
P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

JOURNAL OF ELECTRONIC TESTING: Theory and Applications 13, 105–120 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

RTL Test Justification and Propagation Analysis for Modular Designs∗

YIORGOS MAKRIS AND ALEX ORAILOĞLU
Reliable Systems Synthesis Lab, CSE Department MC-0114, UCSD, La Jolla, CA 92093

makris@cs.ucsd.edu

alex@cs.ucsd.edu

Received March 23, 1998; Revised June 25, 1998

Editor: N. Jha

Abstract. Modular decomposition and functional abstraction are commonly employed to accommodate the grow-
ing size and complexity of modern designs. In the test domain, adivide-and-conquertype of approach is utilized,
wherein test is locally generated for each module and consequently translated to global design test. We present an
RTL analysis methodology that identifies the test justification and propagation bottlenecks, facilitating a judicious
DFT insertion process. We introduce two mechanisms for capturing, without reasoning on the complete functional
space, data and control module behavior related to test translation. A traversal algorithm that identifies the test trans-
lation bottlenecks in the design is described. The algorithm is capable of handling cyclic behavior, reconvergence
and variable bit-widths in an efficient manner. We demonstrate our scheme on representative examples, unveiling
its potential of accurately identifying and consequently minimizing the reported controllability and observability
bottlenecks of large, modular designs.

Keywords: RTL testability analysis, test justification, test propagation, modular design, DFT

1. Introduction

The latest silicon manufacturing technology improve-
ments have facilitated an explosion in the size and
complexity of modern designs. Consequently, extreme
challenges are imposed on tools and methodologies
employed in the design and test of complex, digital cir-
cuits. No panacea solution exists, capable of address-
ing these challenges in an efficient, universal fashion.
Furthermore, test has emerged as the most expensive
and threatening burden in a circuit design cycle, re-
vealing the imperative need for test-related innovative
solutions.

As a result, a vast number of techniques and ap-
proaches have been developed, both for enhancing
the testability of a design through DFT modifications
and for improving the test generation and application

∗This work is supported in part by a research grant from Intel
Corporation and the University of California MICRO program.

process [1–7]. The nontrivial task of deciding the exact
test framework for each design is left to the test engi-
neer. DFT related decisions have to be made as early in
the design cycle as possible, yet without compromising
their cost-effectiveness. In order to select judiciously
among the wide variety of choices, a priori testability
information of the design is required [8–10]. Acquir-
ing such test knowledge for a design is the objective
of testability analysis, but its applicability scope has
been limited so far, by a number of challenges arising
in modern designs.

The enormous size of modern circuits rules out test
approaches that address the complete design as a mono-
lithic entity. State of the art practices for large designs
employ both modular decomposition and functional ab-
straction in order to alleviate test problems. Gate-level
ATPG is applied at each module boundary for efficient
local test generation, while higher description levels
are utilized for the translation of local into global test.
Consequently, any viable test analysis methodology



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

106 Makris and Orailŏglu

needs to take into consideration the modular nature of
IC designs and emerging test approaches, in order to
prove applicable and provide meaningful data.

Due to the strict requirements of a typical circuit,
testability enhancements need to be introduced as early
in the design cycle as possible. Additionally, cost-
effective DFT decisions require a more global under-
standing of the design than a gate-level analysis may
provide. The high-level information available at be-
havioral RTL descriptions addresses both circuit size
problems and design cycle constraints. As a result, RTL
is the most effective level for performing testability
analysis and guiding DFT modifications.

Large datapaths, intricate control and complex se-
quential logic are common features of modern designs,
imposing additional burdens on testability analysis.
Any attempt to reason exhaustively upon the complete
functional space in a value-by-value manner, using tra-
ditional behavior capturing mechanisms such as FSMs
and BDDs, is unlikely to succeed. Consequently, a ju-
dicious way of pruning to a restricted set of test-related
behavior is necessitated. Temporal reasoning and han-
dling complex control logic remain essential parts of
such test related behavior.

Section 2 motivates the research being outlined, pre-
senting a test framework for large, modularly designed
circuits that the analysis methodology targets. Previ-
ous work in the area is discussed and associated chal-
lenges pinpointed. Section 3 provides an overview of
the proposed scheme. Sections 4 through 7 present de-
tails of the four components of the proposed scheme.
These four sections discuss the identification of the test
translation requirements and the test translation related
behavior of each module, the traversal of the design for
test translation requirement satisfaction and the mini-
mization of the reported bottlenecks. Section 8 demon-
strates the proposed methodology on example circuits,
while Section 9 presents the experimental validation
flow and outlines the obtained results.

Our research aims at providing an early testability
assessment of large, modularly designed circuits, ca-
pable of reasoning on both combinational and sequen-
tial logic. Within our scheme, data and control path
logic is handled in a uniform fashion, exploiting the
two mechanisms for capturing test translation related
behavior. The goal of the analysis is the identification
of RTL testability bottlenecks associated with test jus-
tification and propagation. Since the ultimate objective
of this work is to guide design testability enhancements
in an informed manner, test translation bottlenecks are
captured in the signal entity domain that resembles the
structural nature of most DFT modifications.

2. Research Motivation

Size and complexity considerations impede the ability
of test generation tools to handle large designs as single,
monolithic entities. We describe a framework that fa-
cilitates an effective test methodology, commonly em-
ployed in real designs. Within this framework, we de-
fine the objectives of the proposed testability analysis
methodology. We refer to previous research efforts in
the area and discuss associated challenges.

2.1. Problem Definition

Our work targets large modular designs and addresses
one module at a time. A common framework employed
for testing such designs utilizes local test generation
within each module and subsequent translation of the
local test into test patterns and responses meaningful
at chip pinouts. During test application, each mod-
ule is tested individually, while the remaining modules
are grouped into upstream test justification logic and
downstream test propagation logic. Test is initiated at
the primary inputs and terminated at the primary out-
puts. Feedback loops may result in overlaps between
the module under test, the justification logic and the
propagation logic. This test framework is depicted in
Fig. 1.

While a gate-level test generation process at each
module boundary proves efficient, translation of local
into global test endangers and limits the applicability of
the above framework. Several reasons can be quoted
as the primary factors for the limited success of the
test translation process. During local test generation,
global design capabilities are not taken into account,
thus leading to nontranslatable test. Furthermore, the

Fig. 1. Test framework.



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 107

potential overlap between the module under test, and
the justification and propagation logic may degrade the
locally generated test efficiency. The worst problem,
however, is the complexity of the translation process
itself, even in the absence of the above constraints. Ex-
haustive reasoning on the complete functional space of
the design, so as to translate the local test in a vector-
by-vector fashion, is of equivalent complexity to global
design test generation. Therefore, mechanisms for
identifying and utilizing only test translation related
behavior for justifying and propagating test symboli-
cally, are required.

Looking at the problem from a temporal point of
view, the latest point for useful analysis in support
of DFT is the RTL. As shown in Fig. 2, the analysis
objective is to identify the bottlenecks that DFT modi-
fications will be required to resolve. Strict time-to-
market requirements and excessive complexity prohibit
any reasoning at lower levels. Consequently, the analy-
sis methodology needs to employ symbolic, bulk mode
reasoning, instead of vector-by-vector translation, in
order to pinpoint the test translation bottlenecks. In-
evitably, due to the inability to reason exhaustively
upon the design functionality, some locally generated
tests will not be translated into global tests.

Any locally testable fault that remains uncovered
after the translation of the local into global test can be
classified as either of the following two types.

1. A fault for which the local test generator, due to
lack of global design knowledge, selected a non-
translatable test vector. Disabling therandom-fill
phase of a test generator can help moderate this ef-
fect. Furthermore, in order to eliminate this prob-
lem, a methodology was proposed in [6], wherein
the global design capabilities are captured in terms
of constraintsand are examined during the local test
generation. However, extracting these constraints

Fig. 2. Temporal view of analysis objective.

requires reasoning on the complete functional space
of the global design and is as difficult as to global
test generation.

2. A fault that is untestable at the global design bound-
ary. While the typical case for untestable faults is
thought to be functional redundancies, we need to
include herein faults that cannot be tested due to
computational complexity limits encountered dur-
ing test translation. In this case, DFT hardware is
utilized to provide accessibility paths to the bound-
ary of the modules for supporting the translation [3,
5, 7]. However, an indiscriminate provision of such
accessibility paths to the boundary of each module
is overly expensive. DFT modifications for enhanc-
ing the test translation process need to be guided by
an analysis methodology that will pinpoint the test
translation bottlenecks. Consequently, judicious
and cost-effective DFT insertion will be facilitated
for eliminating these bottlenecks.

2.2. Related Work

Several researchers have identified the benefits of com-
bining functional abstraction and modular decomposi-
tion, in order to assure improved testability of large
designs. Among them, Murray and Hayes [11] pro-
posed a test result propagation scheme through mod-
ules based onambiguity sets. Vishakantaiah et al. [10]
presented a test knowledge extraction methodology for
hierarchical designs, wherein behavioral capabilities of
the modules are extracted in terms ofmodes. Ghosh
et al. [3] presented a similar DFT and test generation
technique for core-based systems, based on thecon-
trol/data flow graph. Hansen and Hayes [12] described
a high-level test generation scheme for modular de-
signs, utilizing a functional fault model ofphysically
induced faultsandsymbolic schedulingto alleviate the
large search space. Recently, Tupuri and Abraham [6]
introduced a functional test generation method for em-
bedded modules by incorporating the test justification
and propagation capabilities of the surrounding logic
into the test generation process in the form ofcon-
straints. Also, Chen et al. [1], Corno et al. [8] and Lee
and Patel [9], suggested various general approaches for
addressing behavioral and RTL testability analysis.

2.3. Challenges

Several challenges are associated with the task of
identifying test translation bottlenecks. Relying on the



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

108 Makris and Orailŏglu

justification and propagation of the exact vectors and
responses for identifying test translation bottlenecks is
overly expensive. The complexity of doing the trans-
lation itself would make such an approach unpalatable.
Furthermore, any changes in the actual test set, would
invalidate the analysis results. Identification of a set of
sufficient symbolic test justification and propagation
requirements for each module, coupled with an anal-
ysis of the design as to its capability to satisfy these
requirements, possibly offers a solution. An identifi-
cation of independent cones of logic, as discussed in
Section 4, is suggested as a heuristic approach in this
direction.

Further challenges are associated with the local to
global test translation. We discuss and demonstrate
them in Fig. 3, on a small, complex circuit, originally
presented in [10].

• Exhaustive examination of the complete functional
space of the modules in the design can be highly
expensive. Large datapaths (e.g., 16-bit adder), se-
quential logic (e.g., 212 states of the 12-bit counter)
and intermodule complex behavior (e.g., feedback
from OUT to the adder) prohibit exhaustive func-
tional reasoning during the translation. Therefore,
the challenge is to identify a subset of the complete
functional space that is tolerable in terms of complex-
ity and that captures the most common test transla-
tion behavioral features. In the example of Fig. 3,
utilizing the LD capability of the counter for justi-
fying values to the rest of the circuit eliminates the
need to reason upon the complex counter FSM. In
Section 5, we describe two mechanisms for captur-
ing test translation related behavior.
• Identification of the appropriate domain for examin-

ing the design is a second challenge. In our example,

Fig. 3. Illustrative example for test translation challenges.

reasoning on the output of the adder can be per-
formed either through arithmetic values or through
bit-wise signal entities. Choosing between the value
domain and the signal domain is a critical decision.
The value domain allows exploitation of arithmetic
properties while the signal domain supports complex
control logic and variable bit-widths. Our scheme
examines both attributes, in a structural manner that
resembles the nature of most DFT techniques.
• Modular traversal does not necessitate the use of the

complete word width. For example, while propa-
gating the counter’s test responses over the adder in
Fig. 3, we only need to reason on the sub-word that
comprises the lowest 12 bits. An efficient scheme
requires handling of dynamic changes in the signal
bit-width.
• Such dynamic variance impedes the a priori extrac-

tion of module transparency behavior. The connec-
tivity model of the complete design and the test
requirements need to be taken into account. For ex-
ample, the fact that one of the inputs of the adder
splits into a 4-bit and a 12-bit signal hints that we
need to be able to extracton-the-flytransparency be-
havior for these signal bit-widths.
• Sequential logic, reconvergent paths and feedback

loops generate further challenges. In Fig. 3, se-
quences of two vectors are necessary in order to test
the register, creating a cycle. Moreover, the feed-
back line from the adder’s OVF to the counter’s CLR
signal, along with the FSM behavior of the counter,
compose a complicated sequential logic that is diffi-
cult to capture. Handling sequential logic and cyclic
behavior is an inseparable part of a viable test trans-
lation analysis scheme.
Any divide-and-conquertype of methodology, such

as the module-by-module test translation analysis, im-
poses the challenge of combining and sharing the dis-
tributed results. In our case, the challenge is to min-
imize the reported bottlenecks by identifying the root
causes that can be shared among multiple modules.
The sequence in which the modules are examined and
the local traversal decisions can have a crucial impact
on the final results. As this minimization problem is
computationally taxing, we propose two heuristics, in
Section 7, that attempt to address this challenge.

3. Methodology Overview

As depicted in Fig. 4, our analysis methodology ad-
dresses the aforementioned challenges in four steps,
discussed in the following sections. Initially, the test



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 109

Fig. 4. Analysis methodology overview.

translation requirements are identified for each module
in the design. Since actual test and responses are not
available during analysis, we rely on a simple heuris-
tic that attempts to ease the overkill of justifying and
propagating any possible vector and response. Based
on the cone-of-logic of each input and output, a set
of justification and propagation requirements on signal
entities are extracted, as explained in Section 4. Us-
ing these signal entities and the connectivity model of
the complete design, we then identify the test transla-
tion related behavior of each module. This behavior is
captured in one of two ways, described in Section 5.

Consequently, a traversal algorithm is applied to the
boundary of each module. The algorithm attempts to
satisfy the test justification and propagation require-
ments, using only the test translation related behavior
of the modules in the design. The details of the traver-
sal algorithm and the heuristics employed are further
discussed in Section 6. Finally, in order to minimize
the reported bottlenecks, a heuristic for combining bot-
tlenecks between modules is applied as described in
Section 7.

4. Test Requirement Identification

Since actual test vectors and responses are not known
at the time of analysis, the most naive way is to require
justification and propagation of every possible value
and response to and from the boundary of each mod-
ule. For sequential modules, reasoning upon sequences
of vectors and responses needs to be considered. For a
module of sequential depthk, we will requirek+ 1 con-
secutive patterns and responses to fully test the module.

Justification and propagation of every possible vector
and response can be avoided based on a simple heuris-
tic. We suggest in that context the identification of the
cone of logic driven by each input and into each output.

This input/output mapping is an indication of the
decomposability of the module, through which the de-
pendent sets of inputs and outputs can be extracted and
used for defining more realistic requirements. In either
case, the requirements need to be expressed in a col-
lective form and not in a value by value manner. Our
heuristic captures these requirements in a stream-wise
fashion, employing signal entities of variable bit-width.
To demonstrate this, we examine the cones of logic in
the 4-bit register of Fig. 5.

The register has sequential depth of 1. Consequently,
two consecutive patterns are needed to test it. Since
each output OUT[k] is driven only by two signals (CLR
and IN[k]), the justification requirements are to get any

Fig. 5. Requirement identification heuristic.



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

110 Makris and Orailŏglu

two values on consecutive clock cycles on any 2-bit sig-
nal entity (CLK, IN[k]). This is a looser requirement
than justifying any two values in consecutive clock cy-
cles on the complete 5-bit input signal entity (CLR,
IN[1], IN[2], IN[3], IN[4]). On the other hand, since
the CLR signal drives all outputs, the propagation re-
quirements are the translation in a distinguishable man-
ner of any value at the complete 4-bit signal entity
(OUT[1], OUT[2], OUT[3], OUT[4]).

5. Test Translation Related Behavior

Identification of the test translation requirements is
followed by a capture of the test translation related
behavior of each module. This behavior is utilized
for examining the satisfiability of the requirements
and identifying the bottlenecks. As discussed in
Section 2, exhaustive examination of the complete
functional space cannot be tolerated due to complex-
ity issues. Therefore, we rely on capturing only test
translation related behavior for each module and utili-
zing only this behavior for test justification and propa-
gation. Although this scheme sacrifices some of the
behavioral space, it provides the ability to reason on the
translation capabilities of the design in an automated
fashion.

We have developed two schemes for capturing test
translation related behavior. The first scheme is based
on arithmetic properties of modules and targets mainly
datapath modules. The second scheme is an elabora-
tion on the first scheme, based on channels (bijection
functions) that can address uniformly data and control
path modules and that can handle variable bit-width
signal entities. These two schemes are introduced in
this section.

5.1. Property-Based Scheme

The basic concept underlying our property-based
scheme is the utilization of arithmetic properties that
can provide a simple transparency mechanism over
modules. Test requirements are translated in bulk
mode, using the algebraic scheme that these arithmetic
properties compose. The arithmetic properties do not
capture the complete functional space of the modules
but rather the types of behavior that will be most prob-
ably used for test translation.

Using this type of behavior, requirements at the input
signal entities of a module are translated to equivalent

Fig. 6. Property-based scheme examples.

requirements at the output signal entities of the mod-
ule and vice versa. The new requirements are possibly
related through operators and are based on the satisfi-
ability of a number of conditions, as demonstrated in
Fig. 6. Only test translation related behavior of modules
is considered for requirement translation. In a simi-
lar fashion, condition compliance examination is based
on the same property combination scheme. The types
of properties that our scheme considers include iden-
tity, linearity, negation, initialization and incremental-
ity. The operators used for combining these proper-
ties are both in the arithmetic domain (e.g.,+, *, <,
=, >) and in the structural path domain (e.g., logical
AND, NOT, OR). The arithmetic property scheme is
capable of handling both combinational and sequential
modules since timing is captured as part of the proper-
ties, as demonstrated on the 4-bit counter.

The arithmetic property scheme for capturing test
translation related behavior of modules proves efficient
for datapath designs, addressing combinational and
sequential modules. It facilitates an algebraic scheme
that not only can reason on whether a translation is
feasible but also may guide the translation itself. How-
ever, a number of reasons limit its applicability. Control
logic, usually, does not exhibit such arithmetic proper-
ties and therefore cannot be handled therein. Further-
more, reasoning on sub-word, variable bit entities is
not simple through the arithmetic properties and rela-
tions between different width signal entities are not cap-
tured. Also, using this algebraic reasoning, bottlenecks
are identified and reported in the value domain, while
most DFT modifications are structural. Furthermore,



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 111

the interpretation between the two domains is not al-
ways trivial. The above problems have necessitated
a more elaborate scheme, capable of addressing them
efficiently.

5.2. Channel-Based Scheme

A behavioral formalism that addresses the above chal-
lenges is presented and demonstrated on simple exam-
ple modules, followed by a discussion of its potential.
The transparency aspects of the modules are captured
in a structural manner through the notion ofchannels.
Controllability and observability are captured through
the notions ofwell and drain. This scheme handles
variable bit-width signals through thesignal entityno-
tion and facilitates an efficient mechanism capable of
handling uniformly, based onconditionsand opera-
tors, combinational or sequential, data or control path
modules.

5.2.1. Behavioral Formalism. The components of
the behavioral formalism are defined below.

Channel: A channelis defined to be amappingbe-
tween an inputsignal entityand an outputsignal entity
or between awell and an output signal entity or be-
tween an input signal entity and adrain, based on the
compliance of a set of zero or moreconditions.
Mapping: A mappingis defined as a one-to-one and
onto function from the set of possible values of an input
signal entityor awell, to the set of possible values of
an outputsignal entityor adrain.
Signal Entity: A signal entityrepresents a bundle of
one or more signals at a certain point in time. Both the
signals and the time point can be defined either stati-
cally or dynamically. Dynamic definition is a collec-
tive way of capturing many static definitions, allowing
more flexibility and generality. As an example, a static
definition of a signal entity might beIN[2] at [t] while
a dynamic definition would look likeONE OF IN[3],
IN[2] , IN[1] at any t where t> t0. The dynamic defi-
nition can be a choice from either a list of alternatives
or from a closed type set definition.
Well: A well is the equivalent of a controllability point
and captures the ability of a module to generate vectors
on signal entities. It also captures the controllability of
the primary inputs. Each well has associated with it a
potentialon signal entities.
Drain: A drain is the equivalent of an observability
point and captures the ability of a module to evaluate

vectors on signal entities. It also captures the observ-
ability of the primary outputs. Each drain has associ-
ated with it apotentialon signal entities.
Potential: Thepotentialof a well or a drain captures
the type of vectors that can be generated or evaluated
on a signal entity. For example, a full potential well of
width k can generate the complete set of all possible 2k

vectors and a full potential drain of widthk can evaluate
likewise the complete set. The potential of a well or a
drain is not defined in the value domain but rather in the
signal domain. This implies that a well cannot gener-
ate a set of specific values unless a structural property
defining the elements of the set in the signal domain
(e.g., mutual exclusion, same, inverse) exists. These
sets are captured in a stream-wise manner, avoiding
the complete functional space complexity problem.
Conditions: Conditionsare defined on one or more in-
put signal entities and are combined throughoperators.
In order for a channel to be activated, the conditions
associated with it need to be satisfied.
Operators: Operatorsbetween signal entities are em-
ployed to create the above conditions. These oper-
ators can be either logical (e.g., AND, OR) stream-
related (e.g., INDEPENDENT OF) or arithmetic (e.g.,
=, 6=,≤,≥). The only requirement is that they have
to be expressed in a stream-wise fashion, since this is
the rule for our behavior capturing mechanism. The
latter point amplifies the fact that we cannot afford to
perform directly a value-based analysis but instead we
implicitly imitate it through a more generic, stream-
wise reasoning.
Time-Extended Channels:A time-extended channel of
depth kis a sequence ofk channels instantiated ink
consecutive clock cycles, with respect either to the in-
put or the output signal entity.

5.2.2. Examples. A number of examples of basic
RTL modules together with some of their channels are
shown in Fig. 7, displaying how the behavioral formal-
ism is used for capturing module traversal capabilities.
These capabilities will be utilized by the design traver-
sal methodology described in Section 6, in order to
examine the satisfiability of the test justification and
propagation requirements of each module.

5.2.3. Scheme Evaluation. The following points
address the strengths of the behavioral formalism, sum-
marizing its potential.

• The behavioral formalism that we introduced con-
stitutes an abstraction scheme that decouples the



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

112 Makris and Orailŏglu

Fig. 7. Channel-based scheme examples.

module traversal capability extraction and the actual
DFT modification process from testability analysis,
providing a clean interfacing mechanism between
them. Consequently, each of these tasks can be in-
dividually addressed.
• Although it does not cover the complete behavioral

space of the modules, it handles variable bit-widths
of input and output signal entities through the well
and drain notions and applies not only at the full word
size but also on sub-word signal entities. The abil-
ity of the channels to express any arbitrary bijection
function brings our scheme as close to the concept
of transparency as possible.
• There is more than one way to describe a traversal

through channels. Extracting all the channels in ad-
vance is not practical. A similar problem limits the
approaches described in [9, 10]. In order to address
this issue, we rely on anon-the-flychannel selection

for our test justification and propagation analysis, as
explained further in the traversal algorithm.
• The time-extended channels provide a capability to

reason on sequences of vectors and responses, thus
facilitating sequential logic testability analysis. This
proves valuable in case a clock disable signal is not
provided for sequential modules.

In short, the introduced formalism provides a con-
cise and efficient way to capture behavior related to
test justification and propagation, in a structural man-
ner. In conjunction with the structural nature of DFT
techniques, it facilitates a realistic testability analysis
methodology that identifies the test translation bottle-
necks as described in Section 6.

5.2.4. Handling Control Modules. Control logic, in
general, does not exhibit the same type of transparency



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 113

behavior as datapath logic. Control modules interact
with a number of datapath modules simultaneously and
have a crucial impact on any type of path-based reason-
ing, such as the proposed testability analysis scheme.
The FSM-like nature of control/data interaction is such
that symbolic reasoning is not adequate and exact value
analysis is required for capturing control capabilities
and verifying path instantiation.

Fortunately, compared to the state space of datapath
modules, the state space of control modules is much
smaller, enabling precise reasoning. As demonstrated
through research in the formal verification area [13, 14],
abstracting away the datapath space of a design leads to
the extraction of compact FSM representations of the
control logic. These compact FSMs allow state reach-
ability and edge traversability reasoning that captures
the exact behavior of control logic.

The behavioral formalism introduced in Section
5.2.1 is capable of capturing control logic capabilities
either through thechannelor through thewell/drain
notions. Referring to Fig. 8, a control module inter-
acts with datapath modules through a set of control
signals. These signals are generated based on previ-
ous state, primary inputs and possibly status signals
going back from the datapath modules to the control
module. If the control module behavior encompasses
direct relations between primary inputs, status signals
and control signals then the channel notion captures
this transparency behavior, just as in datapath modules.
Conditions generated on either status signals or primary

Fig. 8. Handling control modules.

inputs are again traced backwards to verify their com-
pliance. In addition, in order to capture exact control
signal sequences, a compact FSM is extracted, where
the states are defined by the control signal combina-
tions. The control module is subsequently described as
a well with a constant potential for each state. For each
path of transitions in the FSM, the control module is de-
scribed as a well with a sequence of potentials defined
across consecutive clock cycles. Theconditionmech-
anism allows for prior state verification. In the event
that test responses need to be propagated over status
signals, the control module behaves as a drain. The
potential of the drain is the set of values or sequences
of values on the status signal that take the FSM to dis-
tinguishable states. Examples of such control module
behavior are given in Fig. 8.

This exact value FSM analysis, akin to traditional
test generation, inherits all the traversal challenges such
as reconvergence and cyclic behavior. Heuristic solu-
tions for these problems are described in Section 6.3.
The ability of the channel-based behavioral formal-
ism to capture transparency behavior of both control
and datapath modules in a uniform fashion is a major
strength when addressing large designs. Furthermore,
it facilitates efficient decisions during DFT insertion,
as demonstrated in Section 8.

6. Test Translation Design Traversal

The channel-based formalism is a superset of the arith-
metic property-based scheme, since each arithmetic
property can be expressed as a set of channel bijec-
tion functions. Independent of the scheme utilized for
capturing the test translation behavior of each module,
a traversal algorithm that examines the satisfiability of
the requirements is necessary. We introduce our algo-
rithm based on the notion of channels and we clarify
how our scheme handles design traversal challenges.

6.1. Algorithm

Our algorithmic scheme is based on requirement trans-
formation through the notion of channels. Starting
from the signal entities on which a requirement is de-
fined, we utilize the global circuit connectivity model
to identify the predecessor or successor modules. We
then select a channel for this module that will transform
the requirement into a number of requirements on sig-
nal entities of the module, related through operators and



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

114 Makris and Orailŏglu

Fig. 9. Design traversal algorithm.

based on a number of conditions. If these conditions
are satisfied then the process is repeated for the new re-
quirements. Otherwise, a new channel is chosen. Each
search path terminates when the requirements are sat-
isfied through well or drain capabilities or when there
are no more alternative channels to consider, in which
case the nonsatisfiable signal entities are reported as
bottlenecks. In Fig. 9 we provide a pseudocode form
recursive description of the proposed algorithm.

The conditions that the channels generate when
traversing modules are also expressed as requirements
and the same algorithm is applied to examine their
satisfiability. Since conditions are typically harder to
satisfy, for backtracking minimization we examine
them first. Further information regarding the algorithm
shown can be found for the aspects depicted in bold-
face in Fig. 9. Thus,requirement identificationis
described in Section 4,channel selectionbetween pos-
sible alternatives examined in the current section and
module selectionandbottleneck combinationdiscussed
in Section 7.

6.2. Channel Selection Decision Factors

Selecting judiciously among the alternative channels
or combination of channels that satisfy a requirement
over a module has a significant impact on the amount
of backtracking performed. A greedy approach,best

Fig. 10. Channel selection example.

match first, is currently employed but only after a num-
ber ofdecision factorsare examined. These factors are
either static or dynamic. Static factors are extracted
from the circuit connectivity model and include the
number of signal entities and conditions involved in
a channel and its latency in number of clock cycles.
Dynamic factors capture the maximum potential that
has been satisfied on each signal entity and the for-
mation of loops or reconvergent paths in the search
space.

In Fig. 10, an example is given where two alterna-
tive channels can justify the output of the module under
test. The upper channel has a latency of three clock cy-
cles, involves two signal entities of total width seven
and creates one condition on a 2-bit signal entity. It
further causes a reconvergent path in the search space
when module A is reached. The lower channel has a la-
tency of two clock cycles, involves two signal entities of
total width six and creates one condition on a 1-bit sig-
nal entity. Also, a feedback loop from module E is
created. In this case, both channels are rated as equally
difficult. Hence, the decision would be made based on
the dynamic factors capturing the maximum require-
ment previously satisfied on each of the two alternative
channels, through modules B and D.

6.3. Feedback Loops and Reconvergence

Our scheme utilizes the cyclic behavior caused by feed-
back loops for requirement transformation over mod-
ules. Potential cycles are identified from the connec-
tivity model and local analysis is performed. Channels
that create loops are only selected when local analysis
identifies a potential loop exit point, within an upper
bound of iterations. Channels that create reconvergent
paths are also identified from the connectivity model.
To address this problem, multiple paths are followed
in parallel and channel selection is postponed until the
convergence point.



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 115

7. Bottleneck Combination

The proposed traversal algorithm identifies the control-
lability and observability bottlenecks for each module.
Due to dynamic factors affecting local decisions during
requirement satisfiability examination, the sequence in
which the modules are considered has a critical im-
pact on the final number of bottlenecks reported. Fur-
thermore, the same bottleneck might solve translation
problems for more than one module. Examining the
modules in all possible sequences is computationally
highly expensive. In order to address this problem, two
heuristics are proposed, as outlined below.

The first heuristic gives the order in which the mod-
ules should be examined for justification and propa-
gation requirement satisfiability. We assume that each
signal entity in our design is an equiprobable bottleneck
and we calculate the number of signal entities involved
in examining each module. At each point, we exam-
ine the module that shares the maximum number of
signal entities with the rest of the modules. Maximiza-
tion of the number of signal entities with an associated
dynamic factor is thus attained, after examining each
module in the above sequence. Also, we expect that
resolving the identified bottlenecks for a module will
resolve possible bottlenecks for other modules, mini-
mizing the total number of reported bottlenecks. The
scheme is repeated until all the modules are examined.
Individual orderings are derived for propagation and
justification analysis.

The problem is easily formulated as afind all paths
graph problem, where each module is a node and each
signal entity a weighted edge according to the signal
entity width. Primary inputs and primary outputs are
also considered as nodes. In Fig. 11, a simple example
is given, along with the consequent ordering. Justifica-
tion analysis starts from module E, since it requires 12
signals, out of which eight are also required by other

Fig. 11. Module ordering heuristic.

Fig. 12. Bottleneck combination heuristic.

modules (B and D), the maximum number of shared
signals. Similarly, propagation analysis starts from
module B since it requires 15 signals, out of which nine
are also required for other modules (A, C, D and E),
again the maximum number of shared signals.

Since our first heuristic relies on a probabilistic as-
sumption on potential bottlenecks, we also employ a
second heuristic depicted in Fig. 12, which attempts to
minimize the actual bottlenecks reported. During the
first analysis phase of the heuristic, modules are exam-
ined in the order determined by the primary module
ordering heuristic. Bottlenecks identified for a module
k are considered resolved when we examine a subse-
quent modulei with i > k. With all reported bottle-
necks from the first phase considered resolved, we run
a second analysis phase in the same module order and
thus obtain a new set of bottlenecks. The bottlenecks
from both phases are subsequently combined and amix
& match type of algorithm eliminates the redundant
ones. Although this scheme does not ensure the maxi-
mum amount of bottleneck sharing, it has significantly
decreased the number of reported bottlenecks in our
experiments.

8. Examples

We demonstrate our testability analysis methodology
on two example circuits. The first circuit is a sign-
magnitude 8-bit binary multiplier described in [15].
The arithmetic property scheme has been applied on
the circuit datapath portion. In Fig. 13, a circuit block
diagram is depicted. The justification analysis at the



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

116 Makris and Orailŏglu

Fig. 13. Property-based analysis example on a binary sign-magnitude multiplier.



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 117

output bus is provided. The propagation analysis is sim-
ilar. The circuit is highly transparent and no major
bottlenecks have been identified. The few minor bot-
tlenecks are also reported in the figure. As a result, we
expect the test translation process to be very efficient
for this circuit.

The control logic handling mechanism of Section
5.2.4 is applied on the multiplier controller, as shown
also in Fig. 13. The normal operation FSM provides
eight control signals to the datapath and has five states,
requiring three state elements for encoding. When the
above analysis is applied concurrently to both the data-
path and the controller, taking into account the FSM
behavior, an additional controllability bottleneck is
identified on one of the state-encoding signals. The
reason for this is that false paths may need to be uti-
lized during the test translation, requiring illegal states
or transitions in the controller. Furthermore, a trade-off
bottleneck on a second state-encoding signal has been
identified. More specifically, the ability to bypass the
controller loop S1-S2-S1 decreases the test time for
each vector by 14 clock cycles, at the additional cost
of one more controllability bottleneck to be resolved.
Such trade-off data can facilitate cost-effective DFT
modifications.

The second circuit is a pipelined multiplier accu-
mulator described in behavioral and RTL VHDL in
[16]. The circuit is mainly datapath oriented and com-
prises combinational and sequential modules, feedback
loops, reconvergent paths and variable bit-widths and
a small control-like logic for the overflow calculation.
In Fig. 14, we show the results of our channel-based
scheme applied on this circuit. Justification analysis for
the register REG22#1 and propagation analysis for the
multiplier MUL#4 are provided in detail. The results
of our module ordering heuristic for justification and
propagation are shown and the complete set of testa-
bility bottlenecks identified through our methodology
reported.

9. Experimental Validation

The proposed methodology for test justification and
propagation analysis identifies the potential control-
lability and observability bottlenecks in the RTL de-
sign. This section describes the experimental valida-
tion framework employed for examining the analysis
accuracy. Furthermore, results on the above example
circuits are presented.

9.1. Validation Flow

An overview of the validation flow is provided in
Fig. 15. In compliance with the test framework for
which the analysis methodology has been derived, our
primary validation mechanism utilizes HITEC [17], a
gate-level ATPG tool and is based on fault coverage
comparison acquired from the fault simulator PROOFS
[18]. Starting with an RTL description of the circuit,
the described analysis methodology is applied, result-
ing in a list of controllability and observability bottle-
necks. A gate-level model is further obtained through
synthesis, on which the ATPG experiments are per-
formed.

First, the ATPG tool is applied independently for
each design module, resulting in local tests. Each local
test is subsequently translated to the boundaries of the
complete circuit and global test is obtained and fault
simulated to provide the associated global fault cover-
age (GFC). The same experiment is then performed on
an enhanced version of the design, wherein all the jus-
tification and propagation bottlenecks identified by the
analysis are considered to be fully controllable or ob-
servable. The modified GFC, shown in the final column
of the table of Fig. 15, is thus obtained. The underly-
ing translation of the local to global test is manually
performed.

9.2. Results

We applied the above experimental flow on TC100, the
circuit of Fig. 3, the binary multiplier with and with-
out the controller, and the pipelined multiplier accu-
mulator described in the previous section. The analy-
sis methodology indicated that TC100 and the binary
multiplier without the controller are highly transpar-
ent and that no major test translation bottlenecks exist
in the design. Consequently, we expect translation of
local into global test to be highly successful. Sum-
ming up the total faults covered by the local tests and
dividing by the local number of faults, we obtained
96.68% and 97.45% coverage, respectively. After the
local test was translated to design boundary test, cov-
erage dropped slightly to 92.80% and 93.27%, due
to the few minor bottlenecks. A new translation af-
ter bottleneck resolution through test point insertion
increased the coverage to 95.74% and 96.65%, indi-
cating that our methodology identified accurately the
bottlenecks of the test translation process. When the



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

118 Makris and Orailŏglu

Fig. 14. Channel-based analysis example on a pipelined multiplier accumulator (MAC).



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

RTL Test Justification and Propagation Analysis for Modular Designs 119

Fig. 15. Experimental validation flow and results.

controller of the multiplier was also considered, the
corresponding loss of coverage due to the test trans-
lation bottlenecks was considerably larger, resulting
in a drop from 94.52% to 68.46%. Such precipitous
fault coverage drops stem from the fact that the con-
troller effects multiple modules. Resolving the bottle-
necks almost eliminated the translation problems, as
can be seen by the drastically increased coverage of
90.64%.

In the case of the MAC, our analysis identified nu-
merous justification and propagation bottlenecks in the
design. The coverage dropped from 96.44% achieved
by the local tests to 70.22% achieved by the translated
test on the original circuit. After the bottlenecks were
resolved, the coverage of the new translated test in-
creased to 91.35%, validating the accuracy of the re-
ported bottlenecks.

The results are summarized in Fig. 15. The faults
that remained uncovered after bottleneck resolution
were identified to belong to the multiplexers that were
used for inserting test points. Except from these faults
that do not belong to the original circuit, our analy-
sis methodology has identified precisely the test trans-
lation bottlenecks, as indicated by the above results.
Further experiments on larger circuits are currently car-
ried out, in order to demonstrate the scalability of our
scheme.

10. Conclusion

We have introduced an efficient testability analysis
methodology for large, modular designs. We address
the challenges associated with the common test frame-
work employed in testing such designs, where test
is locally generated at module boundaries and conse-
quently translated to test stimuli applicable at pinouts.
In order to avoid the common complexity pitfall of
large designs, we have developed two mechanisms for
capturing test translation related behavior of modules.
A traversal algorithm has been described that examines
the satisfiability of the test justification and propaga-
tion requirements at each module’s boundary, based
on this behavior.

Our methodology handles in a uniform way both
combinational and sequential, data and control path
modules. Furthermore, it addresses problems related
to the traversal process, such as feedback loops and re-
convergent paths. The test translation bottlenecks are
identified in a structural manner and combined among
modules. The accuracy of our methodology has been
demonstrated and validated experimentally on exam-
ple circuits, proving its potential to guide efficient test
engineering decisions. Our future research plans com-
prise a concise decision-making mechanism for en-
hancing the testability of a design. More specifically,



P1: SYD

JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL656-05-Makris October 26, 1998 17:3

120 Makris and Orailŏglu

the identified bottlenecks can pinpoint appropriate DFT
modifications such as in [3, 5, 7], support the binding
phase of high-level test synthesis in a fashion similar
to [4], or direct a logic synthesis tool as in [1], in order
to provide additional test translation capabilities.

References

1. C-H. Chen, T. Karnik, and D.G. Saab, “Structural and Behav-
ioral Synthesis for Testability Techniques,”IEEE Transactions
on CAD of Integrated Circuits and Systems, Vol. 13, No. 6, pp.
777–785, June 1994.

2. I. Ghosh, A. Raghunathan, and N.K. Jha, “A Design for Testabil-
ity Technique for RTL Circuits using Control/Data Flow Extrac-
tion,” Proc. IEEE/ACM International Conference on Computer
Aided Design, 1996, pp. 329–336.

3. I. Ghosh, N. Jha, and S. Dey, “A Low-Overhead Design for Testa-
bility and Test Generation Technique for Core-Based Systems,”
Proc. International Test Conference, 1997, pp. 50–59.

4. A. Orailoğlu and I. Harris, “Microarchitectural Synthesis for
Rapid BIST Testing,”IEEE Transactions on CAD of Integrated
Circuits and Systems, Vol. 6, No. 6, pp. 573–586, June 1997.

5. B. Pouya and N. Touba, “Modifying User-Defined Logic for
Test Access to Embedded Cores,”Proc. International Test Con-
ference, 1997, pp. 60–68.

6. R.S. Tupuri and J.A. Abraham, “A Novel Test Generation
Method for Processors using Commercial ATPG,”Proc. Inter-
national Test Conference, 1997, pp. 743–752.

7. P. Vishakantaiah, T. Thomas, J.A. Abraham, and M.S. Abadir,
“AMBIANT: Automatic Generation of Behavioral Modifica-
tions for Testability,”Proc. IEEE International Conference on
Computer Design, 1993, pp. 63–66.

8. F. Corno, P. Prinetto, and M. Sonza Reorda, “Testability Analysis
and ATPG on Behavioral RT-Level VHDL,”Proc. International
Test Conference, 1997, pp. 753–759.

9. J. Lee and J. Patel, “Testability Analysis Based on Structural and
Behavioral Information,”Proc. 11th IEEE VLSI Test Symposium,
1993, pp. 139–145.

10. P. Vishakantaiah, J.A. Abraham, and M.S. Abadir, “Automatic
Test Knowledge Extraction from VHDL (ATKET),”Proc. 29th
ACM/IEEE Design Automation Conference, 1992, pp. 273–278.

11. B.T. Murray and J.P. Hayes, “Test Propagation Through Modules
and Circuits,”Proc. International Test Conference, 1991, pp.
748–757.

12. M.C. Hansen and J.P. Hayes, “High-Level Test Generation Us-
ing Symbolic Scheduling,”Proc. International Test Conference,
1995, pp. 586–595.

13. K.T. Cheng and A.S. Krishnakumar, “Automatic Functional Test
Generation using the Extended Finite State Machine Model,”
Proc. 30th ACM/IEEE Design Automation Conference, 1992,
pp. 86–91.

14. D. Moundanos, J.A. Abraham, and Y.V. Hoskote, “A Unified
Framework for Design Validation and Manufacturing Test,”
Proc. International Test Conference, 1996, pp. 875–884.

15. J.P. Hayes,Computer Architecture and Organization, 3rd edi-
tion, McGraw-Hill, 1998.

16. P. Ashenden,The Designer’s Guide to VHDL, 1st edition,
Morgan-Kaufmann Publishers Inc., 1996.

17. T. Niermann and J. Patel, “HITEC: A Test Generation Package
for Sequential Circuits,”Proc. European Conference on Design
Automation, 1992, pp. 214–218.

18. T. Niermann, W.T. Cheng, and J. Patel, “PROOFS: A Fast, Mem-
ory Efficient Sequential Circuit Fault Simulator,”Proc. 27th
ACM/IEEE Design Automation Conference, 1990, pp. 535–540.

Yiorgos Makris received the Diploma of Computer Engineering and
Informatics from the University of Patras, Greece, in 1995 and the
M.S. degree in Computer Engineering from the University of Cali-
fornia, San Diego, in 1997. He is currently working towards his Ph.D.
degree in Computer Engineering, at the University of California,
San Diego. His research interests include testability analysis, test
generation and DFT.

Alex Orailo ğlu received the S.B. degree from Harvard College,cum
laude, in Applied Mathematics in 1977. He received the M.S. degree
in Computer Science from the University of Illinois, Urbana, in 1979,
and the Ph.D. degree in Computer Science from the University of
Illinois, Urbana, in 1983. Prof. Orailo˘glu has been a member of the
faculty of the Computer Science and Engineering Department at the
University of California, San Diego, since 1987. Prof. Orailo˘glu’s
research interests include the high-level synthesis of fault-tolerant
microarchitectures, and the synthesis of testable designs.


