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Abstract—We propose a methodology for dynamically selecting
an optimal probe-test flow which reduces test cost without
jeopardizing test quality. The granularity of this decision is at
the wafer-level and is made before the wafer reaches the probe
station, based on an e-test signature which reflects how process
variations have affected this particular wafer. The proposed
method offers flexibility by optimizing test flow per process
signature and its implementation is simple and compatible with
most commonly used Automatic Test Equipment. Furthermore,
unlike static test elimination approaches, whose agility is limited
by the relative importance of the permanently dropped tests,
the proposed method is capable of exploring test cost reduction
solutions which achieve very low test escape rates. Decisions are
made by an intelligent system which maps every point in the
e-test signature space to the most appropriate probe-test flow.
Training of the system seeks to optimize the test flow of each
process signature in order to maximize test cost reduction for
a given target of test escapes, thereby enabling exploration of
the trade-off between test cost reduction and test quality. The
proposed method is demonstrated on an industrial dataset of a
million devices from a 65nm Texas Instruments RF transceiver.

I. INTRODUCTION

Continuous pressure for superior performance, along with
intensified process variations and non-idealities in the latest
semiconductor manufacturing technology nodes, have resulted
in stringent limitations in the cost that can be devoted to
testing each die, in order to ensure that it functions correctly
before it is shipped to a customer. Especially in the analog/RF
domain, where industrial practice still relies largely on lengthy
test procedures and expensive instrumentation to explicitly
measure the performances of a device and compare them to
its specifications, test cost reduction has become a crucial
requirement for maintaining profitability. Among the various
directions which have been explored towards reducing test
cost, significant effort has been invested in challenging the
practice of subjecting every die in production to the exact
same set of tests. Generally termed “adaptive test”, methods
in this category seek to customize the test process to the needs
of a target die, wafer, or lot, anticipating that the benefits from
a reduced test flow will outweigh the effort and expenditure
required for such customization.

A widely used test cost reduction technique is to customize
the list of tests according to their contributions to the overall
test quality [1]–[3]. Specifically, the effectiveness of each
test is monitored and the ones with little contribution to
the overall test effectiveness are dropped from the test list.
Such decisions are usually static and are easy to implement

on the ATE by exclusion of the relevant portion of the test
program. However, these methods have limited capability to
support solutions which offer savings yet maintain very low
test escapes; essentially, they are bound by the percentage of
faulty die that the dropped tests uniquely detect. To enhance
this idea, several methods have been proposed that leverage
statistical correlation between the dropped and retained tests
and predict the outcome of the former from the latter [2], [4]–
[6]. While additional ATE support or external resources are
required to run the statistical models on-the-fly during test,
these methods have demonstrated marked improvement in test
quality over static test elimination technique. Still, the decision
models remain static or only infrequently retrained to account
for major events which can change the statistical profile of the
production.

In order to address this issue, dynamic test adaptation is
introduced in [7] to re-optimize the test list on a per-lot basis,
using data collected from the first few wafers, on which the
complete flow is applied. To take adaptation a step further,
authors in [8] proposed a method that identifies, through sam-
pling and clustering, wafer regions which have been affected
similarly by process variations, and customizes the test list
and test order to each such region. While this method was
demonstrated in the context of final test, it could be readily
applied at probe-test as well. However, this technique would
complicate test floor logistics, as it would require two passes
(for sampling and testing) and ATE support for applying
different test programs to each region of the wafer. In fact,
any solution that needs adaptation at a finer granularity than
the wafer-level would require such support, which is often
missing or cumbersome to implement in ATE platforms.

In [9], we proposed a new methodology for establishing
an adaptive test flow which is deployable with minimum test
operation support. For each wafer, this approach provides a
decision as to whether to test it through the complete probe-
test flow or a reduced test flow, in which some of the test
groups are eliminated. This decision is made at an early stage,
before the wafer reaches the probe station, driven through e-
test1 measurements.

Figure 1 (a) depicts this adaptive method: a statistically
trained entity examines the e-test data of a wafer and, de-
pending on the extracted signature, it selects the appropriate

1By the term e-test we refer to electrical measurements, which are typically
performed on a few select locations across the wafer, using process control
monitors (PCMs) included on the wafer scribe lines.
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(a) Adaptive method with two test flows [9]
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(b) Adaptive test flow selection per process signature (this work)

Fig. 1: Wafer-level probe-test flow selection

test flow code. The test flow code is a vector, wherein each
test group corresponds to a bit, with value ‘1’ signifying
inclusion and value ‘0’ signifying exclusion of that test group.
In the work described in [9], one of the choices of test flow
code is the all ‘1’ vector while the other choice is a single
carefully selected subset of test groups which maximizes test
cost reduction for a target test escape rate.

However, a single reduced test flow (i.e., subset of all test
groups) which is optimized across all process signatures is a
restrictive and sub-optimal choice. Indeed, depending on how
a wafer has been impacted by process variations, a different
reduced test flow may offer the best option. Therefore, in this
work we seek to investigate the utility of test flow optimization
per process signature, towards achieving higher test cost
reduction. To accomplish this, an optimization algorithm is
employed to statistically select the best test flow for each
signature such that test cost reduction is maximized while
the required test quality is achieved. Figure 1 (b) depicts
the proposed approach. Similar to [9], the decision is made
before the wafer reaches the probe station and is driven by
e-test measurements. The trained test flow selection engine
processes the e-test measurements of a wafer, extracts its
process signature, and accordingly selects the most appropriate
test flow for that signature during probe testing of this wafer.
We note that the complete test flow remains one of the possible
choices, especially for outlier wafers, i.e., those whose e-test
signatures have not been encountered in the past.

Accordingly, in this work we seek to develop a methodol-
ogy which optimizes probe-test flow selection based on the
following principles, in order to be readily deployable with
minimal test operations support:

• The granularity at which test elimination decisions are
made is at the test group level. The underlying assumption
here is that the bulk of the cost incurred by a test group
is related to switching into the appropriate test configura-
tion. Accordingly, the incremental savings of eliminating

a few measurements within a group are negligible.
• The granularity of the adaptation decision is at the wafer

level, i.e., all die on a wafer are subjected to the same
test flow, either the complete set of test groups or a subset
thereof.

• Test has to be performed in one pass. In other words,
solutions which first apply a reduced test flow and subse-
quently apply selectively more test items to die for which
the decision confidence is low, such as the two-tier test
method in [10], are not within scope.

• The decision has to be driven by a signature which
reflects how process variations have affected a particular
wafer. This is justified by historical evidence document-
ing that the necessity of a test group is strongly correlated
with the operating point of the fabrication process.

• The decision has to be available prior to insertion of the
wafer in the probe station and cannot be informed by
measurements taken at probe. Inevitably, this leaves e-
test as the only source available for capturing the impact
of process variations on a particular wafer.

• The Automatic Test Equipment (ATE) supports multiple
test flows, where test groups can be dynamically included
or excluded based on an input provided before test
commences for a wafer.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss the steps required for evaluating potential
reduced test flows and for extracting a wafer-level signature
from e-test data. Then, in Section III, we describe the details of
the proposed adaptive test flow method. Experimental results
demonstrating the effectiveness of the proposed method on
a large industrial dataset are presented in Section IV and
conclusions are drawn in Section V.

II. PREPROCESSING

Before we address the problem of deciding an appropriate
test flow for a wafer, we discuss the initial elements which are
required prior to such a decision. These two elements are: (i)
identifying an appropriate subset of test groups which could
potentially be applied to a wafer, and (ii) crafting a wafer
signature from its e-test measurement vector. In the following
sections, we provide details of these two components.

A. Reduced Test Flow Selection

A reduced test flow is a subset of the complete flow, wherein
one or more test groups are eliminated. The first challenge
that naturally arises is the selection of the test groups which
should be omitted in a reduced flow, such that the attained
test cost reduction does not compromise test quality beyond
a target level of acceptable test escapes. Since the granularity
of elimination is at the test group rather than at the test item
level, it may be possible to exhaustively search the space of
solutions. For example, in our experiments we dealt with a set
of 10 test groups, thus exhaustively searching in the power-set
of 210 subsets of the complete test flow to find the optimum
subset was feasible and chosen due to its simplicity. In case
of a large number of test groups, however, this approach
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will not scale. In this case, heuristic search methods can be
employed for effectively searching this space. The use of
Genetic Algorithms has been popular in the literature and very
successful when applied to this task [6], hence we can readily
adopt it when exhaustive consideration is infeasible.

For each reduced flow, j, we consider the associated cost
and the number of test escapes when this reduced flow is
applied to all wafers in our training set, and we assign a fitness
value defined as:

indexj =
tA − tBj

tA
∗ pctgBj (1)

where tBj
denotes the test cost of the j-th reduced flow,

tA denotes test cost of the complete test flow and pctgBj

represents the percentage of wafers that can be tested using
the j-th reduced test flow, while keeping the total number of
test escapes remains below a target DPPM level.

B. Wafer Signature Extraction from E-tests

E-test data contain many types of parameters, mainly fo-
cusing on simple physical/electrical characteristics reflecting
the position of a wafer in the process space. For some of
these measurements there is no physical connection or reason
why they should be correlated with probe-test outcomes or
the necessity thereof. Accordingly, to avoid spurious autocor-
relations and to gain better insight from our e-test data, prior
to crafting a wafer signature based on the e-tests we apply
a dimensionality reduction algorithm to transform the data
onto a lower count of dimensions. Specifically, we use the t-
Distributed Stochastic Neighbor Embedding (t-SNE) technique
[11] which is the state-of-the-art non-linear transformation
approach and which is widely used in many applications
for unsupervised dimensionality reduction. In general, t-SNE
embeds wafers with similar signatures close to each other on
a 2-dimensional map.

In Figure 2, we provide an example where we project a
number of wafers to a 2-dimensional space after applying the
t-SNE algorithm. The various markers used to represent each
point indicate different test escape rates2 when a randomly
selected reduced test flow is applied to all wafers. Wafers with
the same marker exhibit a similar level of test escapes. Two
key observations can be made using this figure:

1) Projection of wafers on the e-test space is discontinuous,
with most wafers being part of small clusters in this 2-
dimensional space. This reflects the fact that the process
jumps between a finite number of points.

2) Wafers within each cluster, i.e., with similar e-test sig-
nature, do not necessarily exhibit the same test escape
rate. This implies that the correlation between device
specifications and e-test parameters is complex and there
is no simple boundary to separate wafers with high test
escapes from wafers with low or zero test escapes. A
more elaborate approach is, consequently, required for
mapping e-test signatures to the appropriate test flow.

2The exact values of B-G are not important for this example.

Fig. 2: Projection of e-test data onto two dimensions using the
t-SNE algorithm

III. TEST FLOW OPTIMIZATION

In Section II, we described the process of generating all
potential reduced test flows as well as extracting a process
signature from the e-test data of a wafer. Now, our objective
is to assign the most appropriate reduced test flow to each
process signature, such that we maximize test cost reduction
while retaining the test escape rate below a target Defective
Parts Per Million (DPPM) level.

A. Bi-Flow Method

This technique was proposed in [9] as an adaptive solution
to reduce probe-test cost during wafer-level testing. In this
approach, the objective was to subject a subset of wafers to
a reduced probe-test flow in which some test groups were
eliminated from the complete test flow. In summary, this
approach comprises the following steps:

• First, the e-test space of Figure 2 is partitioned into k
clusters using the k-means clustering method.

• Then, a reduced test flow is selected from the list of all
possible reduced flows which are generated as described
in Section II-A. Subsequently, all the training wafers in
every cluster are tested by the selected reduced test flow
and the total test escapes of the cluster, tei, which is
the sum of test escapes of all wafers in the cluster, is
computed.

• Finally, the last step is to decide for each cluster of
wafers (i.e., based on their process signatures) whether
to perform the complete or the reduced test flow, such
that the test cost reduction is maximized while the total
test escape rate is kept below a given DPPM level. To
solve this optimization problem, a binary Integer Linear
Program (ILP) is formulated. The ILP solution assigns a
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label to each cluster, indicating the appropriate probe-test
flow for the wafers in that cluster.

• The above-mentioned procedure is repeated for all possi-
ble reduced test flows and the best candidate is selected,
based on the criterion of maximizing test cost reduction
while meeting the required test quality.

For a new wafer, the distance of its e-test signature from
the centers of the clusters is first computed and the wafer is
assigned to the nearest cluster. If the decision for this cluster is
to apply the reduced test flow, the wafer will undergo only the
preselected subset of test groups, otherwise it will be tested by
the complete test flow. For the sake of simplicity, in the rest
of the paper we refer to this approach as the Bi-Flow method.

B. Limits of The Bi-Flow Method

This method is simple and can be implemented easily. It
is also very effective in finding the best reduced test flow
and assigning either complete or reduced test flow to each
cluster. However, its major limitation is the fact that the
same reduced test flow is chosen for all process signatures
(clusters) that will not undergo complete test. This simplifies
test operations, as only two test flows are maintained, but it
is also sub-optimal, since different clusters exhibit dissimilar
failure patterns when a test group is removed from the test
flow. Indeed, choosing a different test flow for each cluster
holds promise for significantly higher test cost reduction.

To demonstrate this limitation, we select three clusters from
Figure 2 and we compute the test escape rate of each cluster
when a test group is removed from the test flow. Figure 3(a)
demonstrates the test escape rate due to elimination of test
groups 1-4 for these three clusters. Clusters in red color and
enclosed in a red boundary reflect zero test escapes while gray
color represents clusters with a non-zero test escape rate. In
the table of Figure 3 (b), the test flow code of each cluster is
represented using a binary vector where inclusion/exclusion of
a test group is indicated by value 1/0 respectively. The third
column of the table shows the two test flow codes which are
generated by the Bi-Flow method [9], while the forth column
contains the optimum test flow code if chosen individually per
each cluster. As may be observed, the impact of skipping a test
group is not identical for all clusters. The figure corroborates
our conjecture that each cluster requires individualized test
flow optimization. Therefore, a dynamic approach is required
to generate the most appropriate probe-test flow per process
signature, in order to maximize test cost reduction. In the
next section, we introduce a methodology which addresses
this limitation.

C. Dynamic Test Flow Generation

We now proceed to elaborate on how to optimize the test
flow per cluster. Our methodology consists of two steps: (i)
finding the best reduced test flow for each cluster individually
for any target DPPM level, and (ii) determining the maximum
test escape rate of each cluster through an optimization algo-
rithm. Below we provide details of these two steps.

Test escapes for test group 1 Test escapes for test group 2

Test escapes for test group 3 Test escapes for test group 4

(a) Test escape rate for selected clusters when test groups 1-4 were
individually removed from the test flow

Cluster
symbol

Cluster 
id

Bi-Flow approach
probe-test flow code
{𝑇𝐺1, 𝑇𝐺2, 𝑇𝐺3, 𝑇𝐺4}

This work
probe-test flow code
{𝑇𝐺1, 𝑇𝐺2, 𝑇𝐺3, 𝑇𝐺4}

1 [𝟏 𝟏 𝟎 𝟏] [𝟏 𝟏 𝟎 𝟎]

2 [𝟏 𝟏 𝟎 𝟏] [𝟏 𝟎 𝟎 𝟏]

3 [𝟏 𝟏 𝟏 𝟏] [𝟎 𝟏 𝟏 𝟏]

(b) Comparison of probe-test flow code corresponding to part (a)
generated by technique [9] vs. optimum probe-test code for each
cluster

Fig. 3: Limitations of Bi-Flow approach

1) Test Flow Generation per Cluster: Let us consider clus-
ter Ci, which includes a set of wafers, and let us assume that
we are interested in finding the best reduced test flow among
all n candidates which are generated using exhaustive search.
Let TEi = [te1, · · · , ten] and TTRi = [ttr1, · · · , ttrn]
denote the test escape rate and test cost reduction vectors of
the i-th cluster, where tej and ttrj denote the number of test
escapes and the amount of test cost reduction when all wafers
in this cluster are tested by the j-th reduced test flow. For
any DPPM level in the range [0, DPPMt], where DPPMt

is the target DPPM level, a reduced test flow is selected such
that its test escape rate for cluster Ci is lower than the DPPM
level, while maximizing the test cost reduction. At the end
of this step, each cluster has associated with it a table with
multiple rows and three columns. Each row corresponds to a
specific DPPM level and the three columns correspond to the
test escape rate, test cost reduction and index of selected test
flow, respectively.

2) Optimization Algorithm: The second part of our pro-
posed method is an optimization algorithm, which selects
the best probe-test flow for all k clusters while meeting
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the required test quality. Let TE = [TE1, · · · ,TEk]
T and

TTR = [TTR1, · · · ,TTRk]
T denote the test escape rate

and test cost reduction matrices, where TEi and TTRi

represent the test escape rate and test cost reduction vectors
for the i-th cluster, and teij denotes the test escape rate for
the i-th cluster for the j-th DPPM level. Our objective is to
distribute the target DPPM level among k clusters so as to
maximize test cost reduction. Looked at from a different angle,
we need to determine the maximum acceptable test escape
rate for each cluster. To do so, we formulate this problem as
an integer linear program (ILP). An ILP consists of a set of
variables, which can only assume integer values, a set of linear
constraints on these variables, and a cost function which is to
be maximized or minimized. In our problem, our constraint is
on the total number of test escapes, and our cost function is to
maximize test cost reduction. Our ILP is actually a binary (0-
1) version, where the value of each integer variable can only
be either 0 or 1. Specifically, in our ILP, the variable αij = 1
is used to indicate that the maximum acceptable test escapes
for i-th cluster is teij , and therefore the test flow with index
j is selected for this cluster. Then, our binary ILP is defined
as follows:

Maximize
k∑

i=1

m∑
j=1

αij .ttrij

subject to
k∑

i=1

m∑
j=1

αij .teij ≤ DPPMt

m∑
j=1

αij = 1

αij ∈ {0, 1}, i = 1, . . . , k and j = 1, . . . , DPPMt

(2)

The constraint
m∑
j=1

αij = 1 is used to select only one test flow

for each cluster.

An additional provision is also incorporated in the proposed
methodology, in order to adapt to shifts in the process,
which may result in previously unseen wafer signatures in
the transformed e-test space. Specifically, as shown in Figure
4, for clusters where the ILP selects any probe-test flow other
than complete test flow, we establish a boundary around the
e-test signatures that belong to the cluster. For a new wafer,
the distance of its e-test signature from the centers of the
clusters is first computed, and the wafer is assigned to the
nearest cluster. If the decision for this cluster is to apply
any reduced test flow, we perform one more check: if its
signature is inside the boundary of that cluster, we follow
the recommendation. Otherwise, we assume that despite being
nearest to this cluster, the wafer is sufficiently different and we
send it to the complete test flow. Based on this information,
we periodically enhance the set of clusters and rerun the
optimization algorithm to better track the process.

Wafer in the cluster

New wafer (similar signature)

New wafer (dissimilar signature)

Fig. 4: Tracking process shifts: signatures of wafers belonging
to cluster are enclosed by a boundary. New cluster members
with signatures within the boundary are considered equivalent,
and new members with signatures outside the boundary are
considered outliers

IV. EXPERIMENTAL RESULTS

In order to experimentally evaluate the effectiveness of
the proposed methodology, we use actual production data
from a 65nm analog/RF transceiver currently in high volume
manufacturing (HVM) production by Texas Instruments3. The
dataset comes from 400 wafers, each of which contains
approximately 2500 die. E-test is performed on 9 sites across
the wafers, with 250 measurements obtained from each site.
On each die, 380 parametric probe-test measurements are
obtained, organized in 10 groups. The percentage by which
each group contributes to the total test cost is also provided.
The objective of our method is to find a subset of the 10 test
groups as an optimized reduced test flow for each process
signature and to train an intelligent system which will use the
e-test measurements to select which test flow a wafer should
undergo. In our experiments, we use 5-fold cross validation.
Specifically, our data set is divided into 5 folds, where 4 folds
are used for training and the remaining fold for validation.
The procedure is repeated such that all folds are left out once
as a validation set and, in the end, we report the average test
escapes and test cost reduction across the five iterations. Using
this dataset, our experiments seek to:

• Confirm that static test group elimination does not have
the agility to support reduced test flows while maintaining
a test escape rate in the very low DPPM region, therefore
adaptivity is required to provide per wafer decision.

• Demonstrate that the effectiveness of the Bi-Flow
method, which provides per wafer decision between a
complete and a reduced test flow, is rather limited, thus a
dynamic test flow generation with wafer-level granularity
is required to optimize the test flow per process signature.

• Demonstrate that dynamic test flow generation per wafer
based on e-test data can yield significant test cost reduc-
tion at realistic low DPPM levels.

A. Limits of Static Test Elimination

Figure 5 reflects the number of defective die per million
which are uniquely detected by each of the 10 test groups. In

3Details regarding the device and exact test escape numbers and DPPM
levels may not be released due to an NDA under which this data has been
provided to us.
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Fig. 5: Defective die per million which would escape detection
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from the probe-test flow
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other words, this is the number of devices which would escape
detection if each of these 10 test groups were to be statically
eliminated from the probe-test flow. While we cannot reveal
the exact number for DPPMmin, its order of magnitude is
in the several tens. Accordingly, static test elimination cannot
be used for test cost reduction when test quality expectations
are set below this level. Therefore, exploration of the test cost
vs. test quality trade-off in the sub-DPPMmin realm requires
adaptive test flow selection per wafer.

Figure 6 demonstrates the test cost vs. test quality trade-
off for various DPPM levels. The two curves on this graph
reflect solutions achievable by the static test elimination and
Bi-Flow approach, which selects between the complete test
flow and a single reduced test flow [9], respectively. Evidently,
the Bi-Flow method outperforms static test elimination across
the board. More importantly, it allows higher fidelity in the
selection of a desirable point on this trade-off, starting from
solutions with very low DPPM and small test cost reduction,
and progressing at very fine-grained steps towards higher test
cost reduction with higher test escape rates.
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Fig. 7: Achieved test cost reduction using the Bi-Flow method
vs. maximum possible test cost reduction for various DPPM
levels

B. Limits of Bi-Flow Technique

In this section, we examine the effectiveness of the Bi-
Flow approach, which subjects a wafer either to a complete
or a reduced test flow. To do so, in Figure 7, we compare
its test cost reduction to the upper bound achievable when an
oracle that can perfectly select the appropriate test flow (i.e.,
the complete or the single reduced test flow) for each wafer is
used, for various target DPPM levels. As may be seen from the
gap between the two curves, this approach leaves significant
potential for test cost reduction on the table. To gain better
insight, Figure 8 depicts the outcome of the Bi-Flow approach
in which the complete test flow assigned to a set of clusters
(i.e., clusters with circle marker in red) and a reduced flow
is selected for the remaining clusters, when the target test
escape rate is set to DPPMmin. The main disadvantage of
this approach is the fact that the reduced test flow is generated
collectively for all clusters rather than individually per cluster,
based on the process signatures of wafers in a cluster.

To demonstrate the unique characteristics and test flow
needs of each cluster, in Figure 8 we select clusters C1−C4.
Then, we compute the test escapes of each cluster when a
test group is eliminated from the test flow (either complete
or reduced test flow) which is assigned to that cluster. Figure
9 shows the number of test escapes for these clusters when
test groups 1, 2, 8 and 10 were removed from the test flow
individually. As it can be seen, the test escape profile of
each cluster varies drastically. More specifically, based on this
information, wafers in cluster C1 can skip test group 1, while
those in cluster C2 require test groups 1 and 2, yet test groups 8
and 10 can be eliminated from their test flow. This experiment
confirms that a dynamically optimized test flow generation per
cluster is needed to maximize test cost reduction for any target
DPPM level.

C. Dynamic Test Flow Optimization

Figure 10 depicts the outcome of the proposed dynamic test
flow optimization technique when the target test escape rate
is set to DPPMmin. In this graph, clusters with identical
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of the cluster

probe-test flow are represented by the same color; for example,
clusters in blue, such as C4, require the complete test flow. On
the bottom right of this graph, we present the optimized test
flow code for clusters C1 − C4. In comparison to Figure 8,
which shows the outcome of the Bi-Flow method for the same
target DPPM level, the new method provides more flexibility
for test cost savings.

The ability of the proposed dynamic test flow generation
method to explore the trade-off between test cost reduction
and test quality, even in the region of very low DPPM, is
demonstrated in Figure 11. The three curves on this graph
reflect solutions achievable by static test elimination (blue
curve), the Bi-Flow method (gray curve), and the proposed
dynamic test flow generation (dotted black line) for various
target DPPM levels. It is evident that the proposed dynamic
test flow optimization approach significantly outperforms the
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Fig. 10: Final assignment of the optimized probe-test flow
code for each cluster (process signature)
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Fig. 11: Test cost reduction vs. test accuracy of three ap-
proaches for various DPPM levels

other two approaches for any DPPM level. This is expected,
since our dynamic approach successfully generates an opti-
mized probe-test flow for each process signature.

Finally, to gain better insight as to how well our proposed
method works, in Figure 12 we compare its test cost reduction
to the upper bound achievable when an oracle is used, for var-
ious target DPPM levels. It should be noted that the maximum
achievable test cost reduction, which is demonstrated in Figure
7 by the red curve, is the upper bound when we are allowed
to have only two test flows (complete or reduced). However,
in the new scenario where we can handle several test flows,
the upper bound would be achieved by an oracle which can
perfectly select the best test flow for each wafer. In Figure 12,
the new upper bound is represented by the dotted line which
is above all other curves.

We note that the gap between the proposed method and
the upper bound shrinks as the targeted DPPM increases.
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Fig. 12: Test cost reduction vs. test accuracy for three ap-
proaches and maximum possible test cost reduction for various
DPPM levels

This is explained by the fact that, at very low DPPM levels,
incorrectly channeling a wafer to a reduced instead of a
complete flow can be detrimental and very difficult to recover
from. In other words, very low DPPM leaves little room for
error, hence the proposed method acts conservatively, selecting
very few e-test signatures for reduced test flows and, thereby,
limiting the achieved test cost reduction. We also note that
this gap indicates what is still left on the table as possible
further test cost reduction, which more advanced methods and
better statistics may be able to potentially achieve. Therefore,
our future research efforts will be directed towards further
reducing this gap.

V. CONCLUSION

Judicious harnessing of process variations in optimizing
probe-test flow demonstrates great promise towards test cost
reduction in analog/RF ICs. As we presented herein, each
signature in the process space may require its own optimized
test flow. The signature of a wafer can be obtained at an early
stage through e-test, reflecting how process variations have
affected a given wafer. Deployment of the proposed method
requires minimal test infrastructure support, yet is capable of
identifying solutions with very low test escape rates, which
is not possible through static test elimination. Experimental
results using a large dataset of actual test measurements from a

65nm Texas Instruments RF transceiver confirmed the aptitude
of the proposed method in effectively exploring the trade-off
space between test quality and test cost.
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