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Abstract Several existing methodologies have lever-
aged the correlation between the non-RF and the RF
performances of a circuit in order to predict the latter
from the former and, thus, reduce test cost. While this
form of specification test compaction eliminates the
need for expensive RF measurements, it also comes
at the cost of reduced test accuracy, since the retained
non-RF measurements and pertinent correlation mod-
els do not always suffice for adequately predicting the
omitted RF measurements. To alleviate this problem,
we explore several methodologies that estimate the
confidence in the obtained test outcome. Subsequently,
devices for which this confidence is insufficient are
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retested through the complete specification test suite.
As we demonstrate on production test data from a zero-
IF down-converter fabricated at IBM, the proposed
methodologies overcome the inability of standard spec-
ification test compaction methods to reach industrially
acceptable test quality levels, and enable efficient ex-
ploration of the tradeoff between test accuracy and
test cost.

Keywords RF test · Specification test compaction ·
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1 Introduction

The current industry practice in testing analog/RF in-
tegrated circuits relies on explicitly measuring all the
performances of each fabricated device and compar-
ing them to the specification limits. However, as the
costs associated with this specification testing approach
have been continuously escalating, a great incentive to
reduce this cost by eliminating potentially redundant
measurements has surfaced. This holds particularly true
for RF circuits because the cost of pertinent Automatic
Test Equipment (ATE) is significantly higher than
that of their low-frequency mixed-signal counterparts.
Such discrepancy has resulted in an intensified inter-
est towards developing methods for accurately test-
ing RF devices without explicitly measuring their RF
performances. The underlying principle is to approxi-
mate these RF performances through correlation mod-
els based solely on non-RF performances (i.e. digital,
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DC, low-frequency), which can be explicitly measured
through less expensive ATE. In essence, these non-RF
to RF performance correlation models enable a form
of specification test compaction and, ultimately, result
in significant test cost reduction.

The framework of non-RF to RF correlation-based
specification test compaction is depicted in Fig. 1. The
learning phase relies on a training set of m devices, on
which both the s non-RF performances and the t RF
performances are explicitly measured. Based on this
information, statistical correlation models are learned,
predicting each excluded performance as a function
of the non-RF performances of a device, or a subset
of those performances. Subsequently, for every new
device in production, only the selected non-RF per-
formances are explicitly measured, while the untested
non-RF and RF performances are predicted through
the learned correlation models. A pass/fail decision is
made by comparing the explicitly measured non-RF
performances and the predicted performances to their
specifications. Thus, an RF ATE is needed only for
characterizing the small number of devices in the train-
ing set but is not necessary during production testing.

Unfortunately, while correlation-based specification
test compaction promises great test cost reduction, the
incurred test error prevents it from reaching the level

of Defective Parts per Million parts shipped (DPM)
typically sought by industry. Even when very elaborate
models are used to learn the correlation between non-
RF and RF performances, such error is bound to exist.
Indeed, partly due to the limited size of the training
set, which may not reflect accurately the statistics of the
entire production, and partly due to the fact that the
selected non-RF performances may not reflect the com-
plete information spectrum of the RF performances,
elimination of this test error is very unlikely. Instead,
viability of this approach hinges upon accepting the
fact that the performances predicted through the cor-
relation models will not always yield correct pass/fail
decisions and focusing on pinpointing the mispredicted
devices.

To this end, providing a confidence level indication
along with the predicted performances could go a long
way. Devices for which this confidence level is low
can then be identified and discarded at the expense of
possible yield loss. Alternatively, these devices can be
retested through the complete specification test suite,
as shown in the two-tier test approach of Fig. 2, at
the expense of additional test cost. While the second
tier requires additional handlers and RF ATE, if only
a small fraction of devices goes to the second tier
the overall cost savings can still be significant. Thus,

Fig. 1 Non-RF to RF correlation-based testing
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Fig. 2 Retesting when
prediction confidence is low

successful deployment of correlation-based specifica-
tion test compaction calls not only for accurate corre-
lation models but also for accurate assessment of the
confidence in the corresponding test decisions, in order
to explore effectively the tradeoff between test error
and test cost.

In this paper, we investigate three such methods. The
first two methods, generically termed defect filtering
and guard banding, are inspired by similar approaches
that have been previously mentioned in passing in
[1, 3, 15]. These, however, were not in the context
of correlation-based specification test compaction but,
rather, in the related field of alternate test [13, 14].
The key difference is that the former uses a low-cost
subset of non-RF circuit performances to predict the
dropped RF performances, while the latter relies on
low-cost alternate measurements which constitute the
response of the circuit to a carefully crafted and op-
timized stimulus. Thus, these alternate measurements
may encompass more comprehensively the spectrum
of information necessary to predict the circuit perfor-
mances. Nevertheless, the accuracy boosting and trade-
off exploration methods used therein are relevant and
can be adapted to the non-RF to RF correlation-based
specification test compaction problem, so we examine
them in detail. The third method, termed confidence
estimation, is an entirely novel approach for deciding
whether the pass/fail prediction yielded by the correla-
tion models is sufficiently accurate or not. It employs
an additional learning phase, wherein a Support Vector
Machine (SVM) [4] is trained to separate the hyper-
space of the non-RF measurements into regions that
are trusted or untrusted, with regards to the pass/fail
decisions of the correlation models. The key advantage
of the confidence estimation method is that the outlined

regions are created through highly non-linear sepa-
ration hypersurfaces, rather than the hyperrectangu-
lar boundaries employed by defect filtering and guard
banding. Furthermore, these regions are learned rather
than set a priori based on the distribution of the training
set. Overall, it is expected that these three methods
will prove successively more powerful in reducing the
cost of specification testing through the two-tier test
approach of Fig. 2, without adversely impacting its
effectiveness.

The remainder of this paper is organized as follows.
In Section 2, we briefly discuss related efforts in analog
specification test compaction. Then, in Section 3, we
describe in detail the three aforementioned methods,
namely defect filtering, guard banding, and confidence
estimation. Finally, in Section 4, we provide experimen-
tal results based on production test data from a zero-IF
down-converter fabricated at IBM, which demonstrate
the comparative performance of these three methods
and their ability to reduce test cost while maintaining
industry-acceptable test quality levels.

2 Related Work

Various analog specification test compaction methods
have been developed in the past. The linear error-
mechanism model algorithm (LEMMA) [16] and var-
ious extensions thereof, aim to predict the complete
vector of performance measurements by carrying out
only a subset of cardinality which depends on the per-
mitted measurement cost and the maximum tolerable
prediction error. The selection process is performed
through QR factorization [9] and minimizes the pre-
diction variance. The effectiveness of the LEMMA



312 J Electron Test (2009) 25:309–321

method is limited by the use of a linear model to predict
the behavior of a non-linear system, as well as the
need for error mechanism models that are difficult to
specify for complex circuits. In [7], a fault-driven test
selection approach is proposed. Performance measure-
ments are gradually added until a desired fault coverage
level is reached. The disadvantage of this approach is
its dependence on fault models, which have not been
widely accepted in the analog/RF domain. In [2], the
compaction problem is viewed as a binary pass/fail clas-
sification problem and an SVM is trained to separate
the passing from the failing devices in the hyperspace of
a subset of performances, eliminating one dimension at
a time. In practice it is advantageous to consider subsets
of performances, since combinations of performances
can provide significant information which is not indi-
vidually available in any of the performances. To this
end, a genetic feature selection algorithm along with
an Ontogenic Neural Network is described within the
context of non-RF to RF specification test compaction
in [12]. A guard-banding and a two-tier test method
applicable to the latter is discussed in [11].

3 Accuracy Boosting and Trade-off Exploration

In this section, we first discuss present the defect fil-
tering and guard banding methods, as interpreted and
adapted to the specification test compaction problem
based on their brief descriptions provided in [1, 3, 15].
Then, we introduce the newly developed SVM-based
confidence estimation method and we conclude the sec-
tion by describing the mechanism that all three methods
employ for selecting the subset of kept non-RF tests
that are used as predictor variables for the omitted non-
RF and RF tests.

3.1 Defect Filtering

Defect filtering [1, 3] builds upon the well-known fact
that accurate correlation models can only be learned
through elements that belong to a distribution [8].
While passing devices and marginally failing devices
are typically considered to belong to a distribution,
grossly defective devices are not and, therefore, should
be filtered out. In other words, such devices should not
be used during the learning process and the learned
correlations should not be used to predict the perfor-
mances of such devices. To ensure this, defect filtering
divides the devices into two sets, depending on whether
they are considered to belong to the distribution or not.

More specifically, in the context of specification test
compaction, let us assume that we are trying to establish

correlation models for predicting omitted RF or non-
RF performances based on only non-RF performances
(predictor variables) Xi, i = 1 . . . n. Let us also assume
that, in the training set, the mean of these n predic-
tor variables is μ = {μ1, μ2, . . . , μn} and the standard
deviation is σ = {σ1, σ2, . . . , σn}. Then, a defect filter is
defined as a hyperrectangle in the space of the training
set:

Hk = {μ1 ± k · σ1, μ2 ± k · σ2, . . . , μn ± k · σn}
where k is a positive real number. We will refer to this
hyperrectangle as a k-filter.

The utilization of the k-filter during the learning
phase is conceptually demonstrated for n = 2 in Fig. 3.
During this phase, devices in the training set whose
predictor variable vector falls outside the k-filter are
ignored. Similarly, as shown in Fig. 4, during the test-
ing phase devices whose predictor variable vector falls
outside the k filter are rejected or retested through a
second tier of complete specification testing. In essence,
correlation models are only trusted when used for pre-
dicting the omitted RF or non-RF performances of
devices within the k-filter.

Evidently, the choice of k is crucial since it affects
both the number of retested devices and the accuracy
of the learned correlation models. A strict k-filter may
exclude many good devices during testing, resulting in
high yield loss if they are rejected or high test cost if
they are retested. A lenient k-filter may allow many

Fig. 3 Learning phase
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Fig. 4 Defect filtering—Testing phase

devices that do not belong to the distribution to affect
the accuracy of the correlation models during training,
resulting in high test error. In essence, the choice of
k facilitates exploration of the trade-off between test
accuracy and test cost.

Note that assessment of candidate k-filters should
not be performed using training set devices. Instead, a
second set of devices, called the hold-out set, is used to
drive the choice of k. The chosen k is then used along
with the learned correlation models to calculate the
figures of merit of defect filtering in a set of previously
unseen devices, i.e. the validation set.

3.2 Guard Banding

While defect filtering offers a good first step towards
boosting the accuracy of the correlation models, it
suffers from two inherent limitations. First, due to the
continuous nature of the predictor variables, the limited
training set size, and the fact that the kept non-RF
performances may not reflect the complete informa-
tion spectrum of the omitted non-RF and RF perfor-
mances, it is highly unlikely that correlation models
perfectly separating the two populations of passing and
failing devices will be learned. Therefore, despite the
k-filtering approach, a test error is bound to exist,
translating into yield loss and/or test escapes. Second,
depending on the chosen course of action for devices
outside the k-filter, defect filtering may incur unnec-
essary yield loss or test cost. Specifically, if all devices

outside the k-filter are discarded, then passing devices
often found just outside the k-filter will be thrown away.
Similarly, if all devices outside the k-filter are retested,
grossly defective devices typically found far away from
the k-filter will waste test resources.

To alleviate this problem, guard banding [3, 15]
complements the k-filter by an l-filter, k ≤ l, thus divid-
ing devices into three sets: (1) devices falling outside
the l-filter are considered grossly defective and are
discarded; (2) devices falling in between the k-filter
and the l-filter are retested; (3) devices falling inside
the k-filter are considered part of the distribution and
the outcome of the correlation models is trusted for
deciding whether they pass or fail. As in defect filtering,
the correlation models are learned only from devices in
the training set which fall inside the k-filter (see Fig. 3).
The utilization of the k-filter and l-filter guard bands
during the testing phase is conceptually demonstrated
for n = 2 in Fig. 5.

The choice of k and l is instrumental in exploring the
trade-off between retested devices and test error. As in
defect filtering, selection of candidate k- and l-filters is
performed in the hold-out set. In other words, k-filters
are established and correlation models are learned in
the training set, k and l are chosen by assessing the
effectiveness of the k- and l-filters and the learned
models in the hold-out set, and the chosen k and l are
then used along with the correlation models to calculate
the figures of merit of guard banding in the valida-
tion set.

Fig. 5 Guard banding—Testing phase
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3.3 Confidence Estimation

Both defect filtering and guard banding rely on the
mean and the standard deviation of the devices in
the training set to establish the three regions wherein
correlation models are trusted, devices are retested,
or devices are discarded, respectively. These regions,
however, are rather coarsely outlined through hyper-
rectangles, whereas the actual region in which the cor-
relation models can yield a trusted prediction is likely

to be more complex. Thus, a more refined division of
the aforementioned regions holds promise for further
improving the prediction accuracy of the correlation
models and reducing the number of retested devices.

To this end, we describe a confidence estimation
method which uses an SVM [4] to replace the coarse hy-
perrectangles with a detailed non-linear hypersurface.
As previously, correlation models are initially learned
from training set devices within a k-filter (see Fig. 3).
Then, the 2-step procedure shown for n = 2 in Fig. 6

Fig. 6 Confidence estimation
method
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is applied to the devices in the hold-out set. In the
first step, the learned correlation models are used to
make pass/fail predictions and the devices in the hold-
out set are relabeled as correctly or incorrectly pre-
dicted. In the second step, an SVM is trained to learn
the boundary partitioning the predicted performance
space into two subspaces: the area wherein correct
predictions occurred (trusted), and the area wherein
incorrect predictions occurred (untrusted). The choice
of k is, again, crucial in establishing accurate separation
boundaries via the SVM. Since the SVM is trained using
the devices in the hold-out set, k has to be picked by
examining the SVM performance on another set (e.g.
the training set). The utilization of the SVM during the
testing phase is conceptually demonstrated for n = 2 in
Fig. 7. The pass/fail prediction of the correlation models
is accepted only for devices with predictor variable
vectors that the trained SVM classifies as trusted, while
the rest of the devices are retested.

We note that the trusted area outlined in Fig. 6 and
Fig. 7 is a simplification of the actual bounding done by
an SVM, as the latter transforms the predictor variable
hyperspace into a new hyperspace, wherein it learns the
boundaries. This transformation (a.k.a. kernel) is what
enables the SVM to draw highly non-linear surfaces
in the original predictor variable hyperspace. We also
note that the SVM marks the area of outliers (i.e.
grossly defective devices) as “trusted” even though
the correlation models perform poorly in estimating

Fig. 7 Confidence estimation—Testing phase

the performances of such devices. Indeed, while the
performance prediction itself is inaccurate, it is still
far off from the acceptable specification range and,
thus, sufficient to ensure correct classification of these
devices as failing. In this sense, the trusted/untrusted
separation boundary established by the SVM replaces
and refines both the k-filter and the l-filter.

3.4 Measurement Selection

Specification test compaction relies on keeping a subset
of non-RF measurements and omitting the remain-
ing non-RF and RF measurements. Therefore, an effi-
cient mechanism for selecting the kept measurements
is required. As described above, the three accuracy
boosting methods appear to be exploring the tradeoff
between mispredictions and retested devices. However,
we can relate retests to a more concrete metric of suc-
cess. Given a relative cost metric on the performance
space, we can transform the trade off of mispredictions
versus retests into one of mispredictions versus cost.
Defining complete specification testing as a baseline
cost, we can directly compare the cost of each method
at a variety of solutions, each costing a fraction of
the original specification test while introducing a small
number of mispredictions, whether in yield loss or test
escapes. To do this, we define a cost metric as follows.

Notation

CT Baseline test cost
TT Baseline test time

CRF Test cost per second for RF tester
M Number of test sets
ni Number of tests in test set i
ti Relative test time contribution of test set i
ci Relative test cost contribution of test set i

xik 1 if test k in the test set i is present, 0 otherwise
C′

T Test cost considering a reduced set of tests

Cost model The baseline test cost considering all tests
is given by:

CT =
M∑

i=1

(ciCRF)(tiTT)

= CRF TT

M∑

i=1

(citi)
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Assuming that the test time of any test k in the test set
i is ti/ni, a first order approximation of the test cost of a
reduced set of tests is given by:

C′
T = CRF TT

M∑

i=1

(
ci(1 − xi1 · xi2 · . . . · xini)

ni∑

k=1

ti
ni

xik

)

= CRF TT

M∑

i=1

(
citi
ni

ni∑

k=1

xik

)

where the symbol · denotes the logic AND. Given the
above expression for the test cost, our measurement
selection algorithm utilizes the following normalized
fitness function to assign a cost penalty to a selected test
subset.

f (test subset) = C′
T

CT

= C′
T

CT
=

∑M
i=1

(
citi
ni

∑ni
k=1 xik

)

∑M
i=1 citi

Thus, we have a means of evaluating the cost level
for any given subset of tests. This allows us to fold our
retest count into the cost metric by computing it as fol-
lows. Suppose we have n devices on which we perform a
reduced subset of the tests, and then use defect filtering,
guard banding, or confidence estimation to flag a subset
of those devices, nretested < n for retest.

We can then evaluate this relative cost metric for
each method and use a single cost value to capture both
the cost of the reduced set of specification tests, as well
as the cost of retesting all devices flagged for retest:

cost = n · f (retained tests) + nretested · f (excluded tests)

Genetic Algorithm With the cost function above,
we proceed to automate measurement selection. With

many non-RF tests, exhaustive search of the test set
quickly becomes infeasible, as the number of possible
test plans is O(2k), where k is the number of non-
RF tests. However, the search space is well-suited
for the application of a genetic algorithm. We have
a pair of fitness functions, cost and mispredictions,
which are quickly computable for any selected test sub-
set and correlation-based specification test compaction
method. Thus, by configuring a genetic algorithm to
select a subset of the non-RF tests and k (defect filtering
and confidence estimation) or k and l (guard banding)
we can quickly find a set of non-RF tests producing
tradeoff points between mispredictions and cost. In this
work, we use the NSGA-II algorithm [5]. NSGA-II
allows for chromosome elitism and preserves diversity,
ensuring a good spread of Pareto-optimal solutions,
and has been demonstrated previously [11, 12] to be
effective in classification-based specification test com-
paction. The complete measurement selection proce-
dure is depicted in Fig. 8. We note that the selection
procedure is unbiased, in the sense that it minimizes
mispredictions without showing preference to one of
the two types of error (i.e. test escapes and yield loss).
However, given relative costs of each of the above
two types of error, it is possible to bias the selection
procedure in order to favor one over the other in a
weighted fashion. Details of how this can be done can
be found in Section IV.C.3 of [10].

4 Experimental Results

In order to assess the relative effectiveness of defect
filtering, guard banding, and confidence estimation,
we use production test data from a zero-IF down

Fig. 8 Measurement
selection algorithm
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Table 1 Test cost data Test Test # of Test % Needed Tester Tester
Type Group Tests Time Instrumentation Relative Cost

Digital SBI tests 25 6.00%
Digital + DC 40%

DC
SBI tests/

34 13.30%
Supply currents

Mixed Signal
Dac Tests 6 3.30% Digital + DC +

60%
Lock VCO 6 13% Mixed Signal

RF

Lock VCO 1 1.10%

100%
Filter tests 20 13.30% Digital + DC +
Mixer tests 43 30% Mixed Signal + RF
LNA tests 8 20%

converter for cell-phone applications, designed in RFC-
MOS technology and fabricated at IBM. The device
is characterized by 143 performances, 72 of which are
non-RF (i.e. digital, DC, low frequency) and 71 are
RF. Table 1 displays a categorization of these tests, and
also the relative costs and needed tester times for each
test category. The test data set includes performance
measurements for 4450 devices across 3 lots. Of these
devices, 4141 pass all the specification tests while 309
fail one or more specification tests. The passing and
failing devices are each randomly split into three sub-
sets of equal size: P1, P2, P3, and F1, F2, F3. The sets
St = P1 ∪ F1, Sh = P2 ∪ F2 and Sv = P3 ∪ F3 are used
as the training set, the hold-out set and the validation
set, respectively. For all the experiments, correlation
models are learned through MARS (Multiple Adaptive
Regression Splines) [6]. The results for each of the
three methods are reported below. We remind that the
objective of non-RF to RF correlation-based specifica-
tion test compaction is to predict pass/fail decisions by
only measuring a subset of non-RF performances.

4.1 Defect Filtering

As explained in Section 3.1, the correlation models are
learned in St, the parameter k is picked by assessing the
behavior of the learned correlation models in Sh, and
the final figures of merit of defect filtering are reported
in Sv . The results when all devices outside the k-filter
are discarded are shown in Fig. 9, where the number
of test escapes, the yield loss inside the k-filter and the
yield loss outside the k-filter are reported. As can be
seen, the best trade-off point is found for k = 6, where
25 devices are misclassified (22 failing devices which are
kept and 3 passing devices which are discarded). The
results when all devices outside the k-filter are retested
are shown in Fig. 9, where the test error is plotted
against the number of retested devices as k decreases.
As can be observed, for large values of k (near the
y-axis), few devices are excluded by the k-filter and,
therefore, retested. Yet the accuracy of the correlation
models deteriorates as many devices not belonging to
the distribution are included by the k-filter, resulting in
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Fig. 9 Defect filtering. a Discarding devices outside the k-filter. b Retesting devices outside the k-filter
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high yield loss. As k is reduced, the number of retested
circuits increases and the test error decreases.

4.2 Guard Banding

As explained in Section 3.2, the correlation models are
learned in St, the parameters k and l are picked by as-
sessing the behavior of the learned correlation models
in Sh, and the final figures of merit of guard banding are
reported in Sv . The results are shown in Fig. 10, where
the test error is plotted against the number of retested
devices for the Pareto front of (k, l) pairs. As expected,
adding the l-filter improves the results.

4.3 Confidence Estimation

As explained in Section 3.3, the correlation models
are first learned in St. Then they are applied to the
devices in Sh and a trusted/untrusted label is given to
each device depending on whether the models pre-
dict its pass/fail label accurately or not. An SVM is,
subsequently, trained to separate the trusted from the
untrusted devices in Sh. The parameter k is picked by
assessing the effectiveness of the trained SVM on an
independent set (we may use St for this purpose) and
the final figures of merit of confidence estimation are
reported in Sv . The results for the proposed SVM-based
confidence estimation method are shown in Fig. 11. As
can be observed in Fig. 12, where the results of all three
methods are presented together, both the number of
retested devices and the test error of the confidence
estimation method are reduced, as compared to defect
filtering and guard banding. While the improvement
may seem relatively small, we emphasize that accep-
tance of specification test compaction methods hinges
upon their ability to reach industrially acceptable test
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Fig. 10 Guard banding
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Fig. 11 Confidence estimation

quality levels. Therefore, when trying to improve upon
test accuracy levels below the 1% error rate, even the
smallest improvement can play a very crucial role.

4.4 Cost-Driven Measurement Selection

The preceding results explore the tradeoff between
mispredicted devices and the number of retested de-
vices. As described in Section 3.4, however, we can
define a more accurate metric based on the cost of
the included tests. This is achieved through defining
a pertinent fitness function that drives the evolution
of the genetic algorithm, which is wrapped around the
correlation-based specification test compaction method
and is used to select a subset of retained tests which
optimizes both mispredictions and cost. In Fig. 13, we
display the results from applying this technique for the

Fig. 12 Comparative results
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Fig. 13 Summary
of cost-driven results

three methods described above. The vertical axis of this
plot ranges from 0% to 100% of the cost of running
the full specification test suite, while the horizontal axis
represents the misprediction rate.

Along with results from the three methods described
above, we also display the result of standard non-RF
to RF specification test compaction (labeled “Non-RF
tests only”), where all of the non-RF measurements
are performed, based on which correlation models are
built to predict all RF measurements. In addition, the
plot labeled “Prediction only” provides the results of
running the genetic algorithm for measurement selec-
tion without any of the defect filtering, guard banding,
or confidence estimation methods. In other words, this
plot reflects what non-RF to RF correlation-based spec-
ification test compaction can achieve without employ-
ing a second tier for retesting ambiguous devices.

Several observations can be made to assist in inter-
preting these results:

– First, we observe that correlation models built using
all the non-RF measurements perform worse than
correlation models that are built using a carefully
selected subset of these measurements. Not only do
the latter cost less, but they also result in a smaller
percentage of mispredicted devices. While it may
be counter-intuitive that the additional information
available when involving all non-RF tests in the
correlation models degrades their accuracy, this is

a well-known fact referred to in pattern recognition
terminology as the curse of dimensionality [4].

– Second, we observe that while specification test
compaction without a second test tier incurs only
9.37% of the cost of complete specification testing,
it cannot reduce test error below 1.29%, which is
significantly higher than what industry is willing
to accept. Therefore, methods that boost this ac-
curacy, such as the one investigated herein, are
particularly important.

– Third, we observe that the three developed meth-
ods are successively more powerful. Defect filter-
ing enables us to move closer to acceptable test
accuracy rates, dropping the test error to 0.97% at
33.4% of the cost of complete specification testing.
Guard banding, which is a refined and more power-
ful method, is able to reduce the error even further
to 0.65% by slightly increasing test cost to 40.8% of
the cost of complete specification testing. Finally,
confidence estimation, which is the most powerful
of the three methods, enables us to limit the error
to 0.453%, while cutting test cost to 64.05% of the
cost of complete specification testing.

– Finally, we note that the lack of data points closer
to the Y-axis in Fig. 13 is an artifact of the small
size of the employed data set and not a limitation
of the proposed method. Indeed, the best reported
misprediction rate of 0.453% corresponds to only 7
devices; hence one should not directly extrapolate
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to DPM levels from such a small data set, as that
would artificially amplify the error.

5 Conclusion

Specification test compaction through non-RF to RF
performance correlation promises significant test cost
reduction. Yet, in order to meet industry-level DPM
standards, such compaction relies on efficient methods
for boosting the accuracy of the correlation models and
exploring the trade-off between the test error and the
number of devices that need to be retested through
complete specification testing. To this end, we investi-
gated the effectiveness of three such methods. Two of
these methods, namely defect filtering and guard band-
ing, are adapted from pertinent ideas described within
the context of alternate testing, while the third one,
namely confidence estimation, is a new method which
employs an SVM to decide whether the test outcome
obtained through the learned correlation models can
be trusted or not. All three methods employ a genetic
algorithm and a test cost metric to perform measure-
ment selection. As demonstrated experimentally using
production test data from a zero-IF down-converter
fabricated by IBM, these three methods facilitate an
efficient exploration of the tradeoff between test cost
and test accuracy, even in the region of very low DPM
levels, wherein traditional specification test compaction
is not able to reach.
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