observation B 
  (kB=9 mB=5)

Fig. 5: An example of observation formation

For example, consider the ciphertext bitstream shown in
Fig. 5, where kA = 8, mA = 3, kB = 9 and mB = 5.
The figure shows the bits during transmission of which the
voltage is integrated for each of the two observations, A
and B, respectively. Based on Equation 2, in a Trojan-free
circuit the absolute difference between observations VA(8, 3)
and VB(9, 5) should invariably be 1 · VC0

− 2 · VC1
+ δnoise.

A checker capable of evaluating this invariance can, then, be
used to detect run-time violations by active hardware Trojans.

Before we describe the circuitry implementing the above
invariant property and the checker, we make three important
observations:

1) Checking is performed non-intrusively, along with the
circuit operation, and is continuously repeated every
time the voltage integration conditions are satisfied two
consecutive times.

2) This is a self-referencing approach [10], which makes
it very difficult for a hardware Trojan to evade it, since
the available margin wherein it must hide its impact is
below the noise level; therefore, even the knowledgeable
adversary will be unable to robustly distinguish the
leaked information from noise.

3) The exact values of kA, kB , mA, mB , and δnoise
may be different for each chip and may be decided
and programmed after fabrication through non-volatile
memory; this uncertainty makes it very difficult for an
attacker to design a hardware Trojan which can evade
the invariant property checking.

C. Hardware Implementation

In Fig. 6, we show the circuitry that measures the inte-
grated voltages for the two observations, VA(kA,mA) and
VB(kB ,mB), which we need for evaluating the invariance.
The right part of the figure shows the analog components
which are needed for supply current sensing, conversion to
voltage, integration and storage of each observation. Details
regarding the Current Sensor and the Voltage Integrator com-
ponents are provided at the end of this subsection. The left
part of the figure shows the digital control logic, wherein a
2-bit counter directs the circuit through its three main states:

1) Collect Observation A: In its starting state of ‘00’,
the 2-bit counter instructs the two MUXes to select
mA and kA − mA as the values passed to the two
equality comparators. These comparators indicate when
the count of ‘1s’ has reached the target mA and when
the count of ‘0s’ has reached the target kA−mA. These
counts are kept by the two counters shown below the
equality comparators, which count upwards every time
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Fig. 6: Hardware implementation of invariant property for CHTD

the ciphertext bit currently transmitted by the UWB
transmitter is a ‘1’ or a ‘0’, respectively. Counting stops
when the corresponding target is reached and when
we are in the evaluation state. When either a ‘1’ or a
‘0’ in the ciphertext bit-stream is counted towards the
targets mA and kA−mA, respectively, the signal EN is
asserted to indicate that the current sensor and voltage
integrator should be active during the transmission of
this ciphertext bit, thereby contributing to observation
VA(kA,mA) which is stored in the load capacitor CLA

by enabling SELA. When both equality comparators
reach their target, the signal DONE is asserted. This
prompts the two counters to reset and pushes the 2-bit
counter to the next state, ‘01’.

2) Collect Observation B: In the ‘01’ state, the 2-bit
counter instructs the two MUXes to select mB and
kB − mB as the values passed to the two equality
comparators. Everything else operates exactly as in the
first state with two main differences: (i) when the signal
EN is asserted, the integrated voltage contributes to
observation VB(kB ,mB) which is stored in the load
capacitor CLB by enabling SELB , and (ii) counting
stops when mB ‘1s’ and kB −mB ‘0s’ have been en-
countered. When both equality comparators reach their
target, the signal DONE is asserted again, prompting
the two counters to reset and pushing the 2-bit counter
to the next state, ‘10’.

3) Evaluate Invariance: In the ‘10’ state, the EV AL
signal is asserted so both SELA and SELB are off.
In this way, the two observations VA(kA,mA) and
VB(kB ,mB) are passed on to the on-chip checker by
fully discharging the two load capacitors CLA and
CLB , wherein they are stored, respectively. This process
finishes in less than a clock cycle, so the 2-bit FSM is
immediately reset to ‘00’ in the next clock cycle, through
its synchronous CLEAR input.

Current Sensor: The schematic of the CMOS built-in current
sensor (BICS) is shown in Fig. 6. This design is aimed to radio

frequency applications [16] and it is used to monitor the power
supply current drawn by the UWB transmitter and convert it
to a voltage signal, Vsense, which is defined as:

Vsense = VDD −
(W/L)Mo

(W/L)Mn

· R
′
s

Rs
· IDD ·Ro (3)

The operating point of Vsense is controlled by the ratio of the
sizes of transistors Mo and Mn, the ratio of resistors R′s and
Rs, and resistance Ro. R′s and Rs should be very small so that
the supply voltage drop remains very small and does not affect
the normal operation of the UWB transmitter. In our design, a
10-Ohm metal wire resistor proved sufficient for sensing the
transient current.
Voltage Integrator: The output of the current sensor, Vsense,
is connected to the input of the voltage integrator, the
schematic of which is also shown in Fig. 6. When EN is
high, S1 turns on and S2 turns off, so the circuit enters the
voltage integration mode. When EN is low, S1 turns off and
S2 turns on, so the integrator enters the hold mode, in which
the integrated voltage is retained.
Load Capacitors: Fig. 6 also shows the two load capacitors,
CLA and CLB , which are used to store the integrated volt-
ages for the two observations, VA(kA,mA) and VB(kB ,mB),
respectively. In the first state, SELA is on and SELB is off,
therefore the voltage integrator charges CLA. In the second
state, SELA is off and SELB is on, therefore the voltage
integrator charges CLB . In both cases, the EV AL signal is
‘0’. In the third state, both SELA and SELB are turned off,
but EV AL is ‘1’ so the two observations are passed on to the
checker for evaluating the invariance, as we describe next.

D. Invariance Checker

Checking the invariance requires an on-chip circuit that
evaluates the two observations VA(kA,mA) and VB(kB ,mB)
for compliance to Equation 2. Evidently, this on-chip circuit
will have to be programmable after fabrication, in order to
account not only for the chosen values of kA, kB , mA,
and mB but also for the slight differences in VC0 and VC1
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among different chips, which are caused by manufacturing
process variations. To this end, we propose the use of an
on-chip 1-class neural classifier as our invariance checker.
Using trusted observation pairs obtained prior to deployment,
when a hardware Trojan is either absent or dormant, we
train this 1-class classifier to learn the boundary that encloses
Trojan-free pairs in the two dimensional space of observations.
This boundary is, then, used to evaluate the observation pairs
that are obtained during normal operation after the chip is
deployed, asserting the CHTD output when an observation
pair that falls outside this boundary is encountered.

In this work, we employ a custom-designed programmable
analog neural network experimentation platform [17], which
is shown in Fig. 7(a). This chip consists of a reconfigurable
30x20 array of synapses and neurons along with the needed
peripheral circuits. The synapse circuits employ two modes
of weight storage: (i) dynamic for fast updating of their
weights using capacitors during training and, (ii) nonvolatile,
for permanent storage of the learned weights using floating
gate transistors (FGTs) after the training is completed. The
synapse implements a multiplication between the differential
currents of the weights and input signals. The results of
these multiplications are summed and fed to the corresponding
neuron, which implements a sigmoid activation function. The
neuron in the last layer produces the output of the neural
network. There are also three peripheral circuits. The differ-
ential transconductors (GM) accept as input voltage-encoded
signals (i.e., the output of the voltage integrator) and perform a
voltage-to-differential current conversion which is needed for
the core of the circuit. The digitally-controlled current source
(DCCS) generates target currents (Iprog) for dynamic memory
programming. Finally, the current to voltage converter ITOV
is used for the reading of the internal currents.

The chip is fabricated in TSMC’s 0.35µm process and
supports implementation of various topologies which can learn
very complex boundaries. Among them, in this work we
experimented with the multilayer perceptron (MLP) learning
model, a 2-input instance of which is shown in Fig 7(b). The
MLP is a simple and easy to train feed-forward network;
it does not contain feedback loops and each layer receives
connections only from inputs or previous layers. The first layer
(also known as hidden) has 3 neurons which receives the two
observations at its inputs X1 and X2 along with a constant
bias X0 = 1. The second layer (also known as output) contains
a single neuron (for binary classification) which receives the
outputs Y H

1 , Y H
2 and Y H

3 of the first layer and produces the
network output Y O. The strength of connections is controlled
by synapses, which act as multipliers of input signals and
their local weight values. The sum of synaptic products is
passed through a nonlinear activation function of a neuron.
The number of input and output neurons depends on the
classification problem, while the number of hidden neurons
reflects the learning capacity of the model. In our case, a small
number of hidden neurons (i.e., 3) is sufficient for learning the
boundary that encloses the observations that comply with the
invariant property.

vin1 vin2 vin3
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(b)

S S S SN

S S S SN

SS SS N
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22

3

1

3 Hidden
Neurons

(a)

Fig. 7: (a) programmable analog neural network IC, (b) MLP

At this point, we should note that only a small fraction
of the resources available on this programmable analog neural
network IC need to be integrated on each die for CHTD. In our
experiment, learning the appropriate boundary for checking
the invariant property required 3 hidden neurons, the output
neuron, and a total of 13 synapses, as shown in Fig 7(b).
Along with the three transconductors (GM) needed for the two
inputs and the bias, these are the only components that need
to be integrated on-chip for CHTD. The peripheral circuits
required for programming the neural network do not have to
be on the same die, as no in-field reprogramming is needed.
Overall, the analog nature of the neural network makes for
a very flexible yet compact and low power implementation
of the checker. Finally, we point out that the synapse weights
learned during training are stored as an analog charge quantity
in a non-volatile fashion in the FGTs included in the synapses,
with the current platform supporting up to 10-bits of precision
for each weight.

E. Measurements

We now demonstrate that the proposed method for extract-
ing and checking the invariant property does not introduce
false positives in Trojan-free circuits. Using the hybrid ex-
perimentation platform of Fig. 2 and one of the fabricated
wireless cryptographic ICs we measured and recorded the
transient power supply current consumption waveforms while
transmitting a randomly generated ciphertext bit-stream. We
then used these waveforms to perform SPICE-level simulation
of the invariant property extraction circuity shown in Fig. 6,
with kA = 8, mA = 2, kB = 8, and mB = 4, and we used the
first 50 pairs of invariance observations VA(8, 2) and VB(8, 4)
to train the neural classifier described in the previous subsec-
tion. We then repeated this experiment in different locations
and under minor perturbations in operating conditions (i.e.,
Vdd and temperature), in order to account for the impact of
measurement noise. Thereby, we collected another 50 pairs
of invariance observations VA(8, 2) and VB(8, 4), which we
used as the validation set for our trained classifier. The results
are shown in Fig. 8, where the actual boundary learned by the
trained 1-class classifier successfully encloses both the training
and the validation set. This result remained valid in all cross-
validation iterations and for every combination of kA, kB , mA,
and mB that we experimented with. This corroborates that,
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even in the presence of measurement noise, the invariance
extraction circuit and the trained classifier operate correctly
and do not inadvertently assert the CHTD output for a Trojan-
free circuit (i.e., no false positives).

IV. CHTD EFFECTIVENESS EVALUATION

In order to evaluate effectiveness of our CHTD method in
detecting Trojans, we use two Trojan-infested versions of the
wireless cryptographic IC shown in Fig. 3, integrated on the
same die as the Trojan-free version [15]. The two Trojan-
infested circuits leak the AES encryption key, one bit at a
time, by using its value to slightly modulate the amplitude
or the frequency of wireless transmission power, as shown in
Figs. 9 (a) and (b), respectively. Specifically, when the leaked
key bit is ‘1’, the amplitude/frequency are left unaltered, while
when the leaked key bit is ‘0’, they are slightly increased.
This increase, which is 8mW or 14mW for the first Trojan
and 0.128GHz or 0.039GHz for the second Trojan, when
transmitting a ciphertext bit of ‘1’ or ‘0’, respectively, is
within the specification margins allowed for process variations;
hence the contaminated waveforms continue to pass all circuit
specifications. While the unsuspecting user may attribute the
incurred transmission power variance to noise, the knowl-
edgeable adversary who knows how the leaked information
is systematically encoded on this variance will be able to
retrieve it. An external control allows us to set each of the
two hardware Trojans to dormant or active state, thereby
facilitating our CHTD study.

For the purpose of our experiment, we used a randomly gen-
erated 128-bit AES key and a randomly generated plaintext,
which was encrypted into a ciphertext by the AES module.
For each of the two hardware Trojan-infested circuits, we first
put the Trojan in the dormant state and recorded the first
100 observation pairs VA(8, 2) and VB(8, 4) produced by the
invariance extraction circuit, which required transmission of
2293 bits of ciphertext. We then used these observations to
train the one-class neural network. Finally, we repeated the
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same experiment, this time with the hardware Trojan acti-
vated. Once again, we recorded the first 100 observation pairs
VA(8, 2) and VB(8, 4) produced by the invariance extraction
circuit and we evaluated them by the trained classifier. The
results for the two Trojan-infested circuits are shown in Figs.
10 and 11, respectively.

As can be seen, in both cases, all 100 invariance obser-
vations are enclosed within the learned boundary when the
hardware Trojan is dormant. When it is active, 94 of the
100 invariance observations fall outside the boundary and are
immediately caught by the trained classifier. However, there
exist 6 instances where, in both cases, the footprint of the
invariance observation is inside the boundary, even though the
hardware Trojan is active. Upon further analysis, we observed
that, in all 6 of these cases, the following property was true:
the key bits leaked when taking observation VA and the key
bits leaked when taking observation VB had the same number
of ‘0s’. Indeed, these two hardware Trojans slightly increase
the integrated voltage of our invariance observations by a small
but constant amount when the leaked key bit is a ‘0’ and have
no impact on it when the leaked key bit is ‘1’; hence, the
above property masks their impact because the left hand side
of Equation 2 remains the same.

Fortunately, this masking is only temporary. While the
probability that the key bits leaked during observation VA
and observation VB have the same number of ‘0s’ is non-
negligible, the probability that this will be the case every
time the invariance is checked is infinitesimal. In fact, in our
experiment, the next invariance check following each of the
six misclassified instances failed the invariance compliance
test. In other words, the hardware Trojan is still detected for
these cases, but with a latency of one invariance check, or
approximately 23 bits of ciphertext transmission in our case.

V. DISCUSSION

The following points elaborate on a few key aspects off the
proposed CHTD method, in order to facilitate a comprehensive
understanding of its capabilities and limitations.
• Overhead: Our current experimentation platform shown

in Fig. 2 is a hybrid involving two chips and Spice-
level simulation using a post-layout extracted model of
the invariance extraction circuitry. Therefore, in order
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Fig. 10: CHTD results for amplitude-based hardware Trojan
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Fig. 11: CHTD results for frequency-based hardware Trojan

to obtain an accurate overhead approximation, we first
measured the power of the wireless cryptographic IC
and the neural network chip, while transmitting 100
blocks of 128-bits and checking the invariance. We then
added the power consumption of the invariance extraction
circuitry, as reported by Spice simulation, for the same
transmission. The results place the power overhead of
the CHTD circuitry at approximately 6%. Area overhead
was computed similarly and is approximately 9% of the
baseline design. Given the importance of ensuring run-
time trustworthiness of ICs deployed in sensitive appli-
cations, we feel that such single-digit percentile overhead
is a worthy investment.

• Threat Model: The proposed solution seeks to detect
hardware Trojans which are activated only in the field of
operation. As such, it should not be viewed as a replace-
ment of design-time or pre-deployment hardware Trojan
detection methods but rather as complementary to them.
We also note that the proposed solution is independent
of where, when and how the hardware Trojan is im-
planted. Indeed, since this is a self-referencing approach,

it does not require availability of a “golden” model
but, rather, relies on run-time inconsistencies to detect
hardware Trojan activation. Finally, we emphasize that
the proposed method is particularly geared towards covert
attacks which are hidden in the parametric space and
which do not alter functionality. Hardware Trojans with
overt payload, such as using the legitimate public channel
to openly transmit plaintext or ciphertext encrypted with
an attacker-modified key are easily detectable through
functional test approaches in a supervised setting.

• Trojan-Agnostic Solution: We note that our one-class
classifier is trained using only measurements from Trojan-
dormant circuits and that the proposed CHTD method
does not require any knowledge of the hardware Trojan
operating principles. The only underlying assumption is
that a hardware Trojan in wireless cryptographic ICs will
have to distort transmission power, which is the only
parameter an attacker has access to, and by extension,
the power supply current profile of the transmitter. Ac-
cordingly, the chosen invariant property, which reflects
this profile, should be able to detect any hardware Trojan
that distorts transmission power, independent of how it
encodes the leaked information.

• Addressing Single-Point-of-Failure: Similar to a stuck-
at-0 fault at the CED output, which will prevent a CED
method from reporting any errors, a hardware Trojan
attack which disables CHTD when the Trojan is activated
would counteract its operation. A possible solution to
this single-point-of-failure limitation would require to
intentionally make the CHTD circuit fail in a supervised
setting, through means that the attacker has no way
of detecting. For example, one could intentionally vary
Vdd beyond the expected acceptable range, forcing the
invariant property to be violated and, hence, expecting
CHTD to indicate an error. A suppressed CHTD would
fail to do so, thereby exposing the attack. A similar
approach can be used during testing of the CHTD circuit,
in order to expose manufacturing defects.

VI. COMPARISON TO RELATED WORK

Only a handful of methods exist in the literature for detect-
ing hardware Trojans in parallel with the normal operation of
an IC. In [18], the authors propose compilation of functionally
equivalent variants of a process and dynamic comparison of
their execution across different cores. Besides the incurred
performance overhead, this technique is limited to multi-
core systems and requires support from the software/OS. The
method proposed in [19] utilizes thermal sensors to detect
run-time deviations from the trusted power/thermal profile,
which could be caused by Trojan activation. However, a small,
sophisticated Trojan design which consumes a small amount
of current and is only active for small amounts of time,
may evade detection since the thermal profile is a slowly
changing parameter. Closer to the work proposed herein, a
current sensor and a comparator are used in [20] and [21]
to monitor the transient power supply current and compare it
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to a reference value, in order to distinguish between Trojan-
free and Trojan-infested circuits. A potential problem with the
first of these two methods is that the comparison threshold
is the same and is statically defined for all chips, allowing
enough margin to account for process variations. Therefore,
the attacker might be able to reverse-engineer the reference
value used by the comparator and design the hardware Trojan
so that its impact remains within the comparison threshold.
The second of these methods individualizes the reference per
chip and sets it after manufacturing, through NVM, thereby
avoiding the above problem. However, this method is only
applied on a Linear Feedback Shift Register (LFSR) which
performs a very specific function (i.e., pseudo-random number
generation) and has no inputs during its normal functionality.
Generalizing this method to arbitrary circuits requires adapta-
tion of the threshold to the inputs of a circuit, which is very
challenging, if at all possible, to do with a simple comparator.
Finally, we should note that all of these methods target digital
circuits. To our knowledge, the method proposed herein is the
first concurrent hardware Trojan detection approach in mixed-
signal/analog/RF ICs. The closest method that we are aware
of in this domain is [22], which is not concurrent but rather
applied periodically during idle times, after IC deployment.

VII. CONCLUSIONS

Detection of hardware Trojans which are active only when
an IC is performing its normal operation requires a runtime
monitoring approach. To this end, the method proposed herein
extracts invariant side-channel fingerprints of a circuit concur-
rently with its normal operation and statistically evaluates their
compliance through a trained on-chip classifier. As demon-
strated experimentally using a wireless cryptographic IC and
an analog neural network experimentation IC, the proposed
CHTD method correctly remains silent when hardware Trojans
are absent or dormant, yet effectively alerts of the presence of
hardware Trojans when they are active. Accordingly, our next-
step plans involve monolithic integration of all components
and demonstration of this CHTD method on a single-chip, as
well as its application and evaluation using other ICs.
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