VIPER: A Versatile and Intuitive Pattern
GenERator for Early Design Space Exploration

Gaurav Rajavendra Reddy, Mohammad-Mahdi Bidmeshki and Yiorgos Makris

gaurav.reddy @utdallas.edu, bidmeshki @utdallas.edu, yiorgos.makris@utdallas.edu
Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract—Contemporary technology nodes exhibit high defec-
tivity due to complex interactions between the process and certain
layout topologies/patterns. Foundries identify such patterns dur-
ing diagnosis, Scanning Electron Microscope (SEM) inspections,
Failure Analysis (FA), etc., and create a database to restrict their
presence in future designs. However, such a database can be
generated only after fabricating a few products, hence making
this process reactive. Ideally, foundries would prefer to have a
proactive approach, where such sensitive patterns are available
up-front during technology development. Thereby, they can build
accurate Hotspot Detection models and offer a robust Product
Design Kit (PDK) to even the earliest of customers, either by en-
suring that the process is immune to such patterns or by including
them in the Design For Manufacturability Guidelines (DFMGs).
To enable this, Early Design Space Exploration (EDSE) can be
performed, wherein an Electronic Design Automation (EDA) tool
generates synthetic layout patterns. In this work, we introduce
VIPER, a novel, controlled random walk-based pattern genera-
tion method, which not only generates realistic and Design Rule-
clean layout patterns, but which also offers versatility so that
the generated patterns can be intuitively customized to specific
needs. To ensure that the generated patterns are representative of
real designs, we data mine designs in previous technology nodes
and we learn some of their typical characteristics. Effectiveness
of the proposed method is contrasted against the state-of-the-art,
commercially available EDA tool.

I. INTRODUCTION

Lithography is an extremely complex task and one of the
major challenges during technology development in advanced
process nodes. Construction of Optical Proximity Correction
(OPC) keywords and lithography recipes begins in the early
stages of technology development when only basic Design
Rules (DRs) are defined and very little, if any, real layout
content is available [1]. Therefore, during this process, lithog-
raphers must depend on traditional test structures and/or layout
examples from previous technology nodes. As a result, the
process/recipe is exposed to and optimized for only a small
set of patterns among a vast array of options in the design
space. When the technology goes into production and large
scale designs are fabricated, however, the process is exposed
to many new patterns which were never seen during the
development phase. Interestingly, as shown in [2], [3], such
previously unseen patterns continue to appear as more designs
are fabricated throughout the lifetime of a process. Inevitably,
this results in high systematic defectivity, as the process is not
optimized for all patterns found in real designs. Unfortunately,
once the process is in production, root cause analysis of all
pattern-related defects and correction through process changes

Paper 11.3
978-1-7281-4823-6/19/$31.00 (©2019 IEEE

becomes expensive, time-consuming and, often, intractable.
Therefore, common practice is to categorize defect-causing
patterns as risky/hard-to-manufacture and restrict their use in
future designs.

As an alternative, Early Design Space Exploration (EDSE)
can be performed. In EDSE, a large number of synthetic
patterns which resemble real layouts is generated up-front
during technology development, using only the basic DRs [4].
A database of such patterns enables the foundry to develop a
more robust technology node by: (i) using layout-like patterns
during lithography recipe development and ensuring that the
process is amenable to a large variety of patterns [1], (ii)
designing and characterizing pattern-based test structures on
silicon [5], (iii) formulating Pattern Matching (PM) rules or
Design For Manufacturability Guidelines (DFMGs) around
high-risk patterns and offering a robust Product Design Kit
(PDK) to even the earliest of customers, and (iv) performing
lithographic simulations on a large dataset and building ac-
curate hotspot detection models to identify sensitive patterns
in future designs [6], [7]. For EDSE to be effective, how-
ever, the synthetic layout pattern generation method and tool
should exhibit several key attributes: First and foremost, it
should be able to generate a wide variety of random patterns
which explore and accurately reflect the entire design space.
Second, resulting patterns should obey DRs and resemble real
Integrated Circuit (IC) layout snippets. Third, it should enable
the user to intuitively control various aspects of the generated
patterns and accommodate specific needs, such as generation
of constrained pattern types or patterns from certain design
corners.

To the best of our knowledge, the State-Of-The-Art (SOTA)
in this area is a commercially available Electronic Design
Automation (EDA) tool (i.e., Mentor’s Layout Schema Gen-
erator (LSG)), the use of which for synthetic layout pattern
generation is described in [4]. This tool uses a set of ‘unit
patterns’ and randomly places them on a grid of certain size,
seeking to produce a realistic design. Some operating modes
of this tool are fully automated or require minimal human
involvement. In such cases, however, the produced patterns
tend to be rather unrealistic and of limited utility to the
EDSE process. Other modes, requiring significant amount of
human effort, produce very realistic and DR-clean patterns.
Nevertheless, despite using best modes, settings and practices,
as prescribed by the tool vendor, it tends to generate patterns
which only cover a limited portion of the design space, leaving

INTERNATIONAL TEST CONFERENCE 1

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

(a) Random

(b) Weighted

(c) Template-based (d) Automated and realistic

Fig. 1: Sample patterns generated by the state-of-the-art commercial tool

a lot of room for improvement to better achieve the objectives
of EDSE.

To this end, we propose VIPER, a novel, controlled random
walk-based pattern generation method, which not only gener-
ates realistic patterns, but which also covers better the design
space. In order to increase pattern realism, we data-mine
designs from previous technology nodes and learn technology-
independent design characteristics. VIPER is versatile and
allows the user to intuitively vary every parameter of interest
within a pattern, explore various corners of the design space
and generate custom patterns for specific applications.

The rest of the paper is organized as follows. The SOTA
and its limitations are discussed in Section II. The proposed
methodology, its algorithmic details and its various features
are introduced in Section IIl. Experimental results comparing
the performance of VIPER against the SOTA are presented in
Section IV and conclusions are drawn in Section V.

II. STATE-OF-THE-ART AND ITS LIMITATIONS

The SOTA tool generates synthetic layout patterns by cre-
ating a grid of a certain size and populating it with ‘unit
patterns’. These are customizable ‘snippets’ or ‘blocks’ whose
side dimensions are equal to the minimal pitch for a given
layer. The tool randomly places such unit patterns on the
grid, seeking to produce a realistic layout pattern. However,
as discussed in [1] and as shown in Figure la, such a
random placement method seldom generates realistic patterns.
Nevertheless, the tool features several ‘modes’ through which
the user can attempt to generate more realistic patterns:

(i) Mode 1: In this mode, weights can be added to each
unit pattern. The characteristics of the resulting patterns differ
based on the specified weights. A typical pattern obtained
using the weighted option is shown in Figure 1b.

(ii) Mode 2: In this mode, the user can define templates
which predetermine certain areas of the pattern. The tool, then,
generates random polygons around the predetermined area, as
shown in Figure lc. The authors of [8] suggest the use of
complex patterns or Hotspot patterns obtained from previous
technology nodes “‘as is”, as templates for generating more
realistic designs. However, using such templates reduces the
area available for the tool to place random patterns. Thereby,

Paper 11.3

its ability to explore new design spaces is significantly re-
stricted.

(iii) Mode 3: In this mode, as suggested by the authors of [6]
and [9], design rules and various heuristics are transformed
into a special rule_file in a format understandable by the
tool, in order to guide the synthetic pattern generation process.
However, producing such constraint files is extremely time-
consuming and requires significant amount of human effort.
(iv) Mode 4: In this mode, which is fully automated and the
most promising direction, realistic patterns are produced with
minimal human involvement. The algorithm and heuristics that
are likely used to generate patterns in this mode are proprietary
and, therefore, unknown to us. The generated patterns appear
to be realistic; however, as demonstrated in the experimental
results (Section IV-A), they tend to only cover a limited portion
of the design space. An example of such a pattern is shown
in Figure 1d.

In short, the SOTA synthetic pattern generation tool offers
various modes and options, enabling the user to make a trade-
off between the amount of human-effort involved and the qual-
ity/realism of patterns generated. Even when operated in its
most promising mode, however, it still offers limited coverage
of the design space, thereby not exploring the full potential of
EDSE in supporting robust early technology development.

III. PROPOSED METHODOLOGY (VIPER)

A standard cell-based IC layout is not a random arrangement
of polygons; rather, every one of these polygons has a specific
purpose. Moreover, besides being governed by design rules,
they also exhibit an additional set of features which depend
on their actual purpose in the design. Examples of such
features include the following: (i) polygons supplying power
to transistors are often vertical rectangles with one end always
branching out of power rails and the other end terminating at
source/drain, (ii) stacked-via enclosures are isolated rectangles
with small dimensions, and (iii) source-to-drain connections
and cell-to-cell connections occur through ‘paths’ which may
have multiple turns and branches. Therefore, in order to
generate realistic patterns, instead of generating random poly-
gons, we should mimic the characteristics of real layouts
and generate ‘paths’, ‘power rail branches’ etc., which are

INTERNATIONAL TEST CONFERENCE 2

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

[Grid

Power Rail

T

Youeug |1ey Jomog

VEM Pair

Path Segment

:/u

Path Branch

oy

Via Enclosing
Metal (VEM)

Fig. 2: Nomenclature

essentially ‘polygons with a meaning’. To realize this, we
propose a controlled random walk-based algorithm, where
every aspect of a pattern is abstracted as a random walk
performed under certain constraints. While the randomness in
the proposed method ensures that design space exploration
is not restricted, the constraints ensure that the ‘meaning’
of every polygon is preserved, thereby, making the resulting
patterns realistic. The nomenclature, algorithmic details, and
various aspects of the proposed method are explained in detail
in the following sub-sections.

A. Nomenclature

Names assigned to the various features of a pattern are
illustrated in Figure 2. The area wherein a pattern is created is
called the grid. Wide metal lines running horizontally across
the entire length of a pattern are termed power rails. Long
metal lines, often containing multiple turns, are called paths.
Parts of a path between turns are referred to as segments.
Polygons branching out of power rails and paths are termed
power rail branches and path branches, respectively. Small
isolated rectangles are referred to as Via Enclosing Metals
(VEMs) and VEMs which are horizontally aligned with each
other are called VEM pairs.

B. Controlled Random Walk Algorithm

The required pattern size and the fundamental design rules,
such as minimum width, space, notch, etc., are provided as
inputs to the proposed pattern generation algorithm. Produced
patterns may contain several of the features mentioned in
Section III-A, but not every pattern must include all such
features. The type and number of features to be included
in a pattern is determined by sampling their corresponding
Probability Density Functions (PDFs). The probabilistic nature
of this method enables exploration of various corners in the
design space and increases diversity of the produced patterns.
Every feature is abstracted as a different type of a controlled
random walk. More specifically, (i) a power rail is a random
walk with only one horizontal step, (i) a power-rail branch
is a random walk with a single vertical step, with its initial
point randomly chosen anywhere along an edge of the power
rail, (iii) a path is implemented as a random walk with many
continuous steps, where an anti-clockwise/clockwise right-
angled turn is made at the end of every step, (iv) a path
branch is similar to a path but its initial point always lies on an

Paper 11.3

Fig. 3: Samples of patterns generated by VIPER

def GenPattern (features) :

Input: Pattern features, e.g. presence of power rail, power rail
branch count, path count, VEM count, etc.
Result: A random pattern with requested features
/* Create a new grid */
1 grid = Grid(features.gridSize)
2 if features.hasPowerRail == true:
/* Generate power rail and its branches
*/
3 TakeRandomWalks (grid, type = PowerRail, count = 1)
4 TakeRandomWalks (grid, type = PowerRailBranch,
5 count = features.powerRailBranchCount)
/* Generate paths */
6 TakeRandomWalks (grid, type = Path,
7 count = features.pathCount)
/* Generate path branches */
8 TakeRandomWalks (grid, type = PathBranch,
9 count = features.pathBranchCount)
/x ... */
/* Similarly, all other pattern features
are implemented */
10 return grid

Algorithm 1: VIPER pattern generation

edge of a pre-existing path, and (v) VEMs and VEM pairs are
implemented as single-step walks. A grid with a resolution of
1nm and dimensions equal to the pattern size is created and
features are implemented through Algorithm 1.

At the start of every walk, depending on its type, many
walk-specific parameters such as the number of steps, the
width and length of every step, etc., are obtained by sampling
their respective PDFs. To take the first step, a random location
within the grid and a random direction are chosen. The area on
the grid where the step is supposed to be taken is first checked
for vacancy. The area surrounding the step is also checked in
order to ensure that minimum spacing rules are not violated. If
either of the checks fails, the walk is attempted in the opposite
direction. If the first step is unsuccessful due to obstruction in
both directions, a new initial point is obtained and the walk is
restarted. If congestion is found in subsequent steps of a path,
one or more steps are taken backwards, new distance values
are obtained from the PDF, and the steps are reattempted in
the same order. The process continues until either the walk
is completed or a certain termination criterion is met. The
detailed steps of this approach are shown in Algorithm 2, while
examples of typical generated patterns are shown in Figure 3.

INTERNATIONAL TEST CONFERENCE 3

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

def TakeRandomWalks (grid, type, count) :

Input: Grid to create pattern on, walk type and count
Result: Adds requested features to the grid
1 for ¢ in range (count) :

/* Get walk specific parameters such as
step count, widths, distances, etc.
by sampling corresponfing PDFs */

2 walkParameters = SamplePDF ()

/* get random initial point */
3 initPoint = random ()
4 step =0
5 maxStep =0
6 while step < stepCount:

/* get random direction */

7 stepDirection = random ()
8 if step and surrounding is vacant:
9 take the walk and add it to the grid

10 step+ =1

u maxStep = max(step, maxStep)

12 else:

/* try the opposite direction x/

13 stepDirection = DirOpposite(stepDirection)

14 if step and surrounding is vacant:

15 take the walk and add it to the grid

16 step+ =1

17 maxStep = max(step, maxStep)

18 else:

19 if step == 0:

/+ this is the first step
x/

20 repeat by going to line 3 until walk
completes, or termination criteria is
met

21 else:

/+ take a step back & try
again */

22 remove last step from the grid

23 step = maxStep — 1

24 get a new distance

25 repeat a few times by going to line 8

26 if unsuccessful after multiple trials in
line 25:

/* take two steps back &
try again x/

27 remove two last steps from the grid

28 step = maxStep — 2

29 get a new distance

30 repeat by going to line 8 until walk

completes or termination criteria
is met

31 return

Algorithm 2: VIPER random walk procedure

While generating patterns with a large number of walks,
some of the later walks may face increased congestion.
Consequently, some parameters, such as step direction, may
depend on the spatial orientation of polygons already placed
by previous random walks. However, this does not reduce
randomness because all the previous polygons were placed
randomly and their spatial arrangement is different for every
new pattern. To reduce congestion, walks are taken in a
specific order. Power rails and their branches are created first.
VEM pairs are created next, followed by Paths and their
branches. Individual VEMs are placed last.

Paper 11.3

C. Data-Mining Previous Technology Nodes

With the introduction of every new technology node, the
critical dimensions, standard cell sizes and layer pitch continue
to shrink. However, fundamental characteristics of standard
cells, such as the number of internal connections, type of
connections, and Input/Output (I0) access methods have not
changed significantly. Indeed, most of these attributes are
governed by the principles of Complementary Metal Oxide
Semiconductor (CMOS) logic design and are, therefore, tech-
nology independent.

To increase the ‘realism’ of the patterns generated for
the current technology node, we data-mine designs from
previous nodes and learn the statistics of various technology-
independent features. Designs are decomposed into patterns of
a certain size, which are then used for data-mining. Features-
of-interest which we seek to learn include the number of paths
in a pattern, the number of turns in a path, the length and
width of individual segments, the number of branches on a
path, the probability of a pattern having a power rail, the
number of branches on a power rail, VEM counts, etc. The
mined information is, subsequently, used to generate individual
PDFs for the features-of-interest. To ensure that the generated
statistics are technology-independent, various features such
as widths, lengths, patterns sizes etc., are normalized to the
corresponding layer pitch. Normalized PDFs are, then, used
to sample various aspects of the patterns generated for the
current technology node, as discussed in Section III-B.

We note that the information mined from previous tech-
nology nodes neither forces the algorithm to generate the
‘same’ patterns as before, nor constrains the algorithm from
exploring new design spaces. The underlying reason for this is
that the pattern generation process is still random; the mined
information and learned feature distributions are only used as a
starting point in order to guide our method towards generating
realistic patterns. The user can always vary the mean and
standard deviation of certain aspects to encourage the tool to
generate patterns from various design corners or emphasize
specific characteristics.

D. Versatility and Intuitiveness

Layout pattern generators are used not only to generate
synthetic patterns which resemble real layouts, but also custom
patterns targeting specific applications. For instance, while
performing silicon validation for technology development,
patterns from various design corners which push the process to
its extremes are required. These could be patterns with a large
number of corners, high-density, parallel-paths with varying
widths and line-end positions, VEM clusters, low density pat-
terns with isolated VEMs, etc. An effective synthetic pattern
generation tool should be versatile enough to generate such
custom patterns-of-interest.

A custom pattern generation process should also be intuitive
and user-friendly. Unlike the SOTA, where the user can only
control density and a few basic design rules, VIPER enables
the user to generate full-custom patterns by directly controlling
various parameters such as number of VEMs, corners, path

INTERNATIONAL TEST CONFERENCE 4

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

— - H N -
=_ |[— =, m
_—— I—.l.u = |

(a) Parallel paths (b) High density

(c) VEM cluster (d) Multiple corners

Fig. 4: Custom patterns generated by VIPER

lengths, widths, branches etc. Examples of custom patterns
generated automatically using VIPER are shown in Figure 4.

E. Adaptability to major inflections in fabrication technology

Newer nodes use advanced technologies to tackle various
fabrication challenges and, in turn, introduce process-driven
changes to design methodologies. An effective synthetic layout
pattern generation tool must be capable of adapting to such
changes. Any layout pattern generation tool can easily adapt
to certain process changes, such as the shift from single
exposure lithography to double/triple exposures, as it can
continue to generate single color layout patterns, which can
be later colored using commercial layout coloring tools [6].
Adapting to other process changes, however, such as the move
to Self-Aligned Double/Triple Patterning (SADP/SATP), can
be quite challenging. Unlike the SOTA, VIPER is designed to
seamlessly handle many major technology inflections without
any changes to its source code. Examples illustrating such
capabilities of VIPER include:

(i) Some newer nodes feature additional layers dedicated
to local interconnections between power-rails and transistor
source/drains, thereby, eliminating such design features from
lower Back-End-Of-Line (BEOL) layers. When used to gen-
erate BEOL layer patterns, VIPER can accommodate such
changes by simply setting the number of power-rail branches
to zero.

(ii) In process nodes using SADP/SATP, drawn metal lines
are required to be increasingly uniform and only a few, if
any, corners are allowed. VIPER can adhere to such design
requirements by simply setting the number of corners on a
path to zero, or a small value.

IV. EXPERIMENTAL RESULTS

The performance of VIPER is evaluated and contrasted to
the SOTA based on the two primary objectives of synthetic
pattern generation methods, namely (i) generation of a diverse
set of patterns which cover a large portion of the design space,
and (ii) generation of realistic patterns which closely resemble
actual IC layouts.

Our experiments are performed in a 45nm technology node
[10]. An open-source circuit is placed and routed using the
Nangate open cell library [11] to obtain baseline designs. The

Paper 11.3

basic design rules from the same PDK are provided as inputs to
both VIPER and the SOTA tool. As a prior node, we consider
a 65nm technology and we use patterns from a single design
at this node to learn the technology independent PDFs.

In the rest of the paper, we refer to patterns captured
from real designs as ‘Design patterns’, patterns obtained from
the SOTA tool as ‘SOTA patterns’, and patterns generated
by VIPER as ‘VIPER patterns’. The Design patterns were
captured from the baseline design using a moving window
scheme [12]. All patterns correspond to M etall and have their
side dimensions equal to 8.5*layer_pitch, which translates to
about 1100nm. All generated patterns were subjected to a full
Design Rule Check (DRC). On average, about 14% of the
SOTA patterns and about 7% of VIPER patterns failed DRC.
Most such DRC failures were found on complex rule-checks,
both for VIPER patterns and for SOTA patterns. Only DR-
clean patterns were used in the rest of the analysis.

Both VIPER, and the SOTA tool were operated in their fully
automated modes which require minimal human involvement.
For the SOTA tool, this translates to mode 4, which is its most
promising mode, as discussed in Section II.

A. Design Space Exploration

To determine the amount of design space explored by a pat-
tern generation tool, we can use One-Class Classifiers (OCCs).
OCCs are Machine Learning (ML) based models which are
trained using a dataset containing samples belonging to a
single class and learn a decision boundary that encompasses
them. When a test set is presented to the trained OCC, the
samples which fall within the learned boundary are classified
as ‘inliers’, while the rest are classified as ‘outliers’ [13]. Prior
to presenting layout snippets to an ML model, we must first
convert them into numerical ‘feature vectors’. For this purpose,
we use the coordinate transform method [12]. We then use
a one-class Support Vector Machine (SVM) with a Radial
Basis Function (RBF) kernel as our OCC. While training ML
models, such as OCCs, some model parameters may require
fine-tuning. Such hyper-parameters control, for example, the
‘conservativeness’ of the classifier while learning the decision
boundary. To preserve fairness, we have ensured that the same
hyper-parameter values are used throughout our experiments.

INTERNATIONAL TEST CONFERENCE 5

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

Design
+SOTA

pea — 3
pea — 3

0
pca —2

¢ —4 -2

(a) SOTA

/// Desian // Design
=VIPER 8 =VIPER

TN\

AVIPER (tail-biased)

pca — 3
(=]

¢ —4

pca —2

(b) VIPER

(c¢) Tail-Biased VIPER

Fig. 5: Distribution of synthetic patterns w.r.t. design patterns

TABLE I: OCC results from design space coverage analysis

Training dataset Testing dataset Inliers Outliers
SOTA patterns Design patterns 26.61% 73.39%
VIPER patterns Design patterns 73.5% 26.5%
VIPER patterns (tail-biased) Design patterns 84.71% 15.29%

The rationale of our experiment is that, if we train an
OCC model using patterns produced by a synthetic pattern
generation tool and test it using actual patterns from the
entire design space, the percentage of inliers provides a good
estimate of the synthetic pattern generation tool effectiveness
in covering the design space. To this end, we generated 50,000
SOTA patterns and 50,000 VIPER patterns, and used them
to train two separate OCCs, which we then tested using a
common dataset of 50,000 design patterns. The results are
reported in Table I. To better visualize the results, we perform
Principal Component Analysis (PCA) [14] on the design
patterns, project VIPER and SOTA patterns onto the same
space, and plot the first three principal components in Figure
5. As observed in Figure 5a, which contrasts the distribution
of SOTA patterns against the distribution of Design patterns,
the overlap is rather small, resulting in a low percentage of
inliers (i.e., 27%) in our experiment. On the other hand, this
overlap is significantly larger when we contrast the distribution
of VIPER patterns against the distribution of Design patterns.
As shown in Figure 5b, VIPER patterns are spread out in a
larger area, thereby explaining the higher percentage of inliers
(i.e., 73%) in our experiment.

In order to further guide VIPER towards exploring a broader
design space, we use the PDFs learned from the previous
technology node as a starting-point and bias them towards
generating more samples at the tails of the distribution for
various parameters, such as line widths, number of corners,
etc. The biased PDFs are, then, used to generate a new
set of 50,000 patterns, referred to as VIPER74i1—Biased
patterns. Using this set of patterns, the classification proce-

Paper 11.3

dure is repeated and the results are reported in Table 1. In
Figure 5c, we contrast the distribution of tail-biased patterns
against both the Design patterns and the initial set of VIPER
patterns. Evidently, tail-biased patterns explore design spaces
well beyond the initial set of VIPER patterns, resulting in even
higher design space coverage and inlier percentage (i.e., 85%),
which is approximately 3X larger than the SOTA'. Since, the
tail-biased patterns achieve the highest design space coverage,
we use them as VIPER patterns for the rest of the analysis.

B. Realistic Pattern Generation

While the results of the previous subsection corroborate
that the synthetically generated layout patterns cover a large
portion of the design space, it is also important to ensure
that they are realistic. In other words, they should originate
from the same distribution as actual design patterns. Since, to
the best of our knowledge, there is no metric for quantifying
‘realism’ in IC layout patterns, we resort once again to OCCs
in order to evaluate the effectiveness of VIPER and the SOTA
tool in generating realistic patterns.

The rationale of our experiment is that all realistic design
patterns are governed by certain common characteristics and
originate from a certain —yet unknown— distribution. There-
fore, if we train an OCC to learn the boundaries enclosing
that distribution in the numerically transformed layout feature
space, we can then use the trained model to determine whether
the patterns generated by the synthetic pattern generation
tools fall within the learned boundary. Patterns resembling
realistic layout snippets would be, then, classified as inliers,
while unrealistic patterns would be classified as outliers. For
instance, if a synthetically generated pattern is blank, or if it
only contains one polygon covering the entire pattern area, it
would likely be substantially different from the majority of real
design patterns in the numerically transformed layout feature
space and would, therefore, be classified as an outlier.

'While the SOTA could also potentially benefit from similar biasing, it does
not offer a mechanism for such fine-grained adjustment.

INTERNATIONAL TEST CONFERENCE 6

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

f +SOTA
Design
6l
n
T2l
g
20
727
_47
767
787
-5
0 |
pea—1 S g T 3-2-10 1 2 3 45 6 7

pea — 2

Fig. 6: Design patterns projected onto SOTA pattern space

TABLE II: OCC results from pattern realism analysis

Training dataset Testing dataset Inliers Outliers
Design patterns SOTA patterns 85.09% 14.91%
Design patterns VIPER patterns (tail-biased) 90.57% 9.43%

In this analysis, we train an OCC using as known ‘real
patterns’ the same set of design patterns which were described
in Section IV-A. We then use the same trained classifier to
test both the SOTA patterns and the VIPER patterns. The
results are summarized in Table II. For better visualization,
we perform PCA on the SOTA patterns and project the real
design patterns onto the same space, as shown in Figure 6. A
similar plot, where PCA is performed on VIPER patterns and
real design patterns are projected onto its space, is shown in
Figure 7. In both cases, we observe that the vast majority of
SOTA and VIPER patterns, i.e., 85% and 90%, respectively,
lie within the boundary of real design patterns, signifying that
they belong to the same distribution. These results confirm
that the patterns generated by both the SOTA tool and VIPER
are realistic and resemble the characteristics of actual designs.
Moreover, we note that VIPER tends to perform slightly better
in generating realistic patterns, despite exploring a 3x larger
portion of the design space.

V. CONCLUSION

The use of comprehensive and representative layout patterns
during EDSE can play a catalytic role in robust development
of advanced technology nodes. To this end, we introduced
VIPER, a novel synthetic layout pattern generation method
which is based on a controlled random-walk algorithm. VIPER
leverages statistical design characteristics from prior technol-
ogy nodes in order to not only generate realistic layout patterns
but also to cover extensively the possible design space. As
demonstrated experimentally, VIPER covers an approximately
3x larger design space in comparison to the SOTA commercial
EDA tool, while ensuring realism of the generated layout
patterns across the entire space.

Paper 11.3

AVIPER (tail-biased)
8 Design
6|
41
o
| 2f
8
= 0
—2|
—4|
—6| Yo : i
3| g : p
5 p
0
5 y m
pea—1 -6 -4 =2 0 2 4 6 8

pea — 2

Fig. 7: Design patterns projected onto VIPER pattern space

ACKNOWLEDGMENT

This research has been partially supported by Semiconduc-
tor Research Corporation (SRC) through task 2709.001.

REFERENCES

[11 A. Hamouda, M. Bahnas et al., “Enhanced opc recipe coverage and early
hotspot detection through automated layout generation and analysis,” in
Optical Microlithography XXX, vol. 10147, 2017.

[2] J. P. Cain, Y.-C. Lai et al., “Methodology for analyzing and quantifying
design style changes and complexity using topological patterns,” in
Design-Process-Technology Co-optimization for Manufacturability X,
vol. 9781, 2016.

[3] P. Pathak, K. Krishnamoorthy et al., “Methodology to extract, data mine
and score geometric constructs from physical design layouts for analysis
and applications in semiconductor manufacturing,” in Design-Process-
Technology Co-optimization for Manufacturability X, vol. 9781, 2016.

[4] H. Li, E. Zou et al., “Design space exploration for early identification of
yield limiting patterns,” in Design-Process-Technology Co-optimization
for Manufacturability X, vol. 9781, 2016.

[5] G. Rajavendra Reddy, J. Wallner et al., “Pattern matching rule ranking
through design of experiments and silicon validation,” in ASM Interna-
tional Symposium for Test and Failure Analysis, 2018, pp. 443—448.

[6] Y. Chen, T. Gai et al., “Hybrid hotspot library building based on optical
and geometry analysis at early stage for new node development,” in
Design-Process-Technology Co-optimization for Manufacturability XII,
vol. 10588, 2018.

[7]1 D. Ding, J. A. Torres et al., “High performance lithography hotspot
detection with successively refined pattern identifications and machine
learning,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 11, pp. 1621-1634, 2011.

[8] J.-W. Jeon, J. Song et al., “Early stage hot spot analysis through standard
cell base random pattern generation,” in Design-Process-Technology Co-
optimization for Manufacturability XI, vol. 10148, 2017.

[9]1 M. Zhang, G. Deng et al., “A weak pattern random creation and scoring

method for lithography process tuning,” in Design-Process-Technology

Co-optimization for Manufacturability XII, vol. 10588, 2018.

FreePDK45. (2018) https://www.eda.ncsu.edu/wiki/FreePDK. [Online;

accessed 1-Nov-2018].

Nangate OCL. (2017) https://www.nangate.com/?page_id=22. [Online;

accessed 1-May-2017].

G. Rajavendra Reddy, C. Xanthopoulos ef al., “Enhanced hotspot detec-

tion through synthetic pattern generation and design of experiments,” in

IEEE VLSI Test Symposium (VTS), 2018, pp. 1-6.

[13] M. M. Moya, M. W. Koch et al., “One-class classifier networks for

target recognition applications,” pp. 797-801, 1993.

S. Wold, K. Esbensen et al., “Principal component analysis,” Chemo-

metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37-52,

1987.

(10]
(11]
[12]

[14]

INTERNATIONAL TEST CONFERENCE 7

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:20:47 UTC from IEEE Xplore. Restrictions apply.

