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Abstract— We propose TPE, a hardware-based framework to
perform workload execution forensics in microprocessors. Specifi-
cally, TPE leverages custom hardware instrumentation to capture
the operational profile of the Translation Lookaside Buffer (TLB),
as well as process these information off-line through multiple
machine learning and/or deep learning approaches, in order to
identify the executed processes and reconstruct the workload.
Unlike software-based forensics methods implemented at the
operating system (OS) or hypervisor level, whose data logging and
monitoring mechanisms may be compromised through software
attacks, TPE is implemented directly in hardware and, therefore,
provides innate immunity to software tampering. A prototype of
TPE is demonstrated in Linux on two representative architec-
tures, i.e., 32-bit x86 and 64-bit RISC-V, implemented in the
Simics and Spike simulation environment respectively. Exper-
imental results using the Mibench workload benchmark suite
reveal favorable process identification accuracy at low logging
rate, which corroborates the effectiveness and the generalizability
of TPE.

Index Terms— Workload forensics, TLB, machine learning,
hardware-based system security, RISC-V.

I. INTRODUCTION

AS RELIANCE of our everyday lives on technology
continues to increase, so does the amount of sensitive

information that is stored, processed and communicated in
electronic form. Inevitably, this also attracts intensified efforts
to gain unauthorized access to such information for monetary,
political, or other benefit. As a result, when such malicious acts
occur, the ability to retroactively investigate and identify the
events that led to the compromising of sensitive data becomes
invaluable.

Generally speaking, traditional computer forensics analy-
sis focuses on interpreting critical OS or application data
structures in binary form as human-understandable semantics.
Specifically, static pattern matching approaches are widely
adopted in order to retrieve or infer the data structures of
interest from the memory image, while human expertise is
typically required to bridge these data structures with the
events that transpired in further analysis [1], [2]. Numerous
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such methods have been developed at the OS level, leveraging
the convenience and flexibility of memory image probing and
analysis implementation [3]–[5]. OS-level methods, however,
can be subject to software attacks staged at the same level.
Kernel rootkits, for example, may compromise the OS-level
logging system and eliminate all traces associated with mali-
cious actions.

In order to address this limitation, hypervisor-level foren-
sics solutions have been proposed [6]–[8]. A hypervisor is
a software which provides virtualization, thereby allowing
multiple operating systems (guests) to run concurrently on
a single physical machine, without intruding each other’s
context. A management core, designed to be isolated from
the guest-OSs whose execution is facilitated by the hypervi-
sor, may naturally provide ground for more secure forensics
solutions. Therefore, the data collected by forensics methods
at the hypervisor level is generally immune to OS-level
software attacks. Nevertheless, as shown through recent work
[9], the hypervisor itself can be the attack target, as several
vulnerabilities and intrusion methods have been identified.
As a result, similar attacks can be launched at the hypervisor,
which compromise the integrity of the data acquired at this
level, in order to conceal malicious events and subvert the
effectiveness of the forensic analysis.

In contrast, in this work, we explore the possibility of
relying exclusively on data collected directly through the
hardware, without the intervention of a hypervisor or an
OS, whereby the logged information may be compromised.
As a result, there exists no physical pathway for the OS,
hypervisor, or any application running on the system to
interfere with the logged data. Accordingly, traces obtained
from hardware are expected to be immune to software-based
tampering. On the other hand, however, a hardware-based
forensics solution requires circuitry addition and modifi-
cation for identifying, extracting, and logging the rele-
vant information. Therefore, judicious selection of mini-
mal information sufficient for fulfilling the targeted task
becomes critical.

Herein, we investigate the feasibility and effectiveness of
a hardware-based forensics solution, i.e., TPE, which seeks
to reconstruct executed workload at the granularity of a
single process, through minimal information obtained from
the Translation Lookaside Buffer (TLB). A preliminary explo-
ration of this idea was presented in [10]. This extended ver-
sion, however, explores several additional aspects and provides
a more comprehensive exposition of the proposed method,
as summarized below:

1) Architecture-agnostic approach: Two representative
architectures, i.e., 32-bit x86 and 64-bit RISC-V, are
evaluated with the TPE. Similar results are obtained

2156-3357 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:19:35 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9213-3887
https://orcid.org/0000-0002-4322-0068


ZHOU et al.: TPE: HARDWARE-BASED TLB PROFILING EXPERT FOR WORKLOAD RECONSTRUCTION 293

from both platforms, indicating that TPE is effective
across architectures.

2) Advanced analysis method: Compared to the work in
[10], more advanced machine learning algorithms are
evaluated and their impact on the accuracy of the process
identification and the outlier detection tasks are assessed.

3) Advanced feature mining: The features used for
process identification and outlier detection are further
refined and more feature combinations are explored.
Specifically, the experimental results reveal (1) the
impact of the granularity of the feature space on the
accuracy of the process identification and the outlier
detection, and (2) the effectiveness of early prediction,
which significantly reduces the feature logging cost, and
supports the possibility of a real-time solution.

The remainder of the paper is structured as follows.
In Section II, we discuss related work. The system model of
the TPE is introduced in Section III. Section IV, Section V
and Section VI present details of our logging and feature
extraction mechanism as well as the corresponding analysis
methods. Experimental results evaluating the accuracy of the
TPE in reconstructing workload, as well as its overhead,
are presented in Section VII. The hardware implementation
details are provided in Section VIII. Potential limitations
are discussed in Section IX, while conclusions are drawn in
Section X.

II. RELATED WORK

The state-of-the-art in forensic analysis methods found in
the literature can be broadly categorized, based on the level
at which they are implemented, into OS-level approaches,
hypervisor-level and hardware-level approaches. Within each
category, existing methods can be further divided into
data-centric and program-centric, depending on the core object
of the forensic analysis [11]. Table I provides a taxonomy of
all related methods described in this Section, including the
method proposed in this paper.

A. OS-Level Approach

OS-level approaches generally benefit from semantic-rich
information, such as process ID, system call sequence, etc.,
which is available at this level. Data-centric approaches in
this category may focus on the integrity of file system objects,
such as files on disks. Various commercial products fall into
this paradigm. For example, enCase creates images for disk
data to enable data recovery and/or to ensure data integrity.
Similar products include FTK [1] and Registry Recon [2].
Alternatively, integrity of control flow of code, such as ker-
nel services is another hotspot in data-centric approaches.
In particular, Control Flow Integrity (CFI) checking, which
generally splits the code execution flow into different chunks
at different granularities and attests the correctness of the
real-time chunk-based execution chain, has been proposed as a
promising defense against control flow hijacking attacks such
as Code-Reuse Attacks (CRA). However, the incurred imple-
mentation and/or runtime overhead is relatively high [3]–[5].

Program-centric approaches, on the other hand, seek to
model program behavior based on a number of different
features. For example, the system call number and its cor-
responding argument have been widely used as such features.
In order to allow enough flexibility to account for program
execution variation and, at the same time, be able to distinguish

benign from malicious program behavior, machine learning
and/or statistical analysis is typically employed.

A large body of work on malware detection follows this
paradigm [12]–[14]. In general, these methods rely solely on
analysis of system call sequences. An interesting extension is
introduced in [15], which focuses on a subset of system calls
that are deemed to be most informative. Clustering of system
call arguments is also employed in order to better understand
how it has been invoked by the operating system. In another
incarnation, called Accessminer [16], further information such
as timestamps, return values, etc., is used to model how benign
programs access OS resources (e.g. files and registry entries),
so that malware-induced suspicious behavior can be better
distinguished from normal functionality.

B. Hypervisor-Level Approach

Hypervisor-level approaches benefit from the inherently
higher security offered by the virtualization and the isolation
that the hypervisor provides, as we discussed in Section I.
As a trade-off, however, approaches at this level now suffer
from the semantic gap problem. Specifically, while method-
ologies similar to those introduced at the OS-level can be
applied at the hypervisor-level, we first need to interpret the
information collected at the hypervisor level and bridge the
semantic gap by linking this information to tangible OS-level
objects. To achieve this, architecture-specific hardware con-
ventions are typically relied upon. For instance, Antfarm [17]
uses the CR3 register available in the x86 architecture in
order to identify process creation, switching and termination.
By convention, the CR3 register stores the base address of
the page table directory of the currently active process. This
binding provides a view of all process handling events. Most
hypervisor-level approaches rely on the CR3 value in order
to understand the life-cycle of a fundamental OS-level object,
namely a process.

Once the semantic gap is bridged, program-centric meth-
ods similar to the ones developed at the OS-level may be
applied. For example, the system call number/sequence can
be extracted from the instruction flow and specific registers
(rather than from a software tracing tool, such as strace),
in order to perform behavior-based modeling and analysis
[6], [18]. Data-centric methods may also be devised. Methods
along this direction monitor the critical area in kernel memory
(e.g. system call table, kernel text, etc.) in order to prevent
malicious changes therein [19]. Such methods even go to a
lower layer, to check whether contents on the disk and its
image in main memory match [7], [8]. Nevertheless, they still
rely on OS-level information (e.g. system.map) to locate
which part is critical to keep their eyes on [8].

Besides using system call-related information to model
program behavior, the idea of phase-based behavior modeling
has also been investigated. The underlying conjecture is that
program execution exhibits repeating patterns (phases), which
can be used to model and predict its behavior [20]. A more
recent approach, therefore, investigates the use of performance
counters to model the system call execution flow in order to
detect kernel rootkits, which may intentionally contaminate
the execution behavior [21].

C. Hardware-Based Approach

Hardware-based approaches are generally immune to soft-
ware attacks, thereby enabling a new direction toward
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TABLE I

TAXONOMY OF RELATED WORK AND TPE

thwarting malicious software [35]. For instance, similar
software-based data-centric methodologies, e.g., CFI check-
ing methodologies, can be applied at hardware level, which
are expected to incur less runtime overhead [22]–[24], [36].
In contrast to traditional CFI methods, CFIMon uses per-
formance counters to model code execution behavior and
detect control flow deviation [25]. Nevertheless, these methods
generally require specific support from the underlying OS or
compiler to bridge the semantic gap [22], [23].

While system call-related information can also benefit
hardware-based approaches in malware detection [26], [27],
most of program-centric approaches in this category try
to leverage low-level information extracted directly through
hardware in order to model the program behavior and per-
form forensic analysis. For instance, performance counter can
be used to model the program behavior through machine
learning methods, based on which malware detection can
be performed [28], [30]–[32]. Besides performance counter,
alternative methods collect low-level architectural informa-
tion, e.g. memory address reference, instruction opcode, etc.,
to model program behavior and perform malware detection
[29], [37]. Furthermore, a preliminary version of this work,
which performs workload reconstruction through Translation
Lookaside Buffer (TLB) profiling has been proposed in [10].
Based on the successful paradigm of [10], TLB profiling
has also been applied in real-time process identification
tasks [33], [34].

III. TPE OVERVIEW

The primary objective of the TPE is to develop a
system-level workload reconstruction capability at the gran-
ularity of process through data collected exclusively from the
hardware. Specifically, the TPE models the program behav-
ior based on the runtime architectural events using machine
learning algorithms, in order to identify if a process is known
or not and what application a process actually is. A top-level
view of the TPE architecture is shown in Figure 1. In par-
ticular, the TPE consists of two main components, namely
logging module and analysis module. The logging module,
which resides in the hardware to prevent software tampering,
continuously logs the data required for program behavior
modeling and extracts descriptive features from the collected
data. A dedicated port, which is invisible to and inaccessible
by the OS, is then involved to off-load the extracted features
into a trusted software environment. Accordingly, the analysis
module, which implements machine learning algorithms, can
then perform process classification as well as outlier detection
in order to reconstruct the executed workload.

Fig. 1. High-level system architecture.

The TPE is evaluated on two OS/architecture platforms,
i.e., 32-bit Linux/x86 and 64-bit Linux/RISC-V. A modern
computer architecture design falls into the category of either
a Complex Instruction Set Computing (CISC) architecture or
a Reduced Instruction Set Computing (RISC) architecture.
Correspondingly, the x86 architecture is a representative CISC
architecture, which is widely adopted in Intel microproces-
sor family. On the other hand, the RISC-V architecture is
an open-source representative RISC architecture, which was
initially developed by the University of California, Berkeley,
and provides extensive flexibility for various industrial or
research purposes. Furthermore, a modern OS can adapt itself
to a 32-bit version or a 64-bit version, according to different
architecture support. Consequently, the evaluation on both
the OS/architecture platforms ensures the practicality and
generalizability of the TPE.

IV. LOGGING OBJECT

Hardware-based forensics approaches, similar to
hypervisor-level approaches, suffer from the semantic
gap problem. Specifically, in this work, to model the program
behavior at the architecture level, there are two questions to
be addressed: (1) what data in hardware could be collected
as the identifier of a process? (2) what data in hardware
could be collected to describe the behavior of a process?
In this Section, we review the potential features of x86 and
RISC-V architecture which are beneficial for bridging the
corresponding semantic gap.

A. x86 Architecture

1) Process Identifier: In modern OS, thanks to the concept
of virtualization, each process has its dedicated address space,
consisting of continuous virtual memory blocks, that maps
resources used by the process into physical memory. This map-
ping is fulfilled by the translation between virtual address (i.e.,
addresses to access virtual memory) to physical address (i.e.,
addresses to access physical memory), which is maintained
by a dedicated page table. As a result, the base address of the
page table can be accurately bound with a process. In x86,
this base address is stored in a control register CR3, whose
value-changes perfectly match the events of process creation,
switching and termination [17]. Therefore, in this work, we use
the CR3 value as the identifier of a process.

2) Process Behavior: Program execution behavior typically
follows phases, which can be effectively predicted via perfor-
mance counter values. Modern microprocessors, with the assis-
tance of the OS kernel and the hyperthreading technique, can
even provide fine-grained per-thread data for more accurate
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process behavior modeling. Unfortunately, the engagement of
the OS kernel expands the attack surface. Moreover, order
of program execution will affect performance counter values.
As a result, associating these values accurately with OS-level
objects, such as processes, is not at all straightforward.

To address this limitation, rather than using performance
counter values, our approach uses instructions causing TLB
misses to profile the process behavior. TLB is a small
cache memory which maintains recent translations of virtual
addresses to physical addresses. In x86, when the CR3 value
changes, the entire TLB is flushed. This design convention
benefits our approach in two ways. First, all TLB events can
be accurately associated with the process represented by the
current CR3 value. Second, the effect of different order of
program execution is mitigated, as the TLB starts fresh with
every process. Therefore, the granularity of the logged data
(i.e., process-level) matches our analysis target.

In x86, the TLB is split into two parts, one for instruction
addresses (iTLB) and the other for data access addresses
(dTLB). The logging module monitors the iTLB state
and identifies the instructions which raise an iTLB miss.
Only user-space instructions are considered in our scheme.
In the 32-bit Linux OS, all virtual addresses higher than
0xC0000000 are regarded as pointers to kernel space.
Accordingly, our logging module ignores iTLB miss events
raised by such addresses. In the end, each CR3 value,
which represents a separate process, can be associated with
a sequence of instructions (which caused iTLB misses).

B. RISC-V Architecture

1) Process Identifier: The RISC-V architecture also follows
the principle of page virtualization and maintains a page table
which facilitates the translation between virtual addresses and
physical addresses. Accordingly, the base address of a page
table, whose value is stored in the Supervisor Page-Table Base
Register (SPTBR), can be used as the process identifier to track
the currently-active process.

2) Process Behavior: In RISC-V architecture, unlike x86,
the simulated TLB model contains only iTLB while ignoring
the dTLB implementation. Nonetheless, this fact does not
affect the use of user-space instructions raising iTLB to
describe the process behavior. Furthermore, since the iTLB is
also flushed every time when a SPTBR value is changed, our
approach still shares the same benefits of the design convention
as in the case of x86. In the 64-bit Linux OS, the user
space and the kernel space are separated by a huge void
space. As a result, all iTLB miss events incurred by virtual
addresses higher than 0xFFFFFF0000000000, which point
to the kernel space, are ignored in this case. Similarly, in the
end, each SPTBR value is associated with the corresponding
sequence of instructions which incurred iTLB misses.

V. FEATURE EXTRACTION

In order to model the process behavior using machine
learning algorithms, descriptive features have to be extracted
from the logged data, i.e., sequences of user-space instructions
raising iTLB misses. To minimize the data logging overhead,
our feature extraction is also performed directly in hardware.
As a result, the selected features are expected to be sufficiently
descriptive while the feature exaction mechanism itself should
not be too complicated and incur impractical hardware design
overhead. To simplify the procedure of feature extraction,

we first pre-process the logged data to obtain an abstraction of
its semantics. Upon the pre-processed data, three types of fea-
tures, including two independent features and one sequential
feature, are then developed and evaluated. The same method-
ology is shared between the x86 and RISC-V architecture,
while a slight difference is involved in data pre-processing due
to the distinction between the x86 instruction set and RISC-V
instruction set.

A. Pre-Processing Data

1) Pre-Processing on x86: We first abstract the semantic
of the logged instruction sequence through categorizing the
operator and operand of instructions. Six types of operators
(Op.) are considered on x86 as follows:

1) Data Op.: operations performing data manipulation,
such as storing/loading values, setting flags, etc.

2) Stack Op.: operations performing stack manipulation.
3) ALU Op.: operations performing arithmetic or logic

calculation.
4) Control Flow Op.: operations changing instruction exe-

cution flow.
5) I/O Op.: operations working with x86 I/O ports and

interacting with peripherals.
6) Floating Point Op.: operations performing all FP

related manipulation.
We consider 12 categories of operands (Opr.), including

8 classes corresponding to the 8 general purpose registers,
1 for memory reference, 1 for XMM registers and floating
point stack, 1 for all segment registers, and 1 for immediate
value. Upon these 18 types of Op./Opr., the exact features rep-
resenting the process behavior on x86 can then be developed.

2) Pre-Processing on RISC-V: Unfortunately, dedicated
Stack Op. and I/O Op. are not available in RISC-V instruction
set, and thus, the same classification of operators cannot be
directly applied in this scenario [38]. Therefore, these two
categories are excluded. Furthermore, the RISC-V implements
a group of dedicated instructions manipulating the Control
and Status Registers (CSR) to facilitate program execution.
CSRs manage various common CPU tasks, e.g., interrupt and
exception handling, paging switch and addressing, etc., as well
as maintain the status of the process and the flags raised
by different program executions. Therefore, a new category,
i.e., CSR Op., is included in the classification, which results
in the following five types of operators:

1) Data Op.: same definition as in x86.
2) ALU Op.: same definition as in x86.
3) Control Flow Op.: same definition as in x86.
4) Floating Point Op.: same definition as in x86.
5) CSR Op.: operations manipulating CSR register family.
Additionally, 13 categories of operands (Opr.) are consid-

ered herein. These include 1 class for stack pointer, 1 for
global pointer which tracks access to the heap, 1 for thread
pointer which points to thread-local storage, 1 for program
counter and 1 for immediate value. Moreover, 4 classes are
considered for function call-related operands, i.e., the registers
which hold the return address, the temporary registers which
hold intermediate results during function execution, the saved
registers which hold the values that should be maintained
across function calls, and the registers for function arguments
and return values. Another 4 counterparts are considered for
function calls involving floating point arithmetic. Upon these
18 types of Op./Opr., the exact features representing process
behavior on RISC-V architecture can be developed.
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Fig. 2. Feature extraction - counts of occurrence.

B. Counts of Occurrence With Partitioning

The first feature developed herein is the counts of occur-
rence of the categorized Op./Opr. Conceptually, for each
process, its associated instructions causing iTLB misses
are first partitioned into sets of a maximum size of
partition_size. Partitioning helps retain order infor-
mation while reducing log size. In one extreme, choosing
partition_size to be one retains all instruction order
information but is too expensive and, most likely, unnecessary.
In the other extreme, no partitioning would minimize the log
size but would also sacrifice all order information, thereby lim-
iting the accuracy of the forensic analysis. In TPE, we exper-
imented with partition_size of 100 instructions.

A vector F.V .i = < Op.1, . . . , Op.n , Opr.1, . . . , Opr.m >
is extracted for each partition. For each process, as identi-
fied through its CR3/SPTBR value, a list of feature vectors
[F.V .1, . . . , F.V .i , . . . , F.V .end ] is collected, reflecting the
order of partitions. The length of this list is considered as an
additional feature. Ultimately, a feature matrix is generated,
as shown in Figure 2. We note that, since the number of
partitions can vary from process to process, once the data
is off-loaded to the analysis module and prior to statistical
processing, we use zero padding for the feature lists of
processes so that all lists have the same number of columns
in the feature matrix.

Counts of occurrence benefits from its simplicity of imple-
mentation. The partitioning, on the other hand, provides
finer-grain view of counts of occurrence as well as reflects the
order information of instruction sequence, though in a lossy
way. We also note that, because of the variant number of pos-
sible partitions in one process, which can vary from hundreds
to thousands in our scheme, the size of the generated feature
matrix can be extremely large so that dimension reduction
methods must be applied in the further forensic analyses using
machine learning, otherwise they may suffer from the curse
of dimensionality problem while the computational overhead
of the analysis may also be dramatically increased.

C. n-Gram Model

An alternative but popular way of feature extraction is
using the n-gram model. A n-gram is a subsequence of
n items derived from a given sequence. A feature matrix
can then be constructed by the number of multiple possible
n-gram subsequences. Therefore, similarly, when n is greater
than two, n-gram model can also preserve both frequency and
order information, while the order information is less lossy
with larger n. The n-gram model is advantageous in the size
of the feature matrix, since the total number of features can
be fixed and bound by the number of possible elements in
a given sequence m and the choice of n, i.e., mn . However,
n-gram model is generally applied on an univariate sequence;
therefore, it cannot be directly used on our logged instruction

Fig. 3. Feature extraction - n-gram.

sequences, which are multivariate sequences containing
variables of both operators and operands.

Current research on program behavior modeling generally
only adopt features generated from sequence of ‘operators’,
without considering ‘operands’ (e.g., relying on sequence
of system call number solely and ignoring its arguments
[12]–[14]) while remaining effective. Similarly in our scheme,
the operators can be expected to convey more information of
program behavior than the operands do. Therefore, we discard
the operand part in our logged instruction sequence while
retain only the operator part so that the original multivariate
instruction sequence can then be converted into a univariate
operator sequence, on which the n-gram model can be
easily applied, as shown in Figure 3. As a result, feature
extraction using n-gram model, as compared with number
of occurrence with partitioning, maintains frequency and
lossy order information with a feature matrix of significantly
reduced size, whereas it ignores operand information.

D. Raw Sequence of Categorized Operator

Essentially, both feature extraction methods introduced in
Section V-B and Section V-C try to extract significant features
from a lossy compression of the logged instruction sequence
while these features are handcrafted, requiring human intelli-
gence and/or experience. Inevitably, there is no guarantee that
the selected features are the most representative while some
descriptive information, e.g., the precise order information,
may also be accidentally filtered due to the compression. As a
result, crafting features, which capture both frequency and
order information more precisely, may be beneficial. To this
end, we employ the entire raw instruction sequence, without
any further feature extraction, as the feature vector. Indeed,
the original sequence is able to maintain the lossless frequency
and order information. However, traditional machine learning
methods, which expect independent features in the feature
vector, such as the features introduced in the previous Section,
cannot accept sequential inputs. Hence, it is necessary to
employ more advanced machine learning algorithms, such as
deep learning models, to process the sequential features.

Deep learning is a branch of machine learning which
attempts to model high-level abstraction of data through multi-
ple processing layers. Using deep learning models benefits us
in two ways. Firstly, certain architectures of the deep learning
model can process sequential inputs so that they are a perfect
fit for our sequential features. Secondly, deep learning algo-
rithms can mine representative features from the raw sequence
automatically, without human intervention; thereby, optimal
features may be generated. Details of the exact learning model
we apply will be explained in the following Section.

Due to the fact that existing deep learning models limit their
capability to processing only univariate sequences, as well as
the assumption that operators are more informative in program
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Fig. 4. Feature extraction - raw operator sequence.

TABLE II

EXTENDED CLASSES OF DATA OP./ALU OP. SET FOR BOTH X86 AND

RISC-V SCENARIO

behavior modeling, the actual feature we use is the operator
sequence while operand information is discarded, as shown
in Figure 4. Furthermore, after examining the log of instruction
sequences, it is revealed that most instructions fall into DATA
Op. set and ALU Op. set. Hence, for both the x86 and
the RISC-V scenarios, we extend the categories of these two
operators as illustrated in Table II. Consequently, 13 classes
of operators, rather than the original 6 classes, are evaluated
for x86, while 11 classes of operators, rather than the original
5 classes, are evaluated for RISC-V.

E. Early Prediction

State-of-the-art program-centric forensics approaches
generally model the program behavior through profiling their
entire execution flow. However, it has been revealed that most
program behaviors tend to diverge at an early stage so that a
subsequence of their execution flow can be sufficient to pro-
vide distinguishable features [26]. In this work, we evaluate the
early prediction effect on features introduced in Section V-C
and Section V-D. Specifically, we perform the corresponding
feature extraction mechanism only on a fixed-length
subsequence of the operator sequence. Various possible lengths
of the subsequence are experimented with exhaustively while
the optimal length is selected based on statistical observations.
Apparently, the early prediction effect simplifies the feature
extraction mechanism in hardware, leading to significant
decrease in memory overhead, as well as reduction in the
size of feature matrices so that the computational complexity
of the follow-on forensics analysis can be reduced.

VI. MACHINE LEARNING FOR FORENSICS

The objective of the analysis module is to reconstruct
workload execution at the granularity of a process using the
extracted features. Since forensics is typically an ex post
facto effort, the actual analysis is implemented in a trusted
environment. However, future extensions could use dedicated
on-chip learning to perform the analysis directly in hardware,
possibly even in real-time, in a fashion similar to the malware
detection method described in [37]. The actual analysis is
based on machine learning and employs multi-class classifica-
tion, where each class corresponds to a single process. Addi-
tionally, previously unseen processes are identified through
outlier detection. We note that the methodology for forensics
analysis is architecture-agnostic.

A. Process Reconstruction

For the purpose of process reconstruction, we experimented
with three different non-linear multi-class classifiers of varying
complexity and performance, namely K-Nearest Neighbors
(KNN), Support Vector Machine (SVM) and Recurrent Neural
Network (RNN). KNN and SVM, as traditional machine
learning algorithms, are employed to handle the independent
features, i.e., the features introduced in Section V-B and
Section V-C, while RNN, as the more advanced deep learning
algorithm, is employed to handle the sequential features,
i.e., the feature introduced in Section V-D.

1) Handling Independent Features: KNN computes the k
nearest neighbors for a sample based on their Euclidean
distance and assigns the sample to a class based on majority
voting among these neighbors. SVM, on the other hand,
generates decision boundaries which separate the feature space
into labeled sub-spaces, while ensuring maximal separation
among them. When evaluating a new sample, the SVM clas-
sifies it based on the label of the sub-space that it falls into.
An important consideration when applying machine learning
is the high dimensionality of the feature matrix. Since the
extracted feature vector list, using counts of occurrence and
n-gram model, may contain a large number of elements,
it is necessary to reduce the dimensionality before performing
classification, in order to avoid the curse of dimensionality.
To this end, we use Principal Component Analysis (PCA),
which generates a lower-dimensional feature matrix, while
retaining most of the information of the original matrix. In our
implementation, we used KNN from the MATLAB built-in
library and SVM from the LIBSVM library [39].

RNN, as a variation of the traditional Artificial Neural
Network (ANN), has been developed in order to make use
of sequential information of the input. The traditional ANN
has a unidirectional multi-layer structure, where each layer
consists of a user-defined number of nodes, i.e. neurons,
which are interconnected with nodes in the adjacent layers.
The leftmost layer of the network is generally termed input
layer while the rightmost layer is termed output layer. All
the intermediate layers, on the other hand, are termed hidden
layers. Each neuron in a hidden layer is then composed of
a tunable parameter matrix W , called weight as well as a
user-defined function F , called activation function, which
performs the mapping y = F(W T x), where x and y are
the corresponding input and output of the neuron. A typical
ANN architecture is shown in Figure 5a. Apparently, ANN
evaluates each feature element independently and, therefore,
cannot process sequential features.
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Fig. 5. ANN vs. RNN.

Fig. 6. An unfolded recurrent neuron in RNN.

RNN considers the sequential information through a simple
modification of the traditional ANN. Specifically, in RNN,
a self-feedback is applied on each neuron so that its outputs
rely not only on inputs from the last layer but also on its
own previous computations. For better understanding, an RNN
can be converted into the traditional ANN through unfolding
the feedback of its neurons, as shown in Figure 6, while the
depth of the unfolded network depends on the length of the
input sequence. Through these means, RNN memorizes infor-
mation of what has been calculated and, therefore, leverages
the sequential information in the input sequence. A typical
architecture of an RNN is illustrated in Figure 5b.

2) Handling Sequential Features: Conventional ANN train-
ing, i.e. backpropagation through time (BPTT), generally relies
on the backpropagation of error and the gradient descent
algorithm. However, the gradient-based training method may
suffer from the vanishing gradient problem, as identified
in [40]. In particular, traditional BPTT updates the weights
backwards layer-by-layer by the chain rule, where the error at
an arbitrary neuron is propagated back to its previous stages
for multiple times, depending on the depth of the network.
Correspondingly, the gradient decreases exponentially with the
depth. When the depth is large, the gradient of the ‘front’
layers (i.e. layers closer to the initial inputs) may ultimately
vanish. As a result, the BPTT algorithm may be undermined
or not work at all. The RNN, unfortunately, is more severely
affected by this problem, since its unfolded network structure
is generally much deeper.

To overcome this limitation, we employ an alternative archi-
tecture of the RNN, namely Long Short-Term Memory (LSTM),
which was initially proposed in [41]. LSTM-RNN substitutes
the original neuron with a memory cell, whose implementation
is shown in Figure 7. A memory cell generally consists of
an input gate, a neuron with self-feedback, a forget gate and
an output gate [42]. The input gate determines whether the
incoming signal can alter the current memory state or not
while the output gate allows the outputs to affect other cells
or blocks them. The forget gate, on the other hand, controls
the effect of the previous memory state [41]. Through these
means, LSTM maintains a more constant error propagation
during BPTT training, which enables the RNN to learn over
much longer steps, thereby preventing the vanishing gradient.
In our implementation, we used the LSTM-RNN from Keras.

Fig. 7. The implementation of the memory cell in LSTM-RNN.

B. Outlier Detection

In order to identify unseen processes, which should not be
classified as any existing process class, we rely on outlier
detection. Specifically, two different approaches are consid-
ered, i.e., probability estimates and auto-encoder, to distin-
guish unseen process from seen process. The former leverages
the independent features while the latter exploits the sequential
features.

1) Probability Estimates: Our first outlier detection method
makes use of the probability estimation available in the SVM.
Given a sample, the SVM provides not only the chosen class,
but also a vector containing the probabilities that this sample
belongs to each known class. The conjecture of this outlier
detection method is that when the sample comes from a
known distribution (i.e., previously seen), the probability of the
winning class will dominate all others, while when it comes
from an unknown distribution (i.e., outlier), multiple classes
will exhibit fairly similar probability. Therefore, a simple
outlier screening criterion is the probability difference between
the first and second most likely classes. If this difference
exceeds a threshold, which is learned through cross-validation,
the process is classified as an outlier.

2) Auto-Encoder: On the other hand, a more advanced
outlier detection method is developed based on the auto-
encoder. An auto-encoder is an ANN, which has exactly same
dimensions in both the input layer and the output layer, and
aims at learning the representative distribution of the inputs in
order to reconstruct them at the outputs. The performance of an
auto-encoder is generally evaluated through the reconstruction
error, which indicates the deviation of the reproduced outputs
from the inputs and can be implemented by the Mean Square
Error (MSE). The reconstruction error, thus, is expected to be
minimized in an optimized model. A typical auto-encoder is
depicted in Figure 8.

In this work, in order to enable compatibility with the
sequential inputs of the auto-encoder, we apply the same
network structure as introduced in Section VI-A2, i.e., LSTM-
RNN. Particularly, we attempt to learn the characteristics
of a set of instruction sequences of a process through the
auto-encoder so that the reconstruction error for elements in
sequences of seen processes is minimized while the error for
elements in sequences of unseen processes is distinguishably
large. For each element i in a seen process sequence of length
l, a maximum acceptable error emax(i) is learned in advance,
hence, our outlier screening mechanism can be developed by
setting a threshold on the value of abnormal reconstruction
error as follows:

ei =
{

eabr , i f ei > emax(i)
enorm , otherwise

(1)
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Fig. 8. Typical architecture of an auto-encoder.

sample =
{

seen proc., i f |{ei | ei = eabr }| < th
outlier, otherwise

(2)

Considering that the underlying distribution describing dif-
ferent seen process classes may vary significantly, in this work,
we build a separate auto-encoder for each seen process classes
and we individually set their corresponding thresholds.

VII. EXPERIMENTAL RESULTS

We now proceed to assess the effectiveness of our method
in correctly classifying known processes and identifying previ-
ously unseen ones. Additionally, we evaluate the data logging
rate required, as this reflects the incurred hardware overhead.

A. Experimental Setup

1) Setup for x86: Our experiments for x86 architecture
were performed in Simics, wherein a 32-bit x86 machine
was simulated with a single Intel Pentium 4 core running at
2 Ghz and containing 4 GB of RAM. A minimum installation
Ubuntu server that embeds a Linux 3.8 kernel was then
loaded as the OS on the simulated hardware. All collected
data was normalized and fed to the analysis software via
Python/MATLAB.

We use MiBench [43], a free commercially representative
benchmark suite as our workload, which contains a few
tens of application classes. The entire suite was executed
400 times, with each application invoked with various valid
arguments or in the background (& option). The order of
the workload execution was randomized to avoid the bias
that a specific order might impose. We exploited the Simics
feature, haps, to hook our event monitor on the iTLB and the
program counter. In total, we collected a dataset containing
approximately 9000 samples, where each sample represents a
single process.

2) Setup for RISC-V: The experiments for RISC-V architec-
ture, on the other hand, were performed in Spike, a RISC-V
ISA simulator, where a 64-bit machine was simulated with
2 GB RAM. A basic RISC-V version of Linux 3.4 kernel
was then loaded as the OS platform. Furthermore, the source
code of the original Spike simulator was modified according
to our specific purpose, i.e., monitoring instructions raising
iTLB misses and changes of SPTBR value.

The MiBench benchmark was, once again, used as the
workload. Unfortunately, 10 of the benchmark classes cannot
be compiled by the RISC-V cross-compiler, due to the header
file missing in the RISC-V Linux. Therefore, these testbenches
were excluded in our experiments. Subsequently, the rest of the
benchmark suite was executed 400 times in the same manner
as in our previous experiments, resulting in approximately
4800 samples in total. Similarly to the previous case, each
sample represents a single process.

Fig. 9. Classification accuracy over different input sequence lengths for
x86 and RISC-V scenario. (a) x86 scenario. (b) RISC-V scenario.

B. Early Prediction Analysis Using LSTM-RNN

We first evaluate the early prediction effect in process
reconstruction using LSTM-RNN approach on both x86 and
RISC-V architectures. We note that LSTM-RNN accepts raw
operator sequence as its input and performs multi-class clas-
sification on our workload dataset in order to reconstruct the
executed processes. The dataset collected was split by half into
the training set and the validation set. The RNN model consists
of an embedding layer as its input layer, a fully-connected
layer as its output layer, and an LSTM layer in between. The
sigmoid function is used as the activation function for each
layer. To train the model, a batch size of 64 and an epoch
number of 100 were selected. The evaluated length of the
operator sequence varied from 10 to 200 on x86 and from
25 to 500 on RISC-V. Figure 9 summarizes the performance
of the LSTM-RNN classifier at different input sequence length
on both architectures. As may be observed, the classification
accuracy increases monotonically when the sequence length is
increased, due to the fact that longer sequences convey more
information for better distinguishability. On the other hand,
input length of longer than 100 on x86 has no significant
impact on the classification accuracy, which confirms the early
prediction effect, indicating that process reconstruction based
on the entire program execution flow is an overkill. Similarly,
this phenomenon can also be observed on RISC-V after the
input length reaches 150. As a result, in order to achieve
acceptable classification accuracy with minimal logging over-
head, we selected 100 and 150 as the optimal length of the
input sequence on x86 and on RISC-V, respectively.

C. Effect of Extended Feature Set

To evaluate the effect of the extended feature set on different
feature extraction strategies and various analysis methods,
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TABLE III

PROCESS IDENTIFICATION RESULTS ON X86 (IN %)

herein, a comprehensive horizontal analysis was performed.
Table III and Table IV summarizes the comparison. In both
tables, the left part contains data performed on the origi-
nal feature set (mentioned in Section V-A), while the right
part contains data performed on the extended feature set
(mentioned in Table II). As may be observed, the extended
feature set results in only similar overall process identification
accuracy for Counts of Occurrence (CoO) model and n-gram
model on both x86 and RISC-V architecture. On the other
hand, the impact of the extension of the feature set is sig-
nificantly observed on RNN model, i.e., about 4% increase
in the overall accuracy on x86 and about 6% increase in the
overall accuracy on RISC-V. The observation indicates that the
RNN model with early prediction effect is more sensitive to
feature resolution. This can be explained since the RNN model
operates directly on the raw operator sequence without any
processing and, thus, higher feature resolution carries more
information for the RNN model to mine automatically. As a
result, in the following sections, for the CoO model and the
n-gram model, we mainly focus on the results achieved with
the original feature set. For the RNN model, we mainly focus
on the results achieved with extended feature set.

D. Process Classification Results

As mentioned in Section VII-A1, on x86, the process
classification was performed on samples of 23 classes of
processes, where each class had 400 samples. on RISC-V,
the experiments were performed on samples of 12 process
classes, where each class contained 400 samples. For both
architectures, the corresponding dataset was split by half into
training set and validation set, each of which contains half of
the samples for every process class. Using these two datasets,
we compared the effectiveness of the three types of features
combined with three different machine learning models in
identifying different processes, as introduced in Section V and
Section VI. Results are summarized in Table III and Table IV.

1) Using Counts of Occurrence: We first evaluated the clas-
sification performance using the counts of occurrence features
on the two architectures. The initial dimensionality of the
collected feature vector matrices were as large as 83612 and
was reduced to 200 after applying PCA. The reduced feature
matrices were fed into the two classifiers, i.e., KNN and
SVM. On x86, this leads to the process classification results
as illustrated by the first two columns in Table III. As may
be observed, both classifiers performed very well in correctly
classifying the processes, reaching an overall classification
accuracy of 95.74% and 95.83% respectively. For most classes,
this accuracy was even higher. The similar result can be
observed on RISC-V. As illustrated by the first two columns
in Table IV, an overall accuracy of 94.5% and 92.1% can be
reached, respectively.

However, on x86 architecture, a noteworthy exception is
the process rawdaudio, for which half of the instances are
misclassified as rawcaudio, despite the adequate number
of training/validation samples. This is explained by the fact
that rawcaudio implements an Adaptive Differential Pulse
Code Modulation (ADPCM) encoding algorithm, wherein
rawdaudio, which implements the corresponding decoding
algorithm, is invoked as a major functional unit. This inclu-
sion introduces similarity and reduces classification accuracy
for rawdaudio. Alternative features with more advanced
machine learning algorithms may potentially address this
limitation. The same observation does not apply to RISC-V
architecture, simply because the two benchmark programs can-
not be compiled on the architecture, and thus, were excluded
in the evaluation.

2) Using n-Gram Model: Alternative features using the
n-gram model were evaluated next. We experimented with the
3-gram and 4-gram models, which were applied on the opera-
tor sequence on the two architectures (whose lengths are deter-
mined based on the evaluation in VII-B) to extract features
since the early prediction effect was revealed. As described in
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TABLE IV

PROCESS IDENTIFICATION RESULTS ON RISC-V (IN %)

Section V-A, on x86, where we consider 6 types of operators,
the initial dimensionality of the feature matrix generated by the
3-gram and 4-gram model were 216 and 1296, respectively.
Similarly, on RISC-V, where we consider 5 types of operators,
the 3-gram and 4-gram model generated feature matrices
whose initial dimensionality were 125 and 625, respectively.
Compared to the use of Counts of Occurrence, the dimensions
of the feature matrix generated using n-gram model were
significantly smaller.

The matrices were then fed into KNN and SVM to perform
process classification. As indicated by Table III, the overall
classification accuracy for the two classifiers using 3-gram
model were 83.25% and 82.64%, while the accuracy for the
two classifiers using 4-gram model were 86.99% and 85.93%
on x86. Similarly, as illustrated by Table IV, an overall classi-
fication accuracy of 87.46% and 86.33% for the two classifiers
using 3-gram model can be achieved, while an overall accuracy
of 87.66% and 87.45% for the two classifiers using 4-gram
model can be achieved on RISC-V. As expected, the 4-gram
model, which captures information in a finer-grain manner,
performed better than the 3-gram model. However, compared
with the result of using CoO, the overall performance of the
n-gram model was not competitive. Neither was the issue of
distinguishing between the process rawcaudio and rawdaudio
resolved. This may be explained by the fact that the n-gram
models, similar to the counts of occurrence, preserve the
frequency and order information in a lossy way, sacrificing
potentially helpful information from the operands. Moreover,
the n-gram models were applied with the early prediction
assumption, while the CoO models were applied on the entire
program execution flow. The information carried by CoO
model was certainly more comprehensive, while the n-gram
models with early prediction cannot compensate for the infor-
mation loss. Nevertheless, the n-gram model generated a much
smaller feature matrix, which implies dramatically reduced
storage/computation overhead.

3) Using Raw Operator Sequence: Finally, we evaluated the
effectiveness of process classification using the raw operator
sequence with the deep learning model. The dimensionality
of the feature matrix in this scheme is equal to the optimal
length of the operator sequence, i.e., 100 on x86 and 150 on
RISC-V, due to the early prediction effect. As shown by
the last columns in Table III and Table IV, the RNN-LSTM
model performs the best in process identification, achieving an
average classification accuracy of 99.12% on x86 and 97.8%

Fig. 10. Outlier detection results using probability estimates on x86.

on RISC-V, which is approximately 3% higher than the accu-
racy achieved through KNN/SVM with counts of occurrence.
Furthermore, while the similarity issue between the process
rawdaudio and rawcaudio was unresolved by using other
features, the process rawdaudio was successfully distin-
guished from the process rawcaudio in this scheme. Indeed,
essentially, counts of occurrence and n-gram model generates
compressed representation of the raw instruction sequence.
On the other hand, the raw operator sequence preserves the
frequency and order information more precisely so the deep
learning model can intelligently mine descriptive features from
its input sequences. As a result, a lossless abstraction of the
raw instruction sequence is generated, which leads to a better
performance for process classification.

E. Outlier Detection

To evaluate the effectiveness of the TPE in identifying
unseen processes, we repeated the experiment, this time omit-
ting 5 randomly selected classes from the training set, while
retaining them in the validation set to mimic outliers. We com-
pared the performance of our two outlier detection methods,
i.e., probability estimates and auto-encoder, as follows.

1) Using Probability Estimates: We first evaluate the out-
lier detection using probability estimates. Through cross-
validation, we set the threshold for outlier screening to 0.6,
which is applied to the testing set to identify unseen process.
Figure 10 and Figure 11 summarize the results for the repeated
runs on x86 and RISC-V architectures. For each run, we report
the false positive (FP) (i.e., seen process classified as outlier)
and false negative (FN) (i.e., outlier classified as seen process)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:19:35 UTC from IEEE Xplore.  Restrictions apply. 



302 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 2, JUNE 2021

Fig. 11. Outlier detection results using probability estimates on RISC-V.

rates. As may be observed, the simple outlier screening method
described above results in high outlier detection accuracy,
with the average FP and FN rate at 12.31% and 5.13% on
x86, and the average FP and FN rate of 7% and 10.45% on
RISC-V. Indeed, for previously seen processes, the probability
difference between the top two classes is overwhelmingly high,
while for outlier processes it is overwhelmingly low. Addi-
tionally, threshold adjustment can support biased decisions,
favoring one error direction.

2) Using Auto-Encoder: Unlike probability estimates using
a global threshold to identify outliers, an auto-encoder is built
for each seen process class, which results in 18 indepen-
dent auto-encoders on x86 architecture and 12 independent
auto-encoders on RISC-V architecture respectively, whose
thresholds to screen outliers were set separately. For each
class, we report its corresponding threshold, as well as the
FP/FN rate, which is summarized in Figure 12 and Figure 13.
The left y axis represents the FP/FN rate while the right y
axis represents the threshold applied for each process class to
screen outliers.

As may be observed, this approach significantly reduces
the FP/FN rate, compared with the method using probability
estimates. On x86, it results in an average FP rate of 0.96%
and an average FN rate of 0.21%. Zero FP or FN rate, which
indicates no error in identifying outliers, can even be reached
in certain process classes, while the worst case of the FN and
FP rate is 3.5% and 3.77% respectively. Similarly, on RISC-V,
an average FP rate of 1.84% as well as an average FN rate
of 1.8% can be achieved. The worst case of the FN and FP
rate is 3.3% and 3.5% respectively.

Indeed, modeling the characteristic distribution of different
process classes individually may lead to a more precise inter-
pretation of each class. Additionally, the sequential features
also surpass the independent features in extracting meaningful
information from the raw instruction sequence, which has been
verified in the process classification results. Overall, outlier
detection using auto-encoder can be expected to outperform
alternatives using probability estimates.

F. Logging Overhead

To evaluate the design overhead of the TPE on both archi-
tectures, we focus on assessing the required data logging rate
corresponding to our different feature extraction mechanisms.
As discussed in Section V-A, the data pre-processing on
the RISC-V differs from the x86 counterpart due to the
distinct instruction set design. However, the methodologies
for feature extraction are identical on both architectures and,
thus, the same estimation method can be applied to both

Fig. 12. x85 outlier detection results using auto-encoder.

Fig. 13. RISC-V outlier detection results using auto-encoder.

architectures. On the other hand, unfortunately, Simics is not a
cycle-accurate simulator. Therefore, to attain a more accurate
estimation, we calculated the logging rate as follows.

In the scheme of feature extraction using counts of occur-
rence, for each partition of a process, the TPE requires
one feature vector containing 18 elements. If we assume
partition_size to be 100, as in our experiments, we only
need 7 bits for each element, since the occurrence frequency
can never exceed the partition_size. The number of
partitions per second for which a vector needs to be logged
is determined by the iTLB miss rate. Assuming clock cycles
per instruction (CPI) has an optimal value of 1, the estimated
logging rate is calculated step by step by the equations below:

F.V . si ze = 18×�log2 parti tion si ze� (3)

parti tion generation rate = i T L B miss rate

parti tion si ze
(4)

bi ts/ inst . = F.V . si ze × parti tion

generation rate (5)

est . logging rate(bi ts/sec)= bi ts/ inst .×clk f req.

C P I (assumed =1)
(6)

On the other hand, in the scheme of feature extraction using
n-gram model or raw operator sequence, it is more efficient
to log the operator sequence itself directly. Given that the
number of operator categories is 6 or 13, respectively, we only
need 3 or 4 bits for each element in the sequence. Similarly,
the number of categorized operators in the operator sequence
to be logged per second is determined by the iTLB miss
rate. The estimated logging rate is calculated by the equations
below:

element_si ze = �log2 number o f op.

categories� (7)

bi ts/ inst . = i T L B miss rate × element

si ze (8)
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est . logging rate(bi ts/sec) = bi ts/ inst . × clk f req.

C P I (assumed = 1)
(9)

We ran our benchmark suite several times to obtain an
average iTLB miss rate. On x86, this value was 0.0016%,
resulting in an estimated data logging rate of only 5.17 KB/s,
12.31 KB/s and 16.41 KB/s respectively. While a typical TLB
miss rate is expected to be around 0.01-1% [44], since we
consider only user-space virtual addresses and only iTLB
misses, the relevant miss rate for our scheme is much less.
Furthermore, since we assumed an optimal CPI of 1, the log-
ging rate ought to be even lower in realistic cases. As may be
observed, compared with counts of occurrence, n-gram model
and raw operator sequence nearly doubles/triples the logging
rate. Nevertheless, due to the early prediction effect, the log-
ging mechanisms in the latter two schemes are only enabled
for the first 100 instructions raising iTLB miss while remaining
disabled during the rest of the time, thereby generating logs
of much smaller size. Therefore, while introducing higher rate
during the logging process, n-gram model and raw operator
sequence incur less storage overhead.

Correspondingly, on RISC-V, the average iTLB miss rate
for user-space instructions was 0.026%. Moreover, the Spike
simulator does not implement a timing model. Therefore,
assuming the clock frequency of a prototyped RISC-V CPU,
i.e., SiFive E51 which runs at 1.5 GHz [45], an average data
logging rate of 71.7 KB/s, 146 KB/s and 195 KB/s is required
when counts of occurrence, n-gram model and raw operator
sequence are applied in feature extraction, respectively. The
relatively high iTLB miss rate, as compared with the case of
x86, can be explained by the different implementation of the
RISC-V ISA as well as its cross-compiler. Further optimization
on this platform, which is orthogonal to our work, is expected
to lower the iTLB miss rate.

G. Summary

To recap, it has been revealed that the TPE is capable of
identifying processes on both x86 and RISC-V architectures.
Among all the feature extraction strategies and analysis mod-
els, the RNN model with extended feature sets yields the
best identification accuracy. Nevertheless, compared with CoO
model with traditional machine learning methods, the RNN
model incurs a higher logging overhead. Since TPE follows
an offline analysis model, we can afford implementation
complexity in the analysis software. In this case, the advanced
model may be the best choice to implement in the TPE. On the
other hand, an online solution can potentially be explored
based on the same methodology. While the CoO model with
traditional machine learning algorithms yields slightly lower
identification accuracy, it is much simpler to implement on-
chip. In this situation, a more cost-effective solution may select
the CoO model as the primary option to implement.

VIII. LOGGING SYSTEM - HARDWARE IMPLEMENTATION

As mentioned earlier, our logging mechanism resides
entirely in hardware, therefore requiring modification in CPU
design, in order to eliminate the possibility of software attacks.
To minimize the required storage for the data log, feature
extraction is also implemented in hardware, with the final
log containing only the feature matrices. We note that the
hardware architecture of the proposed logging system is
architecture-agnostic since the feature extraction methods are
shared across both the architectures under evaluation.

Fig. 14. Logging system implementation in hardware.

The hardware logging module consists of three main com-
ponents, with its architecture shown in Figure 14:

Event Monitor: this component is used to monitor critical
events, including TLB miss, CR3 register (x86) or SPTBR
register (RISC-V) update, program counter update, etc. The
event monitor serves as the main controller of the entire
logging system. In modern architecture design, the TLB is
implemented in the Memory Management Unit (MMU) and
the miss events are handled transparently by the hardware.
The event monitor is expected to reside in the CPU but is
also connected to the iTLB cache memory to get notification
when a miss occurs. After the hardware resolves this miss (and
independently of whether a translation is found in the page
table or not), the event monitor picks up the instruction which
raised the iTLB miss and feeds it to the feature generator.
In parallel, the value of the CR3 on x86 or the SPTBR on
RISC-V, which works as an identifier of the current process,
is monitored to ensure that the current iTLB miss event is
associated with the correct process.

Feature Generator: this component performs feature
extraction for each instruction which raises an iTLB miss.
During decoding of such an instruction, the feature generator
produces the corresponding feature list according to the rules
introduced in Section V-D. When the length of the input
instruction sequence reaches the optimal length (i.e., 100 for
x86 and 150 for RISC-V), the feature generator notifies the
storage system that the feature extraction for the current
process has been accomplished.

Storage System: this component is the actual space where
the logged information is stored. A FIFO buffer is used to
handle the clock difference between the CPU and the storage
system. The size discrepancy between log entries is handled
during analysis. Periodically or continuously, the logged data
is transmitted through a dedicated port, which is physically
inaccessible by the OS, to a trusted external storage or to the
environment where analysis is performed.

Generally speaking, the innate immunity of hardware-based
intrusion detection methods against software-based tampering
comes at the cost of sacrificing flexibility. In particular,
hardware-based methods performing online malware detection
[37], [46], whenever the OS kernel is updated, require an
updating of its underlying configuration. In order to maintain
immunity, this information should not be modifiable through
software or even the OS, hence, such updating is not at all
straightforward. On the other hand, since the forensics analysis
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in TPE is performed in software, our hardware implementation
can remain unchanged during its lifetime, and thus, avoid this
limitation.

IX. DISCUSSION

A. Comparison With HPC-Based Solution

State-of-the-art Hardware Performance Counter (HPC)-
based solutions, as summarized in [47], mainly focus on
malware detection, which poses strict demands for online func-
tionality. In contrast, TPE aims at workload forensics, which
can be performed offline. Thereby, the TPE generally requires
simpler on-chip logic than HPC-based solutions, since the
analysis models can be implemented in software. Furthermore,
unlike HPCs, which constantly monitor a wide range of system
events, the TPE focuses exclusively on TLB miss events and
corresponding instructions. Compared to HPC-based solutions,
this feature model leads to lower logging bandwidth, while still
retaining favorable process identification performance. As a
point of reference, the HPC-based method in [46], which
performs malware detection, requires bandwidth of a few
hundred KB/s.

B. Environment Update

Hardware-based solutions, due to their nature, are not com-
patible to software environment updates such as OS kernel
updates, workload updates, etc. Inevitably, after such updates,
the analysis model may also require updates. Fortunately,
the TPE follows an online-logging-offline-analyzing para-
digm. Therefore, unlike other online, pure on-chip solutions,
the required changes in the analysis model are relatively easy
to implement. The hardware-related implementation in TPE
involves only feature extraction and logging logic, which can,
most likely, remain unchanged during environment changes.

X. CONCLUSION

We introduced TPE, a hardware-based framework for per-
forming workload reconstruction for forensic analysis. Unlike
OS-level and hypervisor-level methods, which rely on infor-
mation obtained through the OS, and are, therefore, vulnerable
to software attacks, this hardware-based method collects the
required information directly in hardware, making it impervi-
ous to such attacks. Herein, we demonstrated an incarnation of
this general idea, i.e., TPE, which models the program behav-
ior using machine learning algorithms based on instructions
raising iTLB misses, in order to perform process identification
as well as outlier detection.

The TPE was evaluated in Linux OS running on two
representative architectures, i.e., 32-bit x86 and 64-bit
RISC-V, which were simulated in the Simics and Spike
simulators, respectively. Alongside the simulated hardware,
a statistical analysis module was implemented, which
employed KNN, SVM and RNN-LSTM for performing
process classification, as well as probability estimates and
auto-encoder for performing outlier detection. Comparison
between their performance on both architectures indicates
that the RNN-LSTM/auto-encoder model using the sequential
features outperforms other analysis methods in terms of
process classification accuracy/outlier detection accuracy as
well as logging overhead. Specifically, experimental results
using the popular Mibench benchmark suite reveal that,
on x86, an overall process identification accuracy of 99.12%

can be achieved, and an average FP/FN rate of 0.96% and
0.21% in identifying unseen process can be reached, at the
cost of simple hardware additions capable of processing and
logging data at a rate of 16.41 KB/s. Similarly, on RISC-V,
an overall accuracy of 97.8% in process identification can be
achieved, as well as an average FP/FN rate of 1.84% and 1.8%
for unseen process identification can be reached, at the cost
of data logging rate of 195 KB/s. These results corroborate
the effectiveness as well as the generalizability of the TPE.
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RISC-V instruction set manual, volume I: User-level ISA, version
2.1,” Dept. Elect. Eng. Comput. Sci., Univ. California Berkeley,
Tech. Rep. UCB/EECS-2016-118, 2016. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-
118.html

[39] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
Apr. 2011.

[40] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[42] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Comput., vol. 12, no. 10,
pp. 2451–2471, Oct. 2000.

[43] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proc. IEEE Int. Workshop Workload
Characterization, Sep. 2001, pp. 3–14.

[44] D. A. Patterson and J. L. Hennessy, Computer Organization And Design
Hardware/Software Interfac. Burlington, MA, USA: Morgan Kaufmann,
2009.

[45] E51 Risc-V Core Ip. [Online]. Available: https://old-
www.sifive.com/products/risc-v-core-ip/e5/e51/

[46] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” ACM SIGARCH Comput. Archit. News, vol. 41,
no. 3, pp. 559–570, Jun. 2013.

[47] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in Proc. IEEE Symp., Oct. 2019, pp. 20–38.

Liwei Zhou (Member, IEEE) received the bachelor’s
degree in electrical engineering from Tongji Univer-
sity in 2007, the M.S. degree in electrical engineer-
ing from The University of Texas at Dallas in 2013,
and the Ph.D. degree from the Department of the
Electrical and Computer Engineering, The Univer-
sity of Texas at Dallas, in 2018. After his gradua-
tion, he joined ASML-HMI as a Software Engineer.
He currently works as a Software Engineer in cloud
networking domain with Google. His research inter-
est includes trustworthy security-enforced computer

architecture for system security applications, e.g., computer forensics and
malware detection.

Yunjie Zhang (Graduate Student Member, IEEE) is
currently pursuing the Ph.D. degree in electrical and
computer engineering with The University of Texas
at Dallas, Richardson, TX. His research interests
include application of machine learning in workload
forensics and malware detection.

Yiorgos Makris (Senior Member, IEEE) received
the Diploma degree in computer engineering from
the University of Patras, Greece, in 1995, and the
M.S. and Ph.D. degrees in computer engineering
from the University of California at San Diego,
San Diego, in 1998 and 2001, respectively. After
spending a decade on the faculty of Yale University,
he joined UT Dallas, where he is currently a Profes-
sor of electrical and computer engineering, leading
the Trusted and RELiable Architectures (TRELA)
Research Laboratory, and the Safety, Security and

Healthcare Thrust Leader for Texas Analog Center of Excellence (TxACE).
His research interests include applications of machine learning and statistical
analysis in the development of trusted and reliable integrated circuits and sys-
tems, with particular emphasis on the analog/RF domain. He was a recipient
of the 2006 Sheffield Distinguished Teaching Award, Best Paper Awards from
the 2013 IEEE/ACM Design Automation and Test in Europe (DATE 2013)
Conference and the 2015 IEEE VLSI Test Symposium (VTS 2015), as well
as Best Hardware Demonstration Awards from the 2016 and the 2018 IEEE
Hardware-Oriented Security and Trust Symposia (HOST 2016 and HOST
2018). He has served as an Associate Editor for the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY and the IEEE Design and Test of
Computers Periodical, and a Guest Editor for the IEEE TRANSACTIONS ON

COMPUTERS and the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN
OF INTEGRATED CIRCUITS AND SYSTEMS. He serves as an Associate
Editor for the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:19:35 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


