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Abstract—Over the past few years, several self-calibration
methodologies have proven their efficiency to calibrate analog
and radio-frequency circuits against process variations. Specifi-
cally, statistical techniques based on machine-learning have been
proposed to recover yield loss and even enhance circuit perfor-
mances. In addition, these techniques enable to calibrate circuits
after a single performance test, i.e. in one-shot. However, towards
fully-integrated calibration techniques, the inference part of the
machine learning algorithm needs to be performed as energy-
efficiently as possible to reduce calibration cost to a minimum.
Following the path of resource-efficient machine learning, this
work explores an alternative to state-of-the-art Neural Network
based statistical techniques. Specifically, we investigate the op-
portunities of using Bayesian Networks for resource-efficient on-
chip statistical calibration of analog/RF circuits. Results will
show that several improvements can be achieved using Bayesian
Networks: (a) provide a comprehensive calibration framework
with explicit relationships between parameters (b) demonstrate
similar prediction accuracies that neural networks (c) optimize
across several performance parameters with a single network and
in a single query and (d) enable a more energy-efficient hard-
ware implementation. The proposed self-calibration algorithm is
applied to a low-noise amplifier fabricated with IBM’s 130nm
CMOS process, leading to a significant reduction in the number
of operations required to obtain the best tuning knob setting.

I. INTRODUCTION

The constant downscaling of CMOS technologies has
resulted in a steadily advancing level of integration for
mixed-signal circuits and systems. Yet, this extreme
miniaturization comes with an increased susceptibility
to manufacturing process variations. Regarding analog
and Radio Frequency (RF) Integrated Circuits (ICs), this
susceptibility becomes a limiting factor in their design.
Specifically, maintaining a very low yield loss requires
to either 1.) increase the design margins of the circuit,
which sacrifices the overall performance; or alternatively 2.)
develop methodologies which aim at compensating for these
process variations post-manufacturing, while maintaining the
desired level of performance. However, implementing such
post-manufacturing method for analog/RF ICs is a challenge,
since a single industrial test of their performances already
comes with a high cost for a typical system-on-chip [1].

A potential solution, recently explored by the state-
of-the-art (SotA), is to rely on artificial intelligence to
perform statistical post-manufacturing self-calibration [2]–[4].

Essentially, these techniques use machine learning algorithms
to estimate process variations through low-cost sensors,
and tune internal circuit knobs to compensate for them.
Self-calibration using only a single test iteration, called "one-
shot", have even recently been presented [5]–[7]. One step
further is to fully integrate the calibration procedure on-chip,
following up on Built-In Self-Test (BIST) developments
[8], [9]. Several benefits can be expected, such as a further
reduction of post-manufacturing calibration cost and time.
In addition, it offers the possibility for the technique to
compensate for more variations emerging in the field, due to,
for instance, aging or environmental variations [4]. However,
if several performances have to be considered simultaneously,
the search for the optimal circuit configuration is usually
the result of compromises between all circuit performances,
which is generally difficult to be found manually. This
requires the use of an optimizer [5], [6], [9], [10]. On-chip,
this optimizer is usually embedded in a processor, which can
consume a relatively large amount of resources [10].

Following the direction of energy and time-efficient em-
bedded machine learning algorithms, this work investigates
the use of Bayesian Networks (BN) to perform the self-
calibration of analog and RF ICs. Its main objective is to
highlight potential advantages of BNs over SotA works using
e.g. Neural Networks (NN). Indeed, the use of BNs for the
current application context enables to:
1) Provide a comprehensive calibration framework: given
the ability of BN to incorporate expert knowledge and be
represented graphically, the calibration problem can be made
explicit and be easily adapted to the considered case study.
2) Demonstrate prediction accuracies similar to neural
networks: this is enabled by the ability of BN to capture
probabilistic relations among all circuit variables.
3) Find best tuning knobs without using an optimizer, even
for multi-parameter estimation: given a desired performance
and an observed state of the process sensors, the most probable
tuning knob setting is obtained in a single network query
reducing the tuning hardware overhead. It remains true even
when considering several performances explicitly in the BN.
4) Achieve an efficient hardware implementation: we will
show that an efficient hardware implementation for probabilis-
tic inference is possible by using Arithmetic Circuits (ACs).
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Fig. 1. Illustration of machine-learning based one-shot self-calibration
schemes

The remainder of this paper is organized as follows. Section
II will detail the related SotA. Section III will introduce how
BNs can be exploited for self-calibration. The proposed self-
calibration methodology will be detailed in section IV and
section V will present results on the considered case study.

II. PREVIOUS WORK ON SELF-CALIBRATED ICS

Any low-cost calibration technique should not rely on direct
performance tests executed with an Automatic Test Equipment
(ATE). This approach significantly increases test time and cost,
which are already pushed to their limits. Solutions to this issue
can then be broadly classified in two categories: direct [9]–
[11] and statistical [3]–[7] techniques.

A. Direct self-calibration techniques

Direct methodologies aim to integrate the performance mea-
surement and calibration circuitry on-chip, with the objective
to evaluate performance targets directly. Together with on-chip
measurement techniques, such as time- or frequency-domain
analysis, this approach requires an on-chip optimizer [9]–[11]
to find the best multi-performance trade-off. An example of
such a fully integrated on-chip analog circuit calibration imple-
mentation has been presented in [9]. Although high accuracy
calibration can be achieved with this methodology, the on-chip
costs are is still high due to the need for additional resources,
such as an embedded Digital Signal Processor (DSP). In
addition a large number of tests is usually required and the
measurement techniques used for analog circuits cannot be
applied in a straightforward way for RF circuits, since they
need to be tested at higher frequencies. In this work, we will
focus on techniques that do not require numerous tests, or the
use of an optimizer to limit on-chip resources at maximum.

B. Statistical self-calibration techniques

Statistical self-calibration is based on the alternate test
paradigm [2], where only indirect process measurements are
used. As these measurements do not directly predict the
performance of the circuit, statistical techniques are required
to model the relationship between these indirect measurements
and the estimated chip performance. Fig.1 shows their key

operative elements: 1.) BIST structures, which are low-cost
sensors that extract an estimate of process variations. 2.)
Tuning knobs, which adjust the performances of the circuit. 3.)
A machine-learning block, usually implemented with a NN,
which models the relationship between the process sensors
PS, the tuning knob settings TK and the chip performance
PE; and essentially serves as a regression algorithm to predict
the function z() that relates them. This model is pre-trained
off-line, with a representative dataset of circuit instances,
issued for example from pre-production wafers. Then, at post-
manufacturing time, calibration is achieved by: (a) measuring
the process sensor values with the BIST structures, (b) pre-
dicting the circuit performances through the machine-learning
model and (c) determining the best tuning knob settings to
achieve the desired performance. This stage can take place
off-chip [5], [6] or on-chip [4], [7], [8] as illustrated in fig.1.

To achieve a faster and lower-cost calibration, previous
research have shown that the complete procedure can be
performed in a unique test iteration, i.e. by measuring process
sensors only once. This is referred to as one-shot calibration
[5]–[7]. This one-shot property can be pursued in several ways.
For instance, in [6], it is assumed that process variations and
tuning knobs act orthogonally on the performances, which
enables to run a composite regression model without taking
into account the interactions between tuning knobs and process
variations. In [5] such independence is achieved by design, by
using non-intrusive built-in sensors that are transparent to the
circuit. However, in both cases, if several performances need
to be predicted, the technique requires one machine-learning
algorithm per performance and a strategy to find the optimal
tuning knob setting, i.e. an optimizer. To be fully embedded
on-chip, integrating this optimizer leads to the same resource
issues as direct methodologies.

Yet, the use of this optimizer can be avoided. A different
approach is used in [7], where it is proposed to manually
calibrate a set of devices to gather the data necessary to build
the regression model, which then predicts directly the best
tuning knob setting regarding the sensor values, in a one-
shot procedure. However, this technique assumes that each
knob control a specific performance parameter independently
of the other, which is a desirable attribute but often difficult to
achieve in practice during design. In [8] it is proposed to avoid
crossing the digital domain and efficiently implement a NN
directly in the analog domain. The best tuning knob settings
are subsequently found by measuring the process sensors
exhaustively going through the tuning knob combinations to
find the best one. This approach is more energy-efficient but
a limitation is that it only allows for the prediction of a
single performance, expressed as a figure of merit (FoM)
that trades off circuit performance and power consumption.
Yet, calibrating for a given FoM does not guarantee that
specifications are individually met for each performance.

Solutions using low on-chip resources, and simplifying the
overall calibration process while explicitly considering several
performances, are lacking in the current SotA. We propose the
use of on-chip BN evaluation to achieve this goal.
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Fig. 2. Illustrative example of a Bayesian Network applied to circuit self-
calibration

III. CONCEPTUAL APPLICATION OF BAYESIAN NETWORKS
TOWARDS CIRCUIT SELF-CALIBRATION

Bayesian Networks (BNs) are directed acyclic graphs
that compactly encode a joint probability distribution
Pr(F1, ..., Fn) over a set of random variables {F1, ..., Fn}
[12]:

Pr(F1, ..., Fn) =

n∏
i=1

Pr(Fi|ΠFi). (1)

Within this distribution, ΠFi
denotes the parents of Fi

and Pr(Fi|ΠFi
) are the conditional dependencies between

variables and their parents, which can be represented as Condi-
tional Probability Tables (CPTs). The graphical representation
of a BN comprises nodes that represent the random variables
and edges that encode the probabilistic dependencies among
them.

Fig.2 presents an example of a BN that models the prob-
abilistic relations among variables in a simplistic circuit for
a self-calibration application. In this model, the circuit per-
formance PE depends on process variations PV , and tuning
knob settings TK, as shown by the edges’ directions. The
conditional probability distributions among them, which in
a real application can be learned from training data, are
represented as CPTs. As such, this BN captures all knowledge
and dependencies necessary to enable the calibration of the cir-
cuit. Specifically, such calibration would consist of observing
process variations PV , and inferring the required tuning knob
setting TK which would result in the desired performance
PE under the observed circumstances. We will pursue this by
using the capability of BNs to infer the probability distribution
of variables of interest Q when evidence e is available from
observations (Pr(Q|e)).
Practically, this consists of following steps: 1.) We observe the
process variations through indirect sensors. In this example
we can e.g. assume an observation of PV =v1. 2.) Then, we
target a certain post-calibration performance, e.g. PE = p2.
Both observations will together describe the evidence e0 of
the BN query, in the current example e0={PV =v1, PE=p2}.
3.) Now we want to find the most likely tuning knob setting
TK to meet the aforementioned conditions by querying the
network for Pr(TK|E) for all possible values of TK. In
our example, one can see that Pr(TK=t1|E=e0) = 0.8 and
Pr(TK=t2|E=e0) = 0.55. Here, TK=t1 is more likely to
fulfill the condition and could thus be selected.

Yet, such process would be very expensive in practice, as it
still requires to exhaustively query for all possible tuning knob
combinations. In this paper, we achieve the full calibration
procedure in a single step by exploiting a search technique
for the Most Probable explanation (MPE) which is formally
defined as a complete variable instantiation that is consistent
with evidence e and has the highest probability [12]:

MPE(e) = arg max
x∼e

Pr(x) (2)

Going back to the example where e0 was available, we can
find the most likely tuning knob by searching for the MPE in
the space of complete variable instantiations {PV, PE, TK}
consistent with e0. By using the simple non-exhaustive search
technique discussed in Section IV, this query leads more
efficiently to the same result t1, for which the MPE proba-
bility, denoted by MPEP = Pr(v1, p2, t1)=Pr(v1) · Pr(t1) ·
Pr(p2|v1, t1)= 0.4 · 0.5 · 0.8=0.16. This concept will be
applied and implemented in a realistic calibration procedure,
as detailed in section IV.

IV. IMPLEMENTATION OF ONE-SHOT SELF-CALIBRATION
BASED ON BAYESIAN NETWORKS

The concept introduced in the previous section will now be
extended to a full calibration procedure, analogous to the one
presented in fig.1. This section will go in detail through all
the necessary steps to achieve this. The complete procedure is
depicted in fig.3.

A. Dataset collection

Similar to all SotA methodologies, the first step is to collect
the dataset that will be used for the training stage of the model
(fig.3(a)). Specifically, the dataset set would be composed of N
circuit instances, with variations representative of the overall
manufacturing process. For each circuit instance and all K
settings of the tuning knobs TK, the process sensor values
PV , and circuit performances PE are extracted. Several
process sensors and tuning knobs are required to effectively
monitor all process variations and enlarge the available tuning
space.

B. Discretization

In contrast to typical SotA regression-oriented statistical
calibration, we rely on a classification-oriented approach, in
which all variables are discretized. This choice is motivated
by its implementation simplicity and consequently hardware
efficiency. As illustrated in fig.3(b), this involves the dis-
cretization of sensor observations PV , tuning knobs TK and
performances PE. Specifically:

Tuning knobs TK: they are usually already discrete, each
knob taking only a limited number of values.

Process sensors PS: Each measurement is split into M
bins, according to the probability distribution of the samples.
Bin lengths are then non-uniform and follow the sample
density over the whole measurement range. This enables to
cluster measurements more finely in dense regions (i.e. where
we have a lot of samples available).
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Fig. 3. Illustration of the training procedure

Performances PE: similar to other classification-oriented
test techniques, the performance space is divided into two
regions. For each target performance variable, two classes
exist, representing whether the particular performance satisfies
the specifications (the class GOOD) or not (the class BAD).
In addition, for this application, it is very valuable to express
the level of confidence with which the performance samples
are included within the two regions. We utilize the concept
of soft evidence to build this soft boundary between classes,
by recognizing that there is a level of uncertainty to each of
the performance samples. Specifically, we label each sample
as having X% of chance to be in the GOOD class and
(100 − X)% chance to be in the BAD class, 0 ≤ X ≤ 100
(fig.3(b)). As it will be shown in Section V, this enables
us to target a specific performance area according to the
calibration objectives (more reliability, less power, etc). During
BN training, this soft boundary is expressed as a percentage
for each sample of the dataset to be labeled in each class.

C. Determination of the topology and training

In the current application context, one of the advantages
of BNs over other machine learning paradigms is twofold:
(a) BNs easily allow to include expert knowledge, used to
determine the network topology, i.e. the nodes and the link
between them (although it can also be learned from the data)
and (b) BN are particularly efficient to deal with limited data
[13], compared to NNs for instance.

a) Determining the topology: we extend the simple ex-
ample of fig.2 to express the probabilistic relations among
the variables available for the current application. In par-
ticular, let us consider a circuit with three tuning knobs
TK = {TK1, TK2, TK3}, and three process sensors PS =
{PS1, PS2, PS3}, measured to estimate process variations
PV . The performance to optimize, PE, is affected by any
change of the tuning knob settings TK, as well as the pro-
cess variations PV . These dependencies lead to the selected
BN topology as depicted in fig.3(c). It is important to note
that, similar to regression-oriented approaches [5], process

variations PV can not be explicitly extracted and therefore
remained un-observed in the proposed BN model (i.e. PV
would be a hidden node in the BN). Under these conditions,
a complete variable instantiation is not possible anymore,
rendering a MPE search infeasible. To circumvent this issue,
we exploit the fact that PV changes directly impact PE’s be-
havior and that although unobserved, PV are known through
PS. Thus, this assumption enables to merge PV and PE in
the model in a single PE node, attaining the final topology a
depicted in fig.3(c). We then perform an indirect measurement
of PV through PS, which still allows us to know the current
conditions and search for the TK configuration that will have
the highest likelihood to accomplish the desired PE behavior.
It can be noted that tools like [14] can also determine the most
suitable BN topology automatically based on the dataset.

b) Training: using this model topology and the dataset
created according to Section IV.A, we train the BN model. This
consists of estimating the CPT ’s parameter via a Maximum
Likelihood estimation with the generated dataset. For the
experiments in this paper, we used Matlab’s Bayesian Network
toolbox to go through this process [14].

D. Implementation of Bayesian networks using arithmetic
circuits

Once the model topology is set and the model is trained, it
can be deployed on-chip to perform the actual self-calibration.
As mentioned earlier, this involves a MPE search to derive the
most probable TK settings, given observations PS and target
performances PE. As this process should run on-line and on-
chip, the resource efficiency of the MPE search is of crucial
importance.
A hardware efficient approach to represent the BN and imple-
ment the MPE solution efficiently, is to use Arithmetic Cir-
cuits (ACs). An AC is a tractable probabilistic representation
that allows to reduce the inference problem to a Weighted
Model Counting (WMC) [15]. Such a representation consists
of elementary arithmetic operators (sum and product) and
maximally exploits the local structural opportunities of the BN
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Fig. 4. (a) Arithmetic Circuit. (b) Maximize circuit with MPE sub-circuit.

(e.g. by merging repeated parameters and pruning parameters
equal to 1 or 0). The general process is illustrated in fig.3(d).
The next paragraph will go into the details of this procedure.
Consider again the introductory example depicted in fig. 2.
Through the knowledge compilation procedure provided by the
ACE package developed by UCLA [16], we can compile the
BN into an AC, a graph of add-product operations as depicted
in fig. 4 (a). The inputs to this AC are the CPT parameters,
represented by θx|u and the binary indicator values λx, which
are set to 1 or 0 depending on whether the value x is observed.
Recall that each variable in our example BN can take on two
different values (see the node definitions in fig. 2). For our
example, the AC variables are thus defined as follows:
• PV : λv1 , λv2 , θv1 , θv2
• TK: λt1 , λt2 , θt1 , θt2
• PE: λp1

, λp2
, θP1|t1,v1 ,..., θp1|t1,v2 ,..., θp2|t2,v2

Consider again the observation of evidence e0 from the
example in section III. To incorporate this evidence, we set
the following indicator variable values: λp1

=0, λp2
=1, λv1=1,

λv2=0 and λt1=1, λt2=1 (since we do not observe and hence
do not know the value that TK will take on). To find the MPE
for TK under evidence, we modify the AC into a maximizer
circuit by replacing addition nodes with maximization nodes,
as detailed in [17] and depicted in fig. 4(b). If we now evaluate
this maximizer circuit from bottom to top, we see that the
value for the root node equals 0.16, which already reveals the
value of MPEP . The TK setting towards this solution can be
recovered from a subsequent downward pass through the MPE
sub-circuit. In this pass, we go from top to bottom, and include
a.) all children when encountering a multiplication node, and
b.) the child with the largest value when encountering a
maximization node. The result is highlighted in red in fig.
4(b). Finally, the indicator variables in the obtained sub-
circuit, reveal the TK settings for the MPE, in this case
corresponding to TK = t1. This matches the result inferred
in the introductory example.

By using the AC together with the MPE query, it is possible
to obtain the most probable tuning knob candidate in a single
tuning step. Note that the number of iterations required for this

process is not a function of the number of tuning knobs, nor the
number of values that each knob can take on, which is in sharp
contrast with SotA techniques that use exhaustive searches or
an optimizer. In this work, we make a rough estimation of
the hardware-cost of executing this MPE search on-chip, by
counting the number of required elementary operations. The
procedure entails an "upward" evaluation of the maximizer AC
and a "downward" search for the MPE sub-circuit. For the
current example, the upward step requires 17 multiplications,
7 comparisons (for the max nodes) and 11 parameter fetches
from memory. Since the indicator variables are binary, we
consider their cost negligible. The downward step takes place
in 8 steps, only 3 of which are comparisons. We use this
rationale for the hardware-cost estimation in section V-C.

E. Post-manufacturing calibration

Once converted into an AC and maximizer circuit, the
BN of fig.3(c) is ready to be used in a post-manufacturing
calibration step and be implemented on-chip as shown in
fig.3(e). First, the current process sensor values PS are
measured by using, for instance, a BIST circuitry. Then, the
value of PE is fixed to target a given area, for example to
obtain the highest PE possible. Then the MPE search is
performed, to find the most probable tuning knob combination
considering the evidence on PS and PE. This tuning knob
setting TKOPT is then applied to the circuit and the
calibration process ends.

Additional benefits of the approach
The proposed technique can be used to include several
performance targets. The corresponding nodes and their
dependencies with the current variables can be added to the
BN. This enables joint tuning knob queries, simultaneously
satisfying performance targets along several parameters.
This will be demonstrated in section V. Moreover, other
measurements or variables can also be included in the BN,
such as a measure of aging, temperature, etc. to embed more
functionalities on-line.
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Limitations of the approach
1) Discretization of variables: This process has to be put
in perspective with the computational effort necessary to
compute the MPE with the BN, directly reflected in the
hardware cost for on-chip implementation. A finer or coarser
discretization then results in a trade-off between the BN
performance to predict the right tuning knob settings, and the
associated hardware cost.

2) Classification instead of regression: In the literature,
the development of regression-oriented methodologies over
classification-oriented ones has been motivated by their
ability to predict directly the performance values, instead of
giving a pass/fail decision. In this work, we tend to mitigate
this issue by dividing the performance into more than just
pass/fail regions, with soft boundaries driven by the trade-off
between reliability and performance, as illustrated in Section
V. In addition, it should be also noted that in every case
that the performances are calibrated without being measured
explicitly, a final test may be performed after calibration to
confirm whether calibration has succeeded.

V. CASE STUDY: SELF-CALIBRATED LOW-NOISE
AMPLIFIER

To demonstrate the potential advantages of an approach
using BNs for self-calibration purposes, an experimental plat-
form containing a RF Low-Noise Amplifier (LNA) is used
as a case study. This platform has initially been presented in
[3] to compare several one-shot self-calibration methodologies,
and used to demonstrate another calibration technique [8]
based on-chip analog neural network [18]. The objective is
to obtain a fair comparison between existing techniques and
the proposed approach, using the same silicon data.

A. Experimental platform and methodology

The experimental platform has been fabricated with IBM’s
130 nm CMOS RF process and illustrated in fig.5. The circuit
under calibration is a tunable LNA operating at 1.575GHz.
Process variations are monitored through different sets of pro-
cess sensors PS [3]. We use non-intrusive sensors in our case
study, as proposed initially in [5]. They consist of one resistor,
one capacitor and one NMOS transistor, all copied from the
initial circuit topology and placed as test coupons next to the
LNA. Since sensors and circuit are in close physical proximity,
they witness very similar process variations. The sensor values
are as such correlated to the performances of the circuit, even
though these sensors are not physically connected to it. Used
sensor measurements are simply the value of the resistor, the
value of the capacitor and the NMOS transconductance. The
LNA is equipped with three voltage bias tuning knobs TK,
each varying from 0.8V to 1.4V with a 0.1V interval. As
such, each tuning knob can take 7 values, and each LNA can
hence be tuned with K = 73 = 343 knob combinations. The
fabricated IC is housed in a custom-designed evaluation board
containing four LNAs per die, interfaced with power supplies
and external measurement instrumentation. In total, 144 LNA

instances have been fabricated, from 36 dies. This enables
to obtain a dataset that is statistically representative of the
fabrication process.

B. Achieving a "one-shot" tuning process

The proposed one-shot tuning strategy is first compared with
the methodology presented in [8].

a) Calibration objective: The general principle is to tune
the LNA based on a figure of merit (FoM ), representative of a
trade off between LNA performances and power consumption.
Specifically, the FoM is defined as:

FoM =
S21

(NF − 1).PDC
(3)

with S21 representing the gain, NF the noise figure and PDC

the power consumption. More details about the FoM are given
in [8]. The best tuning knob setting is referred here as the one
that achieves the highest FoM.

b) Baseline methodology for comparison: the state-of-
the-art reference for this calibration objective [8] trains an
on-chip analog NN as a regression to predict the FoM
from the process sensor values and the tuning knob settings.
The calibration procedure consists on measuring the process
sensors on-chip, and then exhaustively going over all possible
tuning knob combinations. For each combination, the NN
is evaluated to predict the expected performance and find
the tuning combination that achieves the highest FoM . To
benchmark with this approach, we implement a digital NN in
a computer-aided framework off-chip. As highlighted in [8],
this approaches achieve the same results as the analog NN.

c) Proposed BN methodology: the dataset is discretized
following the procedure described in section IV. The process
sensors are discretized in 10 non-uniform bins. The FoM
is labeled as ’non-satisfying’ (BAD) or ’satisfying’ (GOOD),
both classes separated by a soft boundary. The probabilities
for a sample to lie in the GOOD or BAD class, respectively
P (GOOD) and P (BAD), are defined as:

P (GOOD) =
FoM − FoMMIN

FoMMAX − FoMMIN
(4a)

P (BAD) = 1− P (GOOD) (4b)

With FoMMIN and FoMMAX the respective minimal and
maximal FoM values over all circuit instances in the dataset.
In a nutshell, the closer the sample is to FoMMAX , the higher
its probability is for the GOOD class. The best tuning knob
setting is then found by querying the MPE for TK in the
BN, achieving the one-shot tuning property. The evidence
is given as {FoM = GOOD,PS1, PS2, PS3}. For a fair
assessment, a cross-validation technique is used, in which the
machine-learning algorithm is trained with all chips except
one, and is validated on the left out chip. This procedure is
repeated by iteratively putting out every instance in the dataset
until all have been tested.
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Fig. 5. From [3]: experimental platform (a) evaluation board, (b) microphotograph of the fabricated die, (c) LNA schematic, (b) non-intrusive sensors

d) Results: Fig.6 shows the histogram of performances
before and after calibration for both NN and BN approaches,
with the overlap between the two methodologies in gray. The
initial conditions before calibration are considered with all tun-
ing knobs at their median position (1.1V). It is evident that the
two methodologies achieve identical results on the proposed
dataset, in terms of performance and power consumption.
Their performance is also identical, predicting the correct best
FoM for 137 instances out of 144. As an additional benefit,
other circuit performances such as S11, S12 and S22, are also
improved. While both approaches give the same calibration
performance, they will however not come with the same on-
chip hardware cost as detailed in the next section.

C. Possibility of efficient hardware implementation

In a second step, the same experiment will be used to
compare the hardware cost of both methodologies. For that, we
will compare the number of operations that would be required
for a digital implementation, for instance in a small processor.
This comparison is performed at a high-level and only intends
to provide a general overview of both implementation costs.

a) Neural network implementation: To estimate the cost
of the NN based approach, we estimate the number of
operations of a multi-layer preceptron, as depicted in fig.7,
composed of: (a) one input layer, with NI nodes, (b) one
hidden layer with NH neurons, and (c) one output layer with
NO neurons. Following the strategy in [8], the tuning knob
combinations are searched exhaustively to find the best FoM.
To obtain one FoM value, the NN requires one multiplication,
one addition and one memory fetch per incoming edge in
every neuron, and one multiplication, one addition and one
memory fetch per neuron (except in the input layer) to
implement the activation function. This represents a total of
(NI − 1) ∗NH + (NH − 1) ∗NO +NH +NO additions and
NI ∗NH +NH ∗NO +NH +NO multiplications. By using
6 inputs, 10 neurons in the hidden layer and one output, as in
[8], the number of operations can be estimated to 74 additions
81 multiplications, and 81 memory fetches. This value has
to be multiplied by the number of tuning knob combinations
searched for, in this example 343. The total cost of running the
complete NN-based search, is given in the column NNTOT

of Table I.
b) Compilation of the general BN: as explained through-

out Section IV-D we propose to implement the MPE solution

with an AC, which consists of 1617 nodes of which 856 are
multiplications, 161 additions (or comparisons, after the max-
imizer circuit has been generated), 53 indicator variables and
547 parameter variables. This defines the cost of the upward
pass through the network (cfr. procedure explained in Section
IV-E). The downward pass requires significantly less evalua-
tions as only one path through the network is assessed. E.g.
when assuming e={PE=GOOD,PS1=2, PS2=1, PS3=4},
the downward pass requires only 16 steps, 7 of which are
comparisons. These results are summarized in the column BN
of Table I.

c) Compilation of the BN with evidence: further cost
reduction can be obtained by making application specific as-
sumptions. For example, we can compile an AC with evidence
[16] (because we are only interested on PE = GOOD),
and considerably reduce the number of required operations
as shown in the column BNEV of Table I.

d) Comparison: To obtain the total aggregated cost of
each approach, we consider a relative cost per operation
derived for a 32 bit floating point format in a 45nm CMOS
process, as derived from [19] and summarized in the last
column of Table I. With this information, the total cost of
every approach is computed, and summarized in the last line
of Table I. It is clear that both the BN based approaches have a
significantly lower hardware cost than the NNTOT approach.
Clearly, this is a consequence of the exhaustive search needed
for the NN based implementation, which is circumvented
by finding only the MPE in both the BN based solutions.
Effectively, this approach decreases the calibration cost by a
factor of 43.5x and 85.7x over the NN. One could argue that
a NN can be used with a smarter search procedure than an
exhaustive search. E.g. an optimizer could be used to smartly
query only selected tuning setting combinations. This would
allow to find an optimal solution with less NN queries. Yet,
as seen in Table I, a single neural network evaluation is only
7.8x more efficient than the complete BN, or 4x regarding the
BN with evidence approach. As such, this approach would
only be more efficient if the optimizer can find the optimal
setting in less than 4 queries, which is very difficult for the
given case study of 3 tuning knobs with 7 settings each. These
results confirm that for a similar implementation, the BN-based
approach would reduce drastically the number of operations
compared to SotA techniques with digital machine-learning
implementation.
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Fig. 6. Comparative of performances after calibration with Bayesian Network (BN) and Neural Network (NN) approaches

Fig. 7. Neural network used for the cost comparison

TABLE I
HARDWARE-COST ESTIMATION

Operation
NN NNTOT BN BNEV

Relative
type op. cost
Add. 74 27440 168 60 1
Mult. 81 29841 856 418 4
Mem. 81 29841 547 296 5

Tot. cost 803 275429 6327 3212

D. One-shot tuning with several explicit performances

In the previous experiment, the optimization performance
target was a FoM , that implicitly includes the three perfor-
mances (S21, NF and PDC). However, it cannot be ensured
that for the best FoM all performances still individually
satisfy the specification. This explains why, although this
methodology gives very good results in terms of performance
enhancement, 17 instances out of 144 still do not satisfy
the specifications after calibration, for a yield of 88.2%.
This can be circumvented by training three different NNs to
explicitly predict S21, NF and PDC . This would however
further increase the cost of the technique since optimizer or
an additional decision circuitry is also required, as discussed
previously. In the proposed BN based methodology, those three
performances can be included directly and explicitly in a single
BN, as depicted in fig.8(left). In addition, the one-shot tuning
property stays valid, since the MPE can be queried in the exact
same way as for the previous experiment.

a) Calibration objectives: in this experiment, the objec-
tive is now to find the tuning knob setting that maximizes the
reliability, i.e. the probability that each performance lies as far
as possible from its specification line.

b) Proposed methodology: the methodology is similar
to the one described in section V-B, except that in this case
S21, NF and PDC are considered explicitly in the BN. This
in turns leads to define several soft boundaries, one for each
performance, as shown in fig.8(right). They are defined as:

PS21(GOOD) =

{
S21S−S21c
S21MAX

, if S21 > S21S

0, otherwise

PNF (GOOD) =

{
−(NFS−NFc)

NFMIN
, if NF < NFS .

0, otherwise

PPDC(GOOD) =

{
−(PDCS−PDCc)

PDCMIN
, if PDC < PDCS

0, otherwise

with VMIN , VMAX , VS and Vc representing respectively
the minimal value, maximal value, the specification and the
current value of variable V . For each variable, PV (BAD) =
1−PV (GOOD). Essentially, the further away from the spec-
ification line, the greater the probability to be in the GOOD
class. Again, the optimal tuning knob setting is assessed by
querying the MPE in one-shot to achieve the combined goal
cross all target performance variables S21, NF and PDC lying
in the GOOD class, given the observed PS.

c) Results: the histograms of the LNA performances
after this calibration are depicted in Fig.9. The proposed
methodology is compared with the previous experiment where
only the FoM is predicted. As can be observed, the yield loss
is significantly reduced since only one circuit out of 144 does
not satisfy all specifications, increasing yield up to 99.3%. The
price to pay for this increased yield is an increase of the power
consumption, as now the calibration is targeted for maximum
reliability. However, the power consumption stays significantly
lower than the specification.
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Fig. 8. Bayesian networks and soft boundaries used in section V-D

Fig. 9. Comparative of performances after calibration for FOM based
calibration and the proposed methodology

d) Hardware cost: the BN presented throughout this
section can also be compiled to an AC and transformed to
a maximizer circuit to assess the cost of the MPE query.
In particular, evaluating the maximizer circuit for this setup
requires 3383 multiplications, 479 comparisons and 1231
parameter fetches, while finding the MPE requires 10 com-
parisons. One again compiling the BN with evidence (for the
three performance nodes = GOOD), renders a reduced AC,
with 434 multiplication, 60 addition and 608 memory fetch
operations for the upward evaluation and 6 comparisons for
the MPE search. This cost is hence very close to the cost of
the FoM-based query of section V.C. This is in sharp contrast
to traditional approaches, whose cost blows up when assessing
several performance variables in parallel.

E. Calibrate with different constraints using soft boundaries

As a final experiment, the same problem and network
structure will be considered but with several calibration ob-
jectives to make a more balanced trade-off between power
consumption optimization, and reliability.
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Fig. 10. Illustration of the soft boundaries used for the three calibration
objectives

TABLE II
COMPARATIVE OF THE YIELD LOSS AND MEAN POWER CONSUMPTION

FOR THREE CALIBRATION OBJECTIVES: RELIABILITY ENHANCED, POWER
ENHANCED AND POWER/RELIABILITY TRADE OFF

Calibration Yield Loss Mean Power [mW]
Rel. enhanced 1/144 4.22

Pow./Rel. trade-off 7/144 2.43
Pow. enhanced 14/144 2.09

a) Calibration objectives: By using several soft bound-
aries it is possible to drive the tuning knob search towards
several performance regions. Three cases will be considered:

Reliability enhanced: all performances as far as possible
from their specification line. This is the same as the previous
experiment of section V-D.

Power enhanced: push power consumption as low as
possible with limited yield impact.

Power/reliability trade-off: find a compromise between
reliability and power constraints.

b) Proposed methodology: the three cases are achieved
using variations on the soft-boundary approach. The bound-
aries used for the three considered case studies are illustrated
in fig.10. For the reliability enhanced case, the soft boundaries
are the same as in the experiment section V-D. For the power
enhanced case we introduce a third class, named as ’OPT’,
referring to the optimal power consumption target. The aim
is to push power down as much as possible. We do this by
fixing the evidence in the BN for the power consumption to
be OPT during the MPE search. As compensation, we fix
the boundaries for S21 and NF as hard ones, following the
specification line. For the power/reliability case, the power is
pushed less towards the minimum by extending the OPT class
soft boundary as in fig.10(right), while keeping soft boundaries
for the other performances variables pushing them again away
from the specification limits.

c) Results: a comparison of obtained performances for
these three cases is depicted in fig.11 and in Table II. As it
can be observed, the power enhanced approach significantly
reduces power consumption, as the FoM-based calibration.
The reliability enhanced scenario corrects the yield with an
impact on power consumption, as explained in section V-D.
A compromise between both approaches is achieved in the
power/reliability trade-off, when the yield is slightly impacted,
but the mean power is divided by almost a factor 2. The search
of the best tuning knob setting can as such be driven in a
continuum between high reliability and low-power.
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Fig. 11. Comparative of performances after calibration for power enhancement, reliability enhancement and power/reliability trade-off

VI. CONCLUSION

This work presents a new direction towards efficient sta-
tistical one-shot on-chip calibration of analog/RF circuits,
promoting the use of Bayesian Networks for statistical self-
calibration. The proposed calibration scheme has been vali-
dated on an experimental platform containing 144 low-noise
amplifiers fabricated in 130nm CMOS technology. The results
demonstrate 1.) on par performance compared to other SotA
self-calibration techniques using neural networks; 2.) at a
lower general cost; 3) with the additional capability to easily
incorporate several co-existing performance targets and make
balanced trade-offs between performance reliability and power
consumption savings.
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