
ARTICLE IN PRESS
0167-9260/$ - se

doi:10.1016/j.vl

�Correspond
E-mail addr

alex@cs.ucsd.ed
INTEGRATION, the VLSI journal 40 (2007) 315–325

www.elsevier.com/locate/vlsi
On the identification of modular test requirements for low cost
hierarchical test path construction

Yiorgos Makrisa,�, Alex Orailoglub

aElectrical Engineering Department, Yale University, New Haven, CT 06520, USA
bComputer Science & Engineering Department, University of California, San Diego, La Jolla, CA 92093, USA

Received 4 September 2003; received in revised form 22 November 2005; accepted 11 January 2006
Abstract

We discuss a novel method for identifying test requirements of modules in a hierarchical design in order to facilitate the construction of

cost-effective hierarchical test paths. Unlike current practices, which construct very general paths capable of justifying all vectors and

propagating all responses to and from each module in the design, test requirements in our method are defined as a set of fine-grained

input and output bit clusters and pertinent symbolic values. These test requirements reflect the inherent connectivity and regularity of

each module and, when supported by corresponding hierarchical test paths, they guarantee complete testability of the module. Their key

advantage is that they are not fully specified test vectors and, therefore, they do not require a computationally expensive search algorithm

to satisfy from the primary inputs and outputs of the circuit. At the same time, they are also not arbitrarily general and, therefore, they

do not impose overly strenuous transparency requirements on the surrounding modules, which could require excessive design-for-

testability hardware. In essence, they combine the generality required for fast hierarchical test path construction with the precision

necessary for minimizing the incurred cost, thus fostering cost-effective hierarchical test.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Hierarchical test; Test requirements; Transparency; Design for test
1. Introduction

Size and complexity considerations, along with the
modular nature of the core-based design trend, have
accentuated the importance of hierarchical test methodol-
ogies [1–5]. Hierarchical test employs a divide and conquer
approach to reduce the size of the test generation problem
and, thus, to improve fault coverage and test generation
time. These benefits, however, come at the cost of
necessitating access from the primary inputs and outputs
of the circuit to the boundaries of each module. A simple
and straightforward method for establishing such access is
through the use of a dedicated test bus [6,7]. Yet the area
and performance overhead of a test access bus is not
always tolerable. Therefore, a lot of effort has been
invested in utilizing the existing functionality of the design
e front matter r 2006 Elsevier B.V. All rights reserved.

si.2006.01.002

ing author. Tel.: +12034321203; fax: +12034320593.

esses: yiorgos.makris@yale.edu (Y. Makris),

u (A. Orailoglu).
to establish module access through hierarchical test paths.
As depicted in Fig. 1(a), these paths establish transparent
access to the module under test (MUT), through the
upstream and downstream logic. During hierarchical test
path construction, the MUT is treated as a black box.
Implicitly, it is assumed that all possible vectors and
responses need to be justified and propagated, although in
practice this is almost never the case. Furthermore,
transparent accessibility to all modules is rarely inherently
present in a design. As a result, significant design-for-test
(DFT) overhead is incurred to establish these paths [8,9],
limiting the cost-effectiveness and applicability of hier-
archical test.
In an effort to reduce this DFT cost, two directions have

been examined. Along the first direction, several research
efforts [1,2,9–11] have been invested in defining, extracting,
and utilizing inherent design transparency. Along the
second direction [4], inherent functionality of the surround-
ing logic is used to constrain local test generation,
rendering translatable test. Not much attention has been

www.elsevier.com/locate/vlsi

ARTICLE IN PRESS

Module
Under
Test

Primary
Inputs

Primary
Outputs

Justify All
Vectors

Propagate All
Responses

Test Requirements
(MUT=Black Box)

DFT Cost for
Hierarchical Test
Path Construction

Hierarchical
Test Path
Through
Upstream

Logic

Hierarchical
Test Path
Through

Downstream Logic

(a)

Module Under Test

Primary
Inputs

Primary
Outputs

Fine-Grained
Bit Clusters

to be
Justified

Fine-Grained
Bit Clusters

to be
Propagated

Test Requirements
(Analyze MUT)

Reduced DFT Cost
for Construction of

Fine-Grained
Hierarchical Test

Paths

(b)

CELL CELL

Fig. 1. Granularity of test requirements.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325316
paid, however, to a third option, namely moderating DFT
cost through an informed definition of the test require-
ments of each MUT, rather than treating the MUT as a
black box. This idea is depicted in Fig. 1(b), where the
internal connectivity of the MUT is examined and its test
requirements are defined as input and output bit clusters.
This results in several narrow hierarchical test paths
instead of a single coarse path, thus increasing the
probability of their inherent existence in the design.

In this paper, we assess the impact of test requirement
granularity on the cost of hierarchical test path construc-
tion. Subsequently, we propose a methodology for redu-
cing this cost by fine-tuning the generality of test
requirements and the number and the granularity of
necessary hierarchical test paths. Furthermore, regular
module connectivity is used to define compact and
parametrized test requirements. Cell-level analysis and
symbolic path composition result in the definition of test
requirements as a set of input and output bit clusters. Cell-
level analysis supports compactness, while bit clusters
enhance accuracy and symbolic paths guarantee generality.
Although we only consider combinational modules, the
proposed method constitutes the first step towards low cost
hierarchical test path construction based on test require-
ment analysis.

The remainder of this paper is organized as follows.
Related work is discussed in Section 2. The proposed
method is then presented in detail in Section 3. Specifically,
the severity imposed by test requirements on hierarchical
test path construction is first examined in Section 3.1. The
identification of appropriate test requirements is intro-
duced in Section 3.2 and the appropriate cell granularity is
discussed in Section 3.3. Adjustment to cell connectivity is
examined in Section 3.4. Examples are given in Section 4
and severity metrics along with results are provided in
Section 5.

2. Related work

Hierarchical test path construction typically employs
transparency. Transparency has been defined as surjective

functions for justifying test vectors and injective functions
for propagating test responses. Surjective and injective
functions are referred to in the literature as S-Paths and F-

Paths respectively [10], while bijective functions, satisfying
both properties, are referred to as I-Paths and T-Paths [11].
Several variations of surjective, injective, and bijective
functions, including Ambiguity Sets [1], Transparency

Modes [2], and Transparency Properties [9], have also been
used in order to improve efficiency and reduce cost.
Although test requirement identification has been

examined in related fields, the objective for hierarchical
test path construction is different than the traditional
concept of C-Testability [12] commonly used in built-in
self-test and iterative logic array test. The objective of test
requirement identification for BIST [13–16], for example, is
to derive a compact test set that can be easily generated on
chip. The objective of test requirement identification for
ILA test [17–19] is to exploit regularity and combine test
application across cells. In contrast to these approaches,
the objective of the proposed methodology is to identify
test requirements that reduce the severity imposed on
hierarchical test path construction and the corresponding
DFT overhead.

ARTICLE IN PRESS
Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325 317
3. Proposed method

3.1. Hierarchical test path severity

Hierarchical test methods employ symbolic paths for
performing local to global test translation. Symbolic paths,
however, impose strenuous functionality requirements on
surrounding modules, directly impacting the incurred DFT
overhead. As a result, hierarchical test methods are
criticized for the unnecessary generalization of test
requirements. But is it always the case that symbolic paths
impose more strenuous requirements than a set of exact
vectors?

Answering this question requires an understanding of
the severity incurred by an exact test vector set on
hierarchical test path construction. Given a set of k-bit
test vectors and depending on the number and the
distribution of values appearing on each subset of these
k-bits, certain restrictions are imposed on the number of
primary inputs required and the degrees of freedom
necessary between them. Bits that are always equal or
always inverse throughout the test set only require one free
variable. The free variables required are not always equal
to the vector width. But at a certain set density point, the
full width is required; essentially, if more than half of the
possible values are in the set, no bit can be inferred,
necessitating k free variables.

Consider for example the 2-input module of Fig. 2(a)
and the provided alternative test sets. Test requirements for
each bit may be either a constant ‘0’ or ‘1’ value
symbolically represented by ‘V ’, or a free variable
represented by ‘A’. Bits that are not required in a test set
are represented by ‘X ’. For TS1, a hierarchical test path
with one free variable, A1, at its inputs is sufficient to
satisfy the test requirements. This is also valid for test set
TS2. For TS3 and TS4, a hierarchical test path with one
free variable, A1, and a constant at its inputs is again
sufficient. Once a test set with three vectors is reached,
however, such as TS5, a 2-bit hierarchical test path with no
bit correlation is necessary. This is almost as severe as
MODULE

TS1={00, 11}
TS2={01, 10}
TS3={00, 01}

TS4={10, 11}

TS5={00, 01, 1

MODULE

TEST SET

(a)

(b)

TS6=

{001, 010, 101, 1

TS7=

{010, 100, 110, 0

TEST SET

Fig. 2. Test Requiremen
requiring two free variables, A1 and A2. A 2-bit path is
what hierarchical test methods establish in this case.
Similarly, for the 3-input module of Fig. 2(b), TS6 can be

satisfied with two free variables, A1 and A2, at its inputs.
However, TS7 requires three free variables, A1, A2, and A3.
A careful observation reveals that unlike in TS6, in TS7

every 2-bit subset obtains more than half of the possible
values, thus necessitating a 2-bit hierarchical test path with
uncorrelated bits. Since this holds for every subset, the
severity is equivalent to a full 3-bit path.
Evidently, there is a threshold for the number and

distribution of vectors in a test set, over and above which
the severity of the corresponding hierarchical test path is
equal to that of the full symbolic path. Generalizing the
above observations leads to the following condition:
�
 Hierarchical test path severity threshold: The hierarch-
ical test path severity of a set of k-bit vectors is
equivalent to a k-bit symbolic path if every subset of
bits obtains more than half of the possible values.

This condition signifies when exact test vectors can be
relaxed into symbolic test requirements, providing a
starting point for the proposed test requirement identifica-
tion.

3.2. Test requirement identification

The proposed methodology targets each basic cell in a
module and requires that free variables be justified to all
the inputs and propagated from all the outputs. These
symbolic requirements are translated into module inputs
and outputs to be controlled and observed. As shown in
Fig. 3(a), inputs or outputs of the cell that are also inputs
or outputs of the module are directly assigned a free
variable ‘A’. However, there are also l cell inputs and m cell
outputs that need to be justified and propagated through
the surrounding cells. A transparency composition scheme
[20] is employed, identifying a surjective path from k

module inputs to the l cell inputs, where kXl, and an
0}

(A1, A1) : 1 Free Variable
(A1, A1') :1 Free Variable
(V, A1) : 1 Free Variable

(V, A1) : 1 Free Variable

(A1, A2) : 2 Free Variables

PATH REQUIREMENT

10}

01}

(A1, A2, A2') :

2 Free Variables

(A1, A2, A3) :

3 Free Variables

PATH REQUIREMENT

t severity examples.

ARTICLE IN PRESS

CELL
. . .

m n
. . .

k l

'A'

'A'

'X'

'X'

'X'

'X'

'A' 'A''A' 'A'

MODULE

(a)

Surjection Activation
Constants

Injection Activation
Constants

CELL . . .m n. . .k l

P={Test Pattern Values} 'X'

'X'

'X'

'X'

Vj VpVt Vr

MODULE

(b) R={Test Response Values}
k>=l n>=m

k>=l n>=m

Fig. 3. Proposed vs. exhaustive methodology.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325318
injective path from the m cell outputs to n module outputs,
where nXm. The resulting justification requirements for
the module inputs are either a constant ‘0’ or ‘1’, or a free
variable ‘A’, while the propagation requirements for the
module outputs are free variables ‘A’. The remaining
inputs and outputs are assigned to ‘X ’.

The transparency-based scheme is a relaxed test require-
ment analysis. In Fig. 3(b) for example, the cell inputs that
are also module inputs should be assigned to P, the set of
required vectors. Similarly, the cell outputs that are also
module outputs should be assigned to R, the set of required
responses. For the l cell inputs and m cell outputs that are
justified and propagated through the surrounding cells,
exact analysis is more complicated. Assume that Vj ,
Vj � 2l , is the set of values that need to be justified to
these l inputs of the cell. Similarly, assume that Vp,
Vp � 2m, is the set of values that needs to be distinguish-
ably propagated from these m outputs of the cell.
Essentially, a set V t, V t � 2k, and a set V r, V r � 2m, such
that jVjj ¼ jVtj and jV pj ¼ jVrj, are required, with the
module implementing a function f from V t to V j and a
function g from V p to V r. Then, Vt and Vr would be the
remaining test requirements at the module inputs and
outputs. Such a value-based reasoning for identifying the
sets V j, Vt, V p, and V r, providing exact test requirements,
is overly time-consuming. Therefore, the described trans-
parency-based scheme results in a simpler and faster
identification of test requirements.
1Tests were generated using ATALANTA [21] with random fill off.
3.3. Cell granularity

Success of the proposed methodology depends on the
choice of cell granularity, which is based on several factors.
First of all, the selected cell should satisfy the severity
threshold condition. Repetitive structures should also be
considered, since they result in regular and parametrizable
requirements. Finally, the size and the number of cells
should be taken into account. An examination of several
basic cells reveals that they constitute the appropriate
granularity level for hierarchical test requirement identifi-
cation. Due to the dense connectivity structure within such
basic cells, as compared to the sparser inter-cell connectiv-
ity, gate-level test requirements satisfy the severity thresh-
old condition of Section 3.1. Fig. 4 shows examples of four
cells and the corresponding gate-level tests1 which satisfy
the severity threshold condition. Cells of this granularity
are the basic components of arithmetic circuits [22]. Basic
cells allow exploitation of regularity and reduction of
analysis complexity. With the exception of boundary cells,
only prototypical cells are analyzed and test requirements
are defined in a parametrized way. Furthermore, regular
requirements incur regular DFT, which can be combined
across the requirements of several cells and be highly
optimized.

3.4. Test requirement granularity adjustment

While test requirement identification at a finer granular-
ity than the basic cell level does not provide hierarchical
test path severity reduction, the derived test requirements
across several cells may also satisfy the threshold condi-
tion. Therefore, granularity should be adjusted accord-
ingly, resulting in a compact set of test requirements that
are as symbolic as possible but do not increase hierarchical
test path severity. The proposed methodology adjusts
granularity to inter-cell connectivity through a structural
analysis of the requirements and the paths. If the paths
required for accessing and testing a cell fully incorporate
additional cells, then the cells are combined into a larger
block. For example, consider the connectivity structure
shown in Fig. 5. The surjective and injective paths required
for testing cell]3 fully incorporate cells]1,]2,]4, and]5.
It is therefore wise to combine test application for all five
cells, since no additional severity is imposed on the
corresponding hierarchical test paths. Another way of
explaining this is that the requirements for testing cells]1,
]2,]4, and]5 are subsets of the requirements for testing

ARTICLE IN PRESS

A
B
C

D

FULL ADDER CELL

B

C

D

NON-RESTORING DIVIDER CELL

A

S

S

C
D

E

A

B

MULTIPLY-ADD CELL

RESTORING DIVIDER CELL

B

C

A
E

S

D

Vectors:

ABC
100
010
001
101
110
000

Responses:

DE
10
01
00

Vectors:

ABCS
0X01
0100
1000
0X10
1101
0X11
1100

Responses:

DE
01
00
10

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

Hierarchical Test
Path Severity:

Justify 'AAA' at ABC
Propagate 'AA' from DE

Vectors:

ABCS
1000
0000
0101
1100
1010
0010
0100

Responses:

DE
01
00
10

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

Vectors:
ABCS
010X
111X
110X
0110
0111

Responses:
DE
01
00
10
11

Hierarchical Test
Path Severity:

Justify 'AAAA' at ABCS
Propagate 'AA' from DE

ABCS
0001
1000
0011
1011
1001

E

E

Fig. 4. Cells satisfying the severity threshold condition.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325 319
cell]3, and can therefore be discarded. Consequently, once
the test requirements for each cell are identified at the
module boundary, an additional granularity adjustment is
made.

4. Examples

We demonstrate the proposed method on several
example modules to validate its ability to identify symbolic,
yet accurate test requirements, adjusting their granularity
to the inter-cell connectivity of the module. The method
exploits inherent cell regularity, in order to parametrize
and compact the identified test requirements.

The first module, shown in Fig. 6, is a simple 4-bit carry-
ripple adder [22], comprising 4 full-adder cells, such as the
one shown in Fig. 4. Consider for example the test
requirements for FA]3. According to the proposed
methodology of Section 3.2, ‘A’s are assigned to the inputs
and outputs of the cell that are also inputs and outputs of
the module, in this case A2, B2, and Z2. The ‘A’
requirement on C2 is satisfied through a surjective path
from A1, B1, while the ‘A’ requirement on C3 is satisfied
through an injective path to Z3, activated by any constant
value ‘V ’ on A3, B3. The remaining inputs and outputs,
Cin, A0, B0, Z0, Z1, and Cout are assigned ‘X ’s. The
identified test requirements are symbolic but also compact,
thus close in precision to exact test. In addition, module
regularity allows test requirement parametrization; there-
fore, the analysis is performed only for the prototypical cell
and the boundary cases.
The second module is the 74181 ALU [17], which unlike

the adder is neither homogeneous, nor regular. The
connectivity and the test requirements for each cell are
shown in Fig. 7. Based on the granularity adjustment
methodology of Section 3.4, the propagation requirements
for the cell pairs ð]1;]5Þ, ð]2;]6Þ, ð]3;]7Þ, and ð]4;]8Þ are
merged. Furthermore, establishing a surjective path to the
10 inputs of cell]9 requires a hierarchical test path to all 14
inputs of the ALU. Consequently, the justification
requirements for cells]1 through]8 are all subsets of the

ARTICLE IN PRESS

CELL
#1

CELL
#3

CELL
#4

CELL
#2

CELL
#5

IN1

IN2

IN3

IN4

IN5

IN6

O1

O2

O3

O4

O5

O6

EXAMPLE TEST REQUIREMENTS:

 IN1 IN2 IN3 IN4 IN5 IN6 O1 O2 O3 O4 O5 O6

A A A V V X A A X X X X

V V X A A A X X A A A A

A A A A A A A A A A A A

A A A V V X A A X X X X

V V X A A A X X A A A A

A A A A A A A A A A A A

CELL #1:

CELL #2:

CELL #3:

CELL #4:

CELL #5:

Combined
Requirement:

Fig. 5. Granularity adjustment example.

CinA0B0A1B1A2B2A3B3

 A A A V V X X X X
 X A A A A V V X X
 X X X A A A A V V
 X X X X X A A A A

FA#1

A0 B0

Z0

C1Cin FA#2

A1 B1

Z1

C2 FA#3

A2 B2

Z2

C3 FA#4

A3 B3

Z3

Cout

Test Justification Requirements: Test Propagation Requirements:

FA#1:
FA#2:
FA#3:
FA#4:

Z0Z1Z2Z3Cout

 A A X X X
 X A A X X
 X X A A X
 X X X A A

FA#1:
FA#2:
FA#3:
FA#4:

CARRY-RIPPLE ADDER

Fig. 6. Test requirements of carry-ripple adder.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325320
justification requirements for cell]9 and are discarded. The
final set of test requirements for the ALU is thus adjusted
to the module connectivity and is shown in boldface.

The third module is a restoring array divider [22]
composed of cells such as the one shown in Fig. 4. The
circuit and the test requirements are shown in Fig. 8.
The inherent module regularity allows parametrization of
the test requirements. Consider, for example, the test
requirements for cell]5. The four inputs of the cells are
justified through two surjective paths, one from D3, Z4,
and Z5 and another one from D2 and Z2. The two outputs
of the cell are propagated through injective paths to
outputs Q2, Q3, and S4. These inputs and outputs are
consequently assigned a test requirement ‘A’. The remain-
ing inputs all require constant values to establish the
injective and surjective paths and are, therefore, assigned a
test requirement ‘V ’, while the remaining outputs are
assigned a test requirement ‘X ’. The granularity is once
again adjusted using the methodology of Section 3.4, and
the final set is shown in boldface.
5. Severity metrics and experimental results

The following two metrics are introduced to reflect the
severity imposed by the test requirements of a module on
test path existence and test path identification. The
underlying assumption is that the likelihood of path
existence and the complexity of path identification
decrease, as the generality of the path increases. Path
generality increases with the width and with the values to
be attained at each bit.

ARTICLE IN PRESS

74181 ALU

 M'CnA0A1A2A3B0B1B2B3S0S1S2S3

 V V A X X X A X X X A A A A
 V V V A X X V A X X A A A A
 V V V V A X V V A X A A A A
 V V V V V A V V V A A A A A
 A A A X X X A X X X A V V V
 A A A A X X A A X X A A V V
 A A A A A X A A A X A A A V
 A A A A A A A A A A A A A A
 A A A A A A A A A A A A A A

Test Justification Requirements: Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

 G'CoP'F3'F2'EqF1'F0'

X X X X X X A A
X X X X A X A X
X X X A A X X X
X A X A X X X X
X X X X X X X A
X X X X X X A X
X X X X X A X X
X X X X A X X X
A A A X X A X X

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell
#5

Cell
#6

Cell
#8

Cell
#7

Cell
#9

F0' F1' F2' F3' Eq P'Co G'

Cell
#1

Cell
#2

Cell
#3

Cell
#4

M'Cn S0S1S2S3A0B0 A1B1 A2B2 A3B3

Fig. 7. Test requirements of 74181 ALU.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325 321
Test Path Existence Severity, reflecting the possibility that
hardware will be needed to establish transparency paths due
to the generality of test requirements, is defined as

TPESðModuleÞ ¼
X
8Paths

TPESðPathÞ; where (1)

TPESðPathÞ ¼
Y
8Bits

TPESðBitÞ; and (2)

TPESðBitÞ ¼

1 if ‘X ’

2 if ‘V ’

4 if ‘A’

8><
>:

9>=
>;

(3)

Test path identification severity, reflecting the possibility
that testability hardware will be needed due to the trans-
lation complexity of exact test requirements, is defined as

TPISðModuleÞ ¼
X
8Paths

TPISðPathÞ (4)
where

TPISðPathÞ ¼
Y
8Bits

TPISðBitÞ (5)

and

TPISðBitÞ ¼

1 if ‘X ’

2 if ‘A’

4 if ‘V ’

8><
>:

9>=
>;

(6)

As an example, Fig. 9 calculates the controllability and
observability TPES and TPIS of a 4-bit carry-ripple adder
for the test requirements imposed by symbolic paths and by
compacted gate-level test. Fig. 10, calculates the metrics for
the requirements imposed by non-compacted gate-level test
and by the proposed method.
The controllability metrics C-TPES and C-TPIS for the

four approaches are summarized in Tables 1 and 2, while
the observability metrics O-TPES and O-TPIS are sum-
marized in Tables 3 and 4. Results are also reported in
these tables for the restoring divider and the ALU example
circuits of the previous section, as well as an 8-bit pipelined

ARTICLE IN PRESS

TEST PATTERNS - TEST RESPONSES

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 0 0 0 1 0 1 1 0 0 1 0 1 1
0 1 0 1 0 1 1 0 1 0 1 1 0 0
1 0 0 1 0 0 1 1 0 0 1 1 0 0
1 1 1 0 0 1 1 0 1 1 0 1 0 1
0 1 0 1 0 0 0 1 0 0 0 1 1 0
1 0 1 0 1 1 1 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 1 0 1
0 1 1 0 1 0 0 1 0 0 1 1 1 1

4-bit
Carry Ripple

Adder

M

A[3:0] B[3:0]

CinCout

Z[3:0]

Symbolic Paths

1 Justification Path: "AAAAAAAAA"

C-TPES (M)=49=262144
C-TPIS (M)=29=512

1 Propagation Path: "AAAAA"

O-TPES=45=1024
O-TPIS=25=32

Compacted Test

8 Justification Paths: "VVVVVVVVV"

C-TPES (M)=8*29=4096
C-TPIS (M)=8*49=20197152

7 Propagation Paths: "VVVVV"

O-TPES=7*25=224
O-TPIS=7*45=7168

8 Distinct Vectors - 7 Distinct Responses

Fig. 9. Metric calculation example for symbolic paths and compacted test.

 Z1Z2Z3Z4Z5Z6D1D2D3
 A V V A V V V V A
A V A A V V V A A
A A A V V V A A V
 V A V V A V V V A
 V A V A A V V A A
 V A A A V V A A V
 V V A V V A V V A
V V A V A A V A A
 V V A A A V A A V
 A A X X X X A X X
 A A A V X X A V X
 X A A A V X A V X

Cell
#3

Z2

Cell
#2

Z3

Cell
#1

Z4

Test Justification Requirements: Test Propagation Requirements:

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell#10:
Cell#11:
Cell#12:

Q1Q2Q3S4S5S6
A A X A X X
A A A X X X
A A X X X X
X A A X A X
X A A A X X
X A A X X X
X X A X X A
X X A X A X
X X A A X X
A X X X X X
X A X X X X
X X A X X X

RESTORING ARRAY DIVIDER

' 0'

D1 D2 D3Cell
#10

Z1

Cell
#6

Cell
#5

Cell
#4

Z5

' 0'

D1 D2 D3Cell
#11

Cell
#9

S4

Cell
#8

S5

Cell
#7

Z6

S6

' 0'

D1 D2 D3Cell
#12

Q1

Q2

Q3

Cell#1:
Cell#2:
Cell#3:
Cell#4:
Cell#5:
Cell#6:
Cell#7:
Cell#8:
Cell#9:

Cell#10:
Cell#11:
Cell#12:

Fig. 8. Test requirements of array divider.

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325322
multiplier accumulator (MAC) [23]. As demonstrated, the
coarseness of the symbolic paths results in very high TPES
values, although their generality ensures low TPIS values.
On the other hand, the accuracy of exact test ensures low
TPES values, yet results in high TPIS values due to the
complexity of exact translation. If the test is not compacted
the problem is slightly alleviated but the TPIS values are
still orders of magnitude higher than the TPES values. The

ARTICLE IN PRESS

Proposed Methodology

4 Justification Paths:
"XXVAXXVAA"
"XVAAXVAAX"
"VAAXVAAXX"
"AAXXAAXXX"

C-TPES(M)=22*43+22*44+22*44+44=2560

C-TPIS(M)=42*23+42*24+42*24+42=656

4 Propagation Paths:
"XXXAA"
"XXAAX"
"XAAXX"
"AAXXX"

O-TPES=42+42+42+42=64
O-TPIS=22+22+22+22=16

TEST PATTERNS - TEST RESPONSES
(RANDOM FILL TURNED OFF)

A3A2A1A0B3B2B1B0Cin CoutZ3Z2Z1Z0

0 1 1 X 0 0 1 X X 0 1 0 X X
X 0 1 1 X 0 0 1 X X X 1 0 X
0 1 0 X 0 0 0 X X 0 0 1 X X
0 0 0 X 0 1 0 X X 0 0 1 X X
0 0 1 X 0 0 1 X X 0 0 1 X X
X 0 1 0 X 0 0 X 0 X X 0 1 X
X 0 0 0 X 0 1 X 0 X X 0 1 X
X 0 0 1 X 0 0 1 X X X 0 1 X
X X 0 1 X X 0 0 1 X X X 1 0
X X 0 1 X X 0 0 0 X X X 0 1
X X 0 0 X X 0 1 0 X X X 0 1
X X 0 0 X X 0 0 1 X X X 0 1
0 1 X X 0 1 X X X 0 1 X X X
1 0 X X 1 0 X X X 1 0 X X X
1 0 X X 0 0 X X X 0 1 X X X
0 0 X X 1 0 X X X 0 1 X X X
1 1 X X 0 1 X X X 1 0 X X X

Non-Compacted Test

17 Distinct Justification Paths:
(8 have 3 Xs, 4 have 4 Xs, 5 have 5 Xs)

C-TPES(M)=8*26+4*25+5*24=848
C-TPIS(M)=8*46+4*45+5*44*24+42=38144

7 Distinct Propagation Paths:
(3 have 2 Xs, 4 have 3 Xs)

O-TPES=3*23+4*22=40
O-TPIS=3*43+4*42=256

Full
Adder

Full
Adder

Full
Adder

Full
Adder

A0 B0

Z0

A1 B1

Z1

A2 B2

Z2

A3 B3

Z3

C1 C2 C3Cin Cout

Fig. 10. Metric calculation example for non-compacted test and proposed method.

Table 1

Comparison of C-TPES metrics

C-TPES

metric

Symbolic paths Compacted

test

Non-

compacted

test

Proposed

method

Adder 262144 4096 848 2560

Divider 262144 9216 7360 49152

ALU 238435456 425984 65280 238435456

MAC 17179869184 4980736 1269728 318644

Table 2

Comparison of C-TPIS metrics

C-TPIS

metric

Symbolic

paths

Compacted test Non-

compacted

test

Proposed

method

Adder 512 20197152 38144 656

Divider 512 4718592 3662468 98304

ALU 16384 6979321856 230430714 16384

MAC 131072 652835028992 7356319724 102796

Table 3

Comparison of O-TPES metrics

O-TPES

metric

Symbolic

paths

Compacted

test

Non-

compacted

test

Proposed

method

Adder 1024 224 40 64

Divider 4096 1088 832 36

ALU 65536 5632 4064 32

MAC 262144 11264 8266 784

Table 4

Comparison of O-TPIS metrics

O-TPIS

metric

Symbolic

paths

Compacted

test

Non-

compacted

test

Proposed

method

Adder 32 7168 256 16

Divider 64 69632 47888 272

ALU 256 1441792 1013856 320

MAC 512 5767168 3964236 2840

Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325 323
proposed methodology resolves the problem by combining
the generality required for fast hierarchical test path
construction with the accuracy necessary for ensuring
translatability. As a result, the TPES and TPIS values are
of the same order of magnitude and close to the minimal
values, except for controlling the ALU where the full path
is required. Thus, the identified test requirements signifi-
cantly reduce the overall burden imposed on hierarchical
test.
6. Conclusions

Accurate modular test requirement identification is
critical to the cost-effectiveness of hierarchical test, since
the severity imposed on the corresponding hierarchical test

ARTICLE IN PRESS
Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325324
paths is directly related to the anticipated testability
hardware overhead. A thorough understanding of the
severity imposed by exact test patterns as compared to
symbolic test provides the basis for defining appropriate
test requirements. The proposed methodology identifies a
set of fine-grained, yet adequate input and output bit
clusters to be justified and propagated respectively,
through which symbolic test can be applied to each basic
cell in the module. Through an efficient cell-based
transparency extraction approach, the proposed method
adjusts the granularity of the identified test requirements to
the module connectivity. Furthermore, the identified test
requirements are independent of particular test sets and
can be parametrized to exploit inherent repetitive struc-
tures and regularity in the design, thus reducing the
analysis time and the corresponding storage. Most
importantly, the identified test requirements combine the
generality required for fast hierarchical test path construc-
tion with the accuracy necessary for minimizing the
corresponding hierarchical test path severity. Thus, the
overhead incurred for constructing adequate hierarchical
test paths is reduced, fostering cost-effective hierarchical
test.
References

[1] B.T. Murray, J.P. Hayes, Hierarchical test generation using

precomputed tests for modules, IEEE Trans. Comput. Aided Des.

9 (6) (1990) 594–603.

[2] P. Vishakantaiah, J.A. Abraham, D.G. Saab, CHEETA: Composi-

tion of hierarchical sequential tests using ATKET, in: International

Test Conference, 1993, pp. 606–615.

[3] J. Lee, J.H. Patel, Hierarchical test generation under architectural

level functional constraints, IEEE Trans. Computer-Aided Des.

Integrated Circuits Syst. 15 (9) (1997) 1144–1151.

[4] R.S. Tupuri, A. Krishnamachary, J.A. Abraham, Test generation for

gigahertz processors using an automatic functional constraint

extractor, in: Design Automation Conference, 1999, pp. 647–652.

[5] Y. Makris, J. Collins, A. Orailoglu, P. Vishakantaiah, TRANSPAR-

ENT: A system for RTL testability analysis, DFT guidance and

hierarchical test generation, in: Custom Integrated Circuits Con-

ference, 1999, pp. 159–162.

[6] Y. Zorian, E.J. Marinissen, S. Dey, Testing embedded-core based

system chips, in: International Test Conference, 1998, pp. 130–143.

[7] E.J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti,

Y. Zorian, On IEEE P1500’s standard for embedded core test,

Journal of Electronic Testing: Theory and Applications, (Aug. 2002)

365–383.

[8] I. Ghosh, A. Ragunathan, N.K. Jha, A design for testability

technique for RTL circuits using control/data flow extraction, IEEE

Trans. Computer-Aided Des. Integrated Circuits Syst. (8) (1998)

706–723.

[9] Y. Makris, A. Orailoglu, RTL test justification and propagation

analysis for modular designs, J. Electron. Testing: Theory Appl. 13

(2) (1998) 105–120.

[10] S. Freeman, Test generation for data-path logic: The F-path method,

IEEE J. Solid 23 (2) (1988) 421–427.

[11] M.S. Abadir, M.A. Breuer, A knowledge-based system for designing

testable VLSI chips, IEEE Des. Test Comput. 2 (4) (1985) 56–68.

[12] M. Abramovici, M.A. Breuer, A.D. Friedman, Digital Systems

Testing and Testable Design, IEEE Press, New York, 1990.
[13] H. Al-Asaad, J.P. Hayes, B.T. Murray, Scalable test generators for

high-speed datapath circuits, J. Electron. Testing: Theory Appl. 12

(1/2) (1998) 111–125.

[14] I. Voyiatzis, A. Paschalis, D. Nikolos, C. Halatsis, R-CBIST:

An effective RAM-based input vector monitoring concurrent

BIST technique, in: International Test Conference, 1998,

pp. 918–925.

[15] K.K. Saluja, R. Sharma, C.R. Kime, A concurrent testing technique

for digital circuits, IEEE Trans. Computer-Aided Des. Integrated

Circuits Syst. 7 (12) (1988) 1250–1260.

[16] D. Gizopoulos, A. Paschalis, Y. Zorian, An effective built-in self-test

scheme for parallel multipliers, IEEE Trans. Comput. 48 (9) (1999)

936–950.

[17] E.J. McCluskey, S. Bozorgui-Nesbat, Design for autonomous test,

IEEE Trans. Comput. c-30 (11) (1981) 866–874.

[18] T. Sridhar, J.P. Hayes, Design of easily testable bit-sliced systems,

IEEE Trans. Comput. c-30 (11) (1981) 842–854.

[19] H. Elhuni, A. Vergis, L. Kinney, C-Testability of two-dimensional

iterative logic arrays, IEEE Trans. Computer-Aided Des. Integrated

Circuits Syst. 5 (4) (1986) 573–581.

[20] Y. Makris, V. Patel, A. Orailoglu, Efficient transparency extraction

and utilization in hierarchical test, in: VLSI Test Symposium, 2001,

pp. 246–251.

[21] ATALANTA combinational test generation tool, Available from

hhttp://www.ee.vt.edu/ha/cadtoolsi.

[22] B. Parhami, Computer Arithmetic: Algorithms and Hardware

Designs, Oxford University Press, Oxford, 1999.

[23] P. Ashenden, The Designer’s Guide to VHDL, Morgan-Kaufmann,

Los Altos, CA, 1996.

Yiorgos Makris received his Diploma of Computer Engineering and

Informatics from the University of Patras, Greece, and his M.S. and Ph.D.

degrees in Computer Engineering from the University of California, San

Diego. He is currently an Associate Professor of Electrical Engineering

and Computer Science at Yale University. His research interests include

test and reliability of digital and analog circuits and systems, testing of

asynchronous circuits, and machine-learning applications in computer-

aided design of nanodevices.

Alex Orailoglu received his S.B. Degree cum laude from Harvard

University in Applied Mathematics and his M.S. and Ph.D. degrees in

Computer Science from the University of Illinois, Urbana-Champaign. He

is currently a Professor of Computer Science and Engineering at the

University of California, San Diego. His research interests include

embedded systems and processors, digital and analog test, fault tolerant

computing, computer-aided design, and nanoelectronics.

Professor Orailoglu serves in the technical, organizing and/or steering

committees of the major VLSI Test, Design Automation, Embedded

Systems and Computer Architecture conferences and workshops. He is an

associate editor of the IEEE Design and Test Magazine, of the Journal of

Electronic Test: Theory and Applications, of the IEE Digital Systems and

Design Journal, and of the Journal of Embedded Computing. He has

served as the Technical Program Chair of the 1998 High Level Design

Validation and Test (HLDVT) Workshop, as the General Chair of

HLDVT’99, as the Technical Program Co-Chair of the 2003 CODES

+ISSS (ACM/IEEE Hardware Software Codesign Symposium &

ACM/IEEE International System Synthesis Symposium), as the General

Co-Chair of CODES+ISSS ’04, as the Program Co-Chair of the 18th

Symposium on Integrated Circuits and Systems Design (SBCCI 2005), as

the Program Chair of the IEEE International Workshop on Design

and Test of Defect-Tolerant Nanoscale Architectures (NanoArch 2005),

as the Program Chair of the Workshop on Application Specific Proces-

sors (WASP 2005), and as the Vice Program Co-Chair of the 2004

VLSI Test Symposium and of the 2005 VLSI Test Symposium. He

currently serves as the Vice Program Co-Chair of the 2006 VLSI Test

Symposium.

http://www.ee.vt.edu/ha/cadtools

ARTICLE IN PRESS
Y. Makris, A. Orailoglu / INTEGRATION, the VLSI journal 40 (2007) 315–325 325
Professor Orailoglu is the founding chair of the Workshop on

Application Specific Processors (WASP), and has also served as its

General and Program Chair in 2002 and 2003. He is also the founding

chair of the IEEE International Workshop on Design and Test of Defect-

Tolerant Nanoscale Architectures (NanoArch). Dr. Orailoglu currently

serves on the Steering Committees of CODES+ISSS, of WASP, of

the IEEE Workshop on RTL and High Level Testing, and of HLDVT.

Dr. Orailoglu currently serves on more than 20 Program Committees of

technical meetings in the areas of VLSI Test, Embedded Systems,

Computer Architectures, and Nanoelectronics.
Professor Orailoglu has served as a member of the IEEE Test

Technology Technical Council (TTTC) Executive Committee, as the Vice

Chair of TTTC, as the Chair of the Test Technology Education Program

group, as the Technical Activities Committee Chair and Planning Co-Chair

of TTTC. He currently serves as the Communities Chair of the IEEE

Computer Society Technical Activities Board. He is the founding chair of

the IEEE Computer Society Task Force on Embedded System Codesign

and the founding Vice-Chair of the IEEE Computer Society Task Force on

Nanoelectronics. Professor Orailoglu has published 200 research articles

and is a Golden Core member of the IEEE Computer Society.

	On the identification of modular test requirements for low cost hierarchical test path construction
	Introduction
	Related work
	Proposed method
	Hierarchical test path severity
	Test requirement identification
	Cell granularity
	Test requirement granularity adjustment

	Examples
	Severity metrics and experimental results
	Conclusions
	References

