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Abstract. Hierarchical approaches address the complexity of test generation through symbolic reachability paths
that provide access to the I/Os of each module in a design. However, while transparency behavior suitable for
symbolic design traversal can be utilized for constructing reachability paths for datapath modules, control modules do
not exhibit transparency. Therefore, incorporating such modules in reachability path construction requires exhaustive
search algorithms or expensive DFT hardware. In this paper, we discuss a fast hierarchical test path construction
method for circuits with DFT-free controller-datapath interface. A transparency-based RT-Level hierarchical test
generation scheme is devised for the datapath, wherein locally generated vectors are translated into global design
test. Additionally, the controller is examined through the introduced concept of influence tables, which are used to
generate valid control state sequences for testing each module through hierarchical test paths. Fault coverage and
vector count levels thus attained match closely those of traditional test generation methods, while sharply reducing
the corresponding computational cost and test generation time.
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wherein each module can be isolated and treated as a
stand-alone entity. This capability is provided by reach-

1. Introduction

Hierarchy exploitation constitutes the dominant direc-
tion along which test methodologies attempt to accom-
modate modern designs. Size and complexity consider-
ations, along with the modular nature of the emerging
System-on-Chip design trend, point towards divide-&-
conquer test solutions. In principle, hierarchical test
[11, 12,15, 20, 21] employs modular decomposition in
order to reduce the circuit size and thus improve fault
coverage and test generation time. However, such ap-
proaches rely on modular transparency, the attribute

ability paths from the primary inputs to the inputs of
the module under test (MUT) and from the outputs of
the MUT to the primary outputs of the design.
Reachability paths allow locally generated test vec-
tors for a MUT to be justified from the primary inputs
and the corresponding responses to be propagated to the
primary outputs. Translating local into global test, how-
ever, is computationally very expensive if performed in
a vector-by-vector manner. Therefore, hierarchical test
methodologies rely on symbolic design traversal for
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Fig. 1. Hierarchical test generation via transparent reachability paths.

test translation, leveraging on the ability to reason on
the logic surrounding the MUT in a bulk fashion, as
depicted in Fig. 1. To facilitate symbolic design traver-
sal, reachability paths are constructed using trans-
parency behavior [1, 5, 13, 16, 19] of the constituent
modules. Transparency behavior enables symbolic vec-
tor justification and response propagation. When mod-
ules exhibiting transparency behavior are combined
into a vector justification (response propagation) path,
it appears as if the MUT is directly connected to pri-
mary inputs (primary outputs). As a result, any vector
may be applied and any response may be unambigu-
ously evaluated.

Reachability paths comprising transparency behav-
ior of the constituent modules are an inseparable part
of hierarchical test methods. When transparency is not
inherently available in a module or when it cannot be
utilized due to path setup condition conflicts, Design-
For-Test (DFT) hardware [6, 14] is employed to resolve
the problem and thus avoid computationally expensive
test translation schemes and significant loss of fault
coverage. Nevertheless, the cost and performance im-
pact incurred by DFT calls for thorough reachability
path construction. While preserving symbolic design
traversal, such paths should exploit as much of the in-
herent functionality of the design as possible, before
resorting to DFT hardware to restore transparency.

In controller-datapath pairs, such as in Fig. 2, the im-
pact of the controller on the datapath needs to be consid-
ered. Controllers, however, do not exhibit transparency
and therefore require exhaustive FSM analysis, which
is computationally very expensive. In most current so-
lutions control logic is not incorporated on reachability
paths, which therefore rely on hardware for separat-
ing the datapath from the controller. The interface is
typically enhanced through DFT [6, 8] or controller
redesign [3, 4]. However, the cost of extra area and
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Fig. 2. Controller-datapath pair.

possible critical timing path complications incurred re-
quire that a comprehensive, yet non-exhaustive analy-
sis of the controller-datapath interaction be performed,
before DFT hardware is employed.

To address these challenges this paper presents a hi-
erarchical test generation solution for controller-data-
path pairs that does not presume DFT at the interface.
In Section 2, we demonstrate the challenges associated
with this task on an example circuit. In Section 3, we
present a transparency-based hierarchical test genera-
tion approach, using the transparency channel defini-
tion introduced in [13]. In Section 4, we introduce the
concept of influence tables, a mechanism for explor-
ing the impact of each controller state on the datapath.
Influence tables are combined in order to derive appro-
priate control state sequences for testing each module
and the identified control state sequences are used as
constraints that speed up hierarchical test path iden-
tification by pruning the search space. Experimental
results in support of the proposed combined controller-
datapath scheme are provided in Section 5.

2. Motivation

Hierarchical test generation requires that local test be
translated to global design test. Test translation on a
controller-datapath circuit, however, poses a number
of challenges to be addressed. The difficulty of the
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Fig. 3. Controller-datapath implementation of MUL example circuit.

problem is motivated in this section, based on the
example circuit of Fig. 3, an 8-bit binary shift-&-add
sign-magnitude multiplier described in [7].

2.1. Datapath Challenges

Translating the local test in a vector-by-vector manner
faces a large search space, making exhaustive search
impossible. In the example circuit, reasoning on shift-
ing, adding and clearing is required for testing the
ADDER. Automating this process is complicated, and
feedback loops, such as the one between the ADDER
and the ACCUMULATOR shift-register, only increase
complexity. The reconvergent paths from the QO signal
of the MULTIPLIER through the AND ARRAY, the
ADDER and the ACCUMULATOR and through the
SIGN, the MUX, the A [5], and the ACCUMULATOR
also result in excessive backtracking. Furthermore,
word-level reasoning is insufficient to handle signals
that split, such as the MULTIPLICAND output M.
Value-based, vector-by-vector test translation de-
feats the purpose of the hierarchical approach. The
benefits of hierarchical test generation arise when test
translation is performed through reachability paths.
Such paths are constructed using the transparency
behavior of the surrounding modules. Transparency
provides a trade-off mechanism between the com-
pleteness and the complexity of the test translation
process. The search is fast but it is performed in a
reduced functional space; consequently, some inher-
ent test translation capabilities may be lost. A trans-
parency definition capturing compactly most of the test
translation behavior of a module is therefore essential.

2.2.  Controller Challenges

Many of the reachability path solutions identified on
the standalone datapath will be invalid in the combined

design, due to the exact sequences of signals imposed
by the controller. As shown in the example circuit, the
controller generates specific signals and an FSM anal-
ysis is required to derive valid control state sequences
in support of reachability paths. However, exhaustive
FSM analysis is expensive even for simple controllers.
Loops in the controller, such as the one between states
S1 and S2, along with feedback signals from the datap-
ath complicate the process of reasoning on exact control
state sequences and the corresponding control signal
values. The complexity of the problem is equivalent to
the exponentially growing complexity of path enumer-
ation on the controller FSM, forcing existing solutions
[3,4, 6, 8] torely on DFT in order to isolate the datapath
from the controller. The area and performance impact
incurred, however, necessitates that DFT be used spar-
ingly and only after the inherent design functionality is
exploited first. In order to minimize the DFT overhead,
a fast, non-exhaustive methodology for examining the
control state space and exploring potential solutions
needs to be devised.

2.3.  Controller-Datapath Seamless Test

When DFT is not available at the controller-
datapath interface, the following search alternatives
exist:

e Datapath First: The search is performed on the data-
path, and solutions are checked against the controller.

e Controller First: The control signals of each valid
control sequence are imposed as constraints to the
datapath search.

e [ntertwined Search: Each decision of the datapath
search algorithm is checked immediately against the
restrictions imposed by the controller.
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Although the first two, algorithmically random walk
approaches, are simple to implement, they are com-
putationally ineffective. Computational effectiveness
can be attained with the third approach, albeit at the
expense of implementation complexity. The search is
still exhaustive in both the controller and the datap-
ath, but the combined space is pruned concurrently
from both sides, thus converging faster. Implementa-
tion, however, requires a list of hopeful control state
sequences to be kept and updated for each decision.

A fast yet efficient alternative to the aforementioned
three approaches is described in this paper. The pro-
posed scheme avoids exhaustive search based on the
concepts of transparency channels introduced in [13]
and influence tables introduced herein.

3. Datapath

In this section, we review various datapath transparency
definitions and path composition approaches and we
devise a RT-Level hierarchical test generation method-
ology. The datapath challenges described above are ad-
dressed by employing fine-grained transparency behav-
ior based on which reachability paths are constructed
to provide an accurate and efficient symbolic design
traversal mechanism and a concise local to global test
translation method.

3.1. Transparency Definitions and Path Composition

Previous work in reachability path construction
employs transparency definitions based on the math-
ematical principles of surjective, injective, and bijec-
tive functions. Surjective functions are appropriate for

Transparency Channel Definition

Channel: <signal entity> time <channel function> <signal entity> time <conditions>
| <well> time <channel function> <signal entity> time <conditions>
| <signal entity> time <channel function> <drain> time <conditions>

Signal Entity: (module input bits | module output bits)
Channel Function: <decomposability> bijection function
Decomposability: bit-decomposable | non bit-decomposable

Conditions: <condition>
< diti <operator> <

I

Condition: <potential> <signal entity> time

.

Operator: (and | or | independent of)
Well: (primary inputs | internal module output bits) <controllability potential>
Drain: (primary outputs | internal module input bits) <observability potential>

Potential: (controllability [ observability)
(full | known constant | unknown constant | mutex | same)

justifying vectors, while injective functions are appro-
priate for propagating responses; bijective functions are
appropriate for both purposes. Abadir and Breuer [1]
introduce the concepts of I-path and T-path for captur-
ing transparency of modules in terms of Identity and
Transformation functions between equal bitwidth sig-
nals. The simplicity of Identity functions makes the
I-path the course of choice in hierarchical test gener-
ation research. Freeman [5] extends the path notion
by introducing the F-path and the S-path concepts,
which are surjective and injective functions, respec-
tively, and are not necessarily defined on equal bitwidth
signals. Murray and Hayes [15] propose a hierarchical
test generation scheme based on ambiguity sets [16].
Complexity considerations limit the applicability of
ambiguity sets to small datapath circuits. Vishakantaiah
etal. [19] propose an automated test knowledge extrac-
tion methodology, wherein transparency is expressed in
terms of modes. Modes are combined into word level
test justification and propagation paths [20], though
for simplicity, this work is also limited to Identity and
Negation functions between equal bitwidth signals. Hi-
erarchical test approaches have also been proposed for
core-based designs [9, 22].

In our previous work in the area of testability anal-
ysis [13], we introduced the concept of transparency
channels for defining combinational or sequential logic
transparency in terms of surjective, injective, or bi-
jective functions. For the purpose of completeness,
the definition of transparency channels is provided in
Fig. 4, along with examples on RT-Level modules.
The innovative feature of transparency channels is
the ability to express and combine transparency be-
havior defined on variable bitwidth signal entities.
Unlike previous approaches that construct coarse,

Examples
A[3:0] B[3:0] IN[3:0] 1[3:0]
r Y o
4-bit Adder 4-bit Left g LD
Rotator € ROT
Cout C[3:0] + OUT[3:0] O[1:0)
ADDER :

1) A[3:0] [1] ( +k MODI16) C[3:0] [1] IF (known constant ‘k’) B[3:0] [t]
2) A[3] [1] (Identity) Cout [t] IF (same) A[3IB[3] [t]

ROTATOR :
1) IN[3:0] [t] (Identity) OUT[3:0] [t+1] IF (known constant ‘00")
((CLR] [ROT]) [t] AND {(known constant ‘1") (LD) [t]
2) OUTI[3:0] [t] (Rotate Left k bits) OUT[3:0] [ t+k] IF
(known constant ‘00°) ({[CLR] [LD] ) [t, t+1,..., t+k-1] AND
(known constant ‘1°} (ROT} [t, t+1, ..., t+k-1]
ENCODER :
1) 1[3:0] [t] ( Identity) MUTEX Potential Drain [t] IF FULL Potential Drain O[1:0] [t]
2) FULL Potential Well [t] ( Identity) O[1:0] [t] IF MUTEX Potential Well [t] 1[3:0] [t]

Fig. 4. Transparency channel definition and examples.



word level reachability paths, transparency channels
facilitate construction of bit cluster level reachability
paths. Given an 8-bit adder, for example, 8-bit trans-
parency functions are typically defined and utilized
by previous approaches to traverse through the adder.
Transparency channels, however, are also defined on
sub-word bit clusters, such as the four least signifi-
cant bits, thus allowing construction of fine-grained
paths.

3.2. RT-Level Hierarchical Test Generation

Transparency channels facilitate a fine-grained reach-
ability path construction method that exploits ex-
tensively the traversal capability inherently available
in a design. Transparent reachability paths support
a powerful divide-&-conquer RT-Level hierarchical
test generation methodology that results in signifi-
cant test generation time reduction and highly efficient
test for modular designs. A recursive design traversal
algorithm is applied for each module in the design,
effectively combining transparency channels in order
to construct reachability paths. Variable bitwidth sig-
nal entities, loops and reconvergence are taken into ac-
count in order to prioritize the probing of transparency
channels, thus accelerating algorithm convergence.
Channels on the identified paths are further combined
into templates, through which translation is rapidly
performed. An overview of the corresponding hierar-
chical RT-Level test generation method is shown in
Fig. 5.

The proposed method relies on the assumption that
reachability paths exist inherently in the design. If this
is not the case, a testability analysis methodology such
as [14] may be employed in order to pinpoint neces-
sary DFT modifications that will render a modularly

| Repeat for all Modules
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transparent design. The identified reachability paths are
subsequently used to translate locally generated vectors
and responses for each module into globally applicable
test. The proposed scheme is independent of the local
test generation method and the fault model employed
for each module. In addition, transparent reachability
paths are identified regardless of the locally generated
test vectors. As a result, local tests can be modified
and enhanced in order to provide higher fault cover-
age, without invalidating the hierarchical test trans-
lation paths. The fault coverage attained by the local
vectors is an upper bound to the fault coverage of the
globally translated vectors, for each particular mod-
ule. Therefore, local test generation should maximize
the number of translatable patterns, possibly guided by
global design knowledge, such as in [11, 21].

As depicted in Fig. 6, the produced information
about the constructed reachability paths includes the
module to be reached, the depth of the path in clock
cycles, and the primary inputs and outputs participat-
ing on the main reachability path at each clock cycle.
It also includes the condition inputs and corresponding
values necessary for establishing the main path at each
clock cycle, the modules that are traversed by the main
path at each clock cycle and the corresponding trans-
parency behavior expressed in terms of transparency
channels. Such information is sufficient to support
automated construction of templates for performing
rapid local to global test translation. These templates
apply the inverse of the bijective transparency func-
tions on the translation path, providing a global vector
that produces the desired local vector. Unused inputs
in the global patterns are randomly filled for achiev-
ing high collateral fault coverage. Using these tem-
plates, test translation is symbolic and can be rapidly
performed, supporting fast RT-Level hierarchical test
generation.
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4. Controller

As explained in the motivation section, appropriate
control state sequences are required for constructing
reachability paths in controller-datapath circuits. The
complexity of control state sequence identification,
however, typically results in DFT solutions that iso-
late the datapath from the controller. Yet to reduce the
overhead incurred by hierarchical test, inherent control
behavior needs to be exploited before resorting to DFT
to restore modular transparency.

A possible search strategy is to identify reachabil-
ity paths on the datapath considering control signals
as primary inputs and subsequently search in the con-
troller for an appropriate state sequence producing the
desired control signal values. Alternatively, the con-
trol signal values of each possible control state se-
quence may be considered as constraints during datap-
ath reachability path construction. Such trial-&-error
approaches are easy to implement; however, they are
rather inefficient and result in long search times, due
to the strict constraints imposed by the controller and
the exponential number of control state sequences.
A more informed approach may be an intertwined
search, wherein each decision of the search algorithm
on the datapath is checked immediately for compliance
against the restrictions imposed by the controller. This
scheme is expected to converge faster since backtrack-
ing is significantly reduced. Yet it is still an expensive

exhaustive search and thus, hardly a viable alternative
to DFT.

4.1. Influence Tables

In contrast to the above strategies, we propose a
non-exhaustive method for searching in the combined
controller-datapath space and thus rapidly identify-
ing potentially appropriate control state sequences for
module access. Such control state sequences are sub-
sequently provided as constraints to the reachability
path construction algorithm that verifies their suitabil-
ity. The method is based on the concept of influence
tables introduced herein.

Influence tables capture the interaction between dat-
apath variables for each state of the controller. This
information is subsequently combined across control
states, to identify control state sequences that estab-
lish influence from primary inputs to the inputs of the
MUT and from the outputs of the MUT to primary out-
puts. However, influence tables capture only topolog-
ical but not functional interaction. Furthermore, while
feedback variables from the datapath are considered
when influence tables for sequences of control states
are derived from influence tables of control states, the
corresponding value is not examined. In addition, in
order to avoid the possibly infinite number of control
state sequences due to loops in the controller, influence



tables capture only distinct structural interaction across
loop iterations, but do not capture distinct functional
interaction. As a result, the identified control state se-
quences are only potential solutions and do not guaran-
tee transparent module access. The latter is examined
on the datapath, under the constraints imposed by the
identified control state sequence.

The proposed method provides, in essence, a trade-
off between control state sequence identification time
and effectiveness in reachability path construction.
Although not all identified sequences will produce suc-
cessful reachability paths, the method probes system-
atically only the most appropriate alternatives, prun-
ing rapidly at the same time the ones that have no
hope of success. Influence tables for each control state
may be easily derived from an S-graph and a con-
troller description of the design. Under the assumption
that interaction between primary inputs, primary out-
puts, and registers is typically based on pairs and not
on broadcasting, influence tables are generally sparse.
Furthermore, the primary role of influence tables is to
answer whether there is interaction between pairs of
registers, inputs, and outputs. Therefore, influence ta-
bles can be viewed as directed graphs and are stored as
Hash Tables of Linked Lists, where the head node of
the list stores the hash key, which is the register that is
influenced, and the rest of the nodes store the registers
that are influencing the key register. Influence queries
can thus be efficiently answered without explosion of
storage requirements. To avoid excessive storage, in-
fluence tables for control state sequences may also be
obtained on demand and need not be stored explicitly.

As the number of states in the controller FSM in-
creases, the number of possible influence tables to
search through grows significantly and data-dependent
alternative control paths amplify this number. Yet the
proposed scheme is much more efficient than exhaus-
tive FSM analysis, since loops only result in a finite
number of distinct influence tables and datapath feed-
back is treated in a symbolic fashion during control
state sequence identification. Furthermore, since the
length of the sequence corresponds to the clock cycles
for applying each test pattern, an upper limit is imposed
in practice, further reducing the number of alternatives.
While influence tables do not perform an exhaustive
controller-datapath interaction analysis, they provide
a fast capability to exploit inherent control behavior
appropriate for reachability paths, before resorting to
expensive DFT. The key characteristics of influence
tables are outlined below:
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4.1.1. Influence Tables for Control States. The con-
cept of influence tables is demonstrated through the
controller-datapath pair example shown in Fig. 7. The
datapath portion of the circuit is given in Fig. 7(a) and
the controller is described in Fig. 7(b). The influence
tables for states SO and S3 are given in Fig. 7(c). The
top row of the influence table contains the primary in-
puts, state registers and constant values that during this
particular state may influence the primary outputs or
state registers noted on the leftmost column. A '1" in a
table location indicates that the signal entity of the cor-
responding row is influenced during this particular state
by the signal entity of the corresponding column. For
example, in the influence table of state SO, register A
is influenced by the primary input INA, since LD ='1’.
Similarly, registers E and F are influenced by the con-
stant value ‘0, since CLR="1" and both register G
and the output OUT are influenced by register G, since
LD="0.

4.1.2. Conditional Influence. The influence table for
state S3 demonstrates how conditional influence is cap-
tured by the proposed scheme. In state S3, register F' of
the example circuit is influenced through the ADDER
12 by register C, under a condition on register D. In
this case, register D does not directly influence register
F, but it does control the potential impact of register C
onregister F. Therefore, the entry in the corresponding
table location is not simply a’1” but rather a’ D', indi-
cating the influence of register C on register F', based
on a condition on register D.

4.1.3. Data-Dependent Alternative Influence. In
Fig. 7(d), we demonstrate how influence tables han-
dle situations where alternative sets of signal entities
may influence the signal entity under examination,
based upon the value of adjacent signal entities. In state
S1, for example, register £ and—depending on regis-
ter D—either register C or register F' will influence
register F' through MUX #§2. In order to model these
two alternatives, the influence table for state S1 is split
into Sla and S1b, each capturing a possible influence.

4.1.4. Influence Tables for Sequences of Control
States. The effect of a control state sequence on the
datapath is obtained by combining influence tables.
The entry (M, N) is filled in the combined table if
M at the beginning of the control sequence influences
N at the end of the control state sequence. The com-
bined influence tables for sequences SO — Sla and
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S6 — S3 are demonstrated in Fig. 7(e). In the influ-
ence table of state SO, primary input /NA influences
register A which in turn influences register E in the
influence table of state Sla. Therefore, in the com-
bined influence table SO — S1a, the primary input /NA
influences register E. Similarly, in the influence table
of state SO the primary input INC influences register
C, which in turn influences itself and, depending on
the value of register D, also influences register F in
state Sla. Since register D is influenced by IND in
state S1a, in the combined influence table for the state
sequence SO — Sla the primary input INC influences
register C and upon a condition on the primary in-
put IND, it also influences register F. The influence
table for the control state sequence S6 — S3 is derived
similarly.

4.1.5. Controller Loops. In this scheme, loops do not
impose the same complexity burden as in the com-
bined controller-datapath search approaches. Since in-
fluence tables perform a structural and not a functional
progress analysis of the search algorithm, loops are
only allowed when the corresponding influence table
provides a distinct impact pattern. For example, as
shown in Fig. 7(f), the influence table for state sequence
S5 — S6 is identical to the influence table of sequence
S5 — 86 — S5 — S§6. Since no additional structural in-
fluence exists when loop iterations are allowed, no
additional influence tables are devised.

4.2.  Control State Sequence Identification

Influence tables capture the impact of sequences of con-
trol states on datapath modules. This information is
subsequently utilized in order to identify control state
sequences that are potentially appropriate for estab-
lishing reachability paths for each datapath module.
Initially, the structural requirements for testing each
module are defined representing the primary inputs,

Justification Control State Sequence
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registers and primary outputs that need to be controlled
or observed in order to test a particular module. For
example, testing ADDER 12 of Fig. 7(a) requires ob-
serving register F' and controlling register E, register
D, and one of registers F and C. The next step is to
identify a state S; in which test can be applied to the
module. A state Sy is a valid candidate for this purpose,
if the following two conditions hold:

1. There is a sequence of states with a corresponding
influence table on which the registers that need to
be controlled are only influenced by primary inputs
and the sequence ends in a predecessor state of S.
This denotes the justification control state sequence
for the module.

2. There is a sequence of states with a corresponding
influence table on which the registers that need to
be observed influence at least one primary output
and the sequence starts from a successor state of S.
This denotes the propagation control state sequence
for the module.

In the previous example, state S2 is a candidate con-
trol state for testing the ADDER 2, with SO — Sla
being the justification and $3 — S4 being the propaga-
tion control state sequence. As shown in Fig. 8, during
S0 — Sla, registers C, E and D are only influenced
by primary inputs and during S3 — S4, register F' in-
fluences the primary output. Since Sla is a predeces-
sor state of S2 and S3 is a successor state of S2, the
control state sequence SO — Sla — S2 — §3 — S4is ap-
propriate for testing the ADDER #2 module. The values
required on feedback signals from the datapath to the
controller also become requirements that need to be sat-
isfied through the datapath reachability path construc-
tion algorithm. For example, state transition Sla — S2
requires a specific datapath feedback value on register
D, for which a path is therefore constructed. Appropri-
ate control state sequences for testing each module are
similarly obtained.

Propagation Control State Sequence

S0- [A[B|C|DJE[F|G[INJIN[INJIN] 0" | S3SA[A[BJC[D|EJF|G|IN[IN[IN[IN] O]
Sla Alslc|p AlBlc|p

A 1 A |1

B 1 B 1

C 1 C 1

D 1 D ]

E |1 E 1

F TND ] F D I

G 1 G 1 1 1

OUT 1 OUT [

Fig. 8. Control state sequence identification for ADDER #2.
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4.3. Combined Reachability Path Identification

Influence table analysis provides control state se-
quences that are appropriate for establishing reacha-
bility paths for each module. Nevertheless, a design
traversal algorithm is still required in order to iden-
tify the exact reachability paths on the datapath por-
tion. Advance knowledge of the candidate control state
sequences helps in reducing the number of alterna-
tive choices during reachability path composition, thus
speeding up the search process.

The combined scheme for controller-datapath reach-
ability path identification is depicted in Fig. 9. Initially,
influence tables are derived from the controller-
datapath description. For each datapath module, an ap-
propriate control state sequence for testing this module
is identified using these influence tables, as explained
in the previous subsection. If no such sequence can be
found, a testability bottleneck is reported in the con-
troller and no solution exists unless DFT hardware
is incorporated in the design. Otherwise, the identi-
fied control state sequence is provided in the form of
constraints to the datapath traversal search algorithm.
These constraints reduce substantially the backtracking
of the search algorithm, effectively speeding up conver-
gence. If the testability requirements of the module are
not satisfied, a new control state sequence is requested
from the controller analysis scheme and the process is
repeated until either a reachability path is identified,
or no more appropriate control state sequences can be
found. In an effort to keep test application time low,
control state sequences are examined in order of in-
creasing length, so that the resulting paths incur the
shortest delay possible.

5. Experimental Results

Experimental results supporting the proposed scheme
are provided in this section. The applicability of
transparent reachability paths in hierarchical test is
investigated by comparing the proposed RT-Level
hierarchical test generation method to full-circuit
Gate-Level ATPG. The effectiveness of influence tables
in accelerating reachability path construction is also ex-
amined in comparison to alternative non-DFT search
approaches.

5.1. RT-Level Hierarchical Test Generation

The three-phase experimental setup of Fig. 10 is em-
ployed to demonstrate the efficiency of the proposed
RT-Level hierarchical test generation scheme:

PHASE t1: The RT-Level description of the com-
plete design is synthesized and full-circuit ATPG is ap-
plied on the Gate-Level view. Global test, along with
the test generation time T, fault coverage Cr, and
vector count Vg, is thus obtained.

PHASE #2: The proposed hierarchical test gener-
ation methodology is applied and the test translation
paths for each module in the design are obtained in time
Tp. The first module is synthesized and Gate-Level
ATPG is applied on it, providing the local test vectors
and the test generation time 77, fault coverage C;, and
vector count V;. These vectors are translated through
the identified translation paths and fault-simulated on
the complete circuit Gate-Level view for all design
faults. The test translation time TR; and the fault sim-
ulation time F are also noted. The process is repeated

DFT Required
A Repeat for all Modules

Controller
FSM

Datapath
Description

Transparency Channels
& the Module

Influence Tables

----No

Control
State Sequence
Exists 7

Hierarchical
Test Path
Identified?

---—f§5 =

Fig. 9.

v
Done

Combined reachability path construction.
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Fig. 10. Experimental setup for RT-level hierarchical test generation.

for each remaining module, targeting only faults that
have not been covered by previous global vectors. The
results are accumulated and the corresponding time T,
fault coverage Cs and vector count Vg are obtained. The
objective of this phase is to compare this methodology
to full-circuit Gate-Level ATPG, based on test genera-
tion time, fault coverage and vector count.

PHASE £3: A number of Vg random patterns are
fault-simulated on the original design and the corre-
sponding coverage Cr, is obtained. The objective of this
phase is to demonstrate that the global patterns gener-
ated by the proposed methodology provide higher fault
coverage than randomly generated patterns.

HITEC [18], PROOFS [17] and HOPE [10] are used
for test generation, fault simulation, and random pattern
test generation. A prototype tool called TRANSPAR-
ENT (TRANSIation Path Analysis RENdering Test)
[12] was employed for identifying test translation paths
and performing the actual translation. The experimen-
tal setup was applied on four benchmark designs modi-
fied so that they are modularly transparent. The first de-
signis a3-module circuit (MTC100) introduced in [19],

with interesting feedback loop behavior. The second
design is an 8-bit shift-&-add binary multiplier (MUL)
described in [7]. It comprises 10 modules, including a
FSM. The third circuit is an implementation of the com-
monly used greatest-common-divisor (GCD) bench-
mark circuit described in [6]. This circuit also com-
prises 10 modules, including a controller. The fourth
circuit is a pipelined multiplier accumulator (MAC) for
complex numbers and is described in [2]. It comprises
23 modules, including arithmetic blocks such as mul-
tipliers and add/subtract units, registers and a simple
overflow detection module.

The test generation time, vector count, and fault cov-
erage, along with the number of aborted, redundant,
and total faults is provided for the full circuit ATPG
in Table 1. In Table 2, we provide the time spent by
TRANSPARENT on identifying the translation paths
and performing the actual test translation, the total local
test generation time and the total fault simulation time.
The results are accumulated and the total test genera-
tion time, vector count and fault coverage are shown
and highlighted for comparison purposes. In Table 3,
the fault coverage obtained by fault simulating Vg



40 Makris, Collins and Orailoglu

Table 1. Full-circuit gate-level ATPG results.
Full-circuit Test generation Vector count Fault coverage Aborted Redundant Total
gate-level Number of Time (sec) (vectors) (faults) number of number of number of
ATPG results modules Tr Vi Cr faults faults faults
MTC100 3 3.383 146 1034 21 0 1055
MUL 10 13.580 191 760 64 10 834
GCD 10 14.560 431 865 37 71 973
MAC 23 21.300 627 27896 238 480 28614
Table 2. RT-level hierarchical test generation results.
RT-level Time Time Time Test generation ~ Vector count  Fault coverage
hierarchical test Tp+Y TR; Y Tn, Y Fu time (sec) (vectors) (faults)
generation results (sec) (sec) (sec) Ts Vs Cg
MTC100 0.300 0.117 0.020 0.437 178 1038
MUL 2.800 1.670 0.160 4.630 198 790
GCD 2.960 1.983 0.550 5.493 460 879
MAC 5.320 1.250 2.300 8.870 703 28145
Table 3. Random test generation results. Table 5. Total fault coverage comparison.
Random test Vector Fault Fault Full circuit Random RT-level
generation count coverage coverage gate-level test pattern hierarchical
results Vs Cgr (faults) ATPG generation test generation
MTC100 178 748 MTC100 1034 748 1038
MUL 198 569 MUL 760 569 790
GCD 460 441 GCD 865 441 879
MAC 703 22454 MAC 27896 22454 28145

Table 4. Total test generation CPU time comparison.

Table 6. Total vector count comparison.

Test generation Full circuit RT-level hierarchical

Vector count Full circuit RT-level hierarchical

CPU time (sec) gate-level ATPG test generation (vectors) gate-level ATPG test generation
MTC100 3.383 0.440 MTC100 146 178
MUL 13.580 4.630 MUL 191 198
GCD 14.560 5.493 GCD 431 460
MAC 21.300 8.870 MAC 627 703

random patterns is provided. The total test generation
time of the proposed RT-Level hierarchical test genera-
tion scheme and full circuit Gate-Level ATPG is shown
in Table 4, demonstrating a speedup of almost an order
of a magnitude in all four circuits. Furthermore, the
speedup increases with the size of the circuit, implying
scalability of the method to larger designs. In addition,
Table 5 shows a slight fault coverage improvement in all
four circuits, especially on the MAC, the larger bench-
mark. This improved fault coverage is attributed to the

divide-&-conquer nature of hierarchical test. As the
size of the circuit increases, the efficiency of ATPG on
the complete design reduces and many testable faults
are aborted due to the backtracking limit. Performing
local test generation for each module allows ATPG to
operate on smaller designs and, thus, generating vectors
for many of these previously aborted faults and improv-
ing fault coverage. On the downside, an increase of vec-
tor count in the order of 10—15% is observed, as shown
in Table 6, due to the divide-&-conquer approach. The
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Table 7. Time comparison of reachability path identification search approaches.

Identification Multiplier Multiplier Multiplier Multiplier

time (sec) control set A control set B control set C  control set D Adder
Datapath-first 0.58 4.25 0.47 N-T N-T

Controller-first 17.97 150.00 17.52 N-T N-T

Intertwined search 0.28 0.26 0.27 N-T 14.94
Proposed method 0.03 0.05 0.05 2.98 3.88

reason is that during local test generation each vector
is only simulated for the faults of the particular module
and not for the faults of the complete circuit. Once all
local vectors are translated into global circuit test, per-
forming test compaction could alleviate this problem.

5.2.  Path Construction Speed-Up

The efficiency of the combined controller-datapath
search scheme is demonstrated on two modules of the
MUL circuit shown in Fig. 3, the MULTIPLIER and
the ADDER. The search is expected to be successful
on the MULTIPLIER module where reachability paths
exist for each of the four sets of control values applied
during normal functionality. However, the adder inputs
are correlated and the search should report that no
path exists. The following search approaches have been
implemented and applied on these modules:

e Datapath-First: The search is performed on the data-
path, and solutions are checked against the controller.

e Controller-First: Each valid control state sequence
is imposed as constraints to the datapath search.

e Intertwined Search: Each decision of the datapath
search algorithm is checked immediately against the
restrictions imposed by the controller.

e Proposed Scheme: Influence Tables are used to
derive potential control state sequences that are
imposed as constraints to the datapath search.

The CPU time in seconds, spent by each of the
four search approaches on a 266 MHz Pentium II with
64 MB of RAM is shown in Table 7. N/T entries in the
table signify no termination within the imposed limit
of 600 CPU seconds. The Datapath-First approach
spends a long time backtracking due to solutions that
are valid on the datapath but not supported through
the controller. The Controller-First approach spends
a long time examining control state sequences that do
not establish datapath reachability paths. Although they

are able to find solutions for the simple MULTIPLIER
cases, they terminate neither for the Control Set D case,
which has a solution, albeit a complicated one, nor for
the ADDER, which actually lacks a solution. The In-
tertwined Search approach is similar to the Datapath-
First approach only control compliance is checked
at every clock cycle, thus reducing backtracking.
Nevertheless, it spends a significant amount of time
in handling the ADDER case and does not terminate
on the complicated MULTIPLIER case. Finally, the
proposed methodology identifies the expected solu-
tions for all the MULTIPLIER cases and the lack of
reachability paths for the ADDER in almost an order
of magnitude less time than the best of the alterna-
tive approaches, verifying the power of the proposed
scheme in accelerating reachability path construction.

6. Conclusion

Hierarchical test generation methodologies leverage on
the ability to generate test at the boundary of each mod-
ule but apply it from the primary I/Os of the design.
In support of such approaches, reachability paths pro-
vide a symbolic local to global test translation capabil-
ity based on modular transparency. Reachability path
identification in controller-datapath circuits, however,
requires exhaustive algorithms that result in excessive
backtracking. Alternatively, costly DFT is employed
for separating the controller from the datapath. To
reduce this overhead, the proposed method performs
a fast, non-exhaustive search capable of identifying
a large number of inherent hierarchical test paths in
such designs. Test is devised hierarchically for dat-
apath modules, based on the notion of transparency.
Additionally, an analysis of the controller through the
introduced concept of influence tables produces ap-
propriate control sequences for accessing each data-
path module. The combination of these two schemes
results in efficient RT-Level hierarchical test generation
that provides significant speed-up, while preserving
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comparable fault coverage and vector count to full-
circuit Gate-Level ATPG.
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