Kuwait J. Sci. Eng. 36 (2B) pp. 141-162, 2009

Parity-based concurrent error detection with bounded latency
in finite state machines

SOBEEH ALMUKHAIZIM", PETROS DRINEAS™, AND YIORGOS
MAKRIS™

: Computer Engineering Department, Kuwait University, Kuwait

E-mail: sobeeh.almukhaizim@ku.edu.kw

" Department of Computer Science, Rensselaer Polytechnic Institute, USA,

E-mail: drinep@cs.rpi.edu

** Departments of Electrical Engineering and Computer Science, Yale University, USA,
E-mail: yiorgos.makris@yale.edu

ABSTRACT

We extend a previously-developed non-intrusive concurrent error detection (CED)
method for finite state machines (FSMs) to perform CED with bounded latency. The
proposed method is based on compaction of the state/output bits of the FSM via parity
trees and comparison to the error-free compacted responses, which are predicted
through additional hardware. The corresponding optimization problem is formulated as
an integer linear program and an algorithm to approximate its optimal solution through
the use of linear program relaxation and randomized rounding is outlined. In order to
reduce the incurred area overhead, we approximate the entropy of parity trees required
for performing lossless compaction, and we select low-entropy ones. We then extend this
method to support CED with bounded latency, wherein the overhead is further reduced
at the cost of introducing a small latency in the detection of errors. Experimental results
demonstrate that allowing a small bounded latency in the detection of errors yields
further reduction in the parity predictor hardware overhead.

Keywords: Concurrent Error Detection, Finite State Machines, Integer
Programming, On-Line Test, Parity

INTRODUCTION

Electronic circuits are employed in a wide variety of modern life activities,
ranging from simple commodity devices (e.g., portable audio players, mobile
phones, PDAs, etc.) to mission-critical applications (e.g., nuclear reactors,
avionics, ABS brakes, etc.). While potential malfunctions in the former may
cause no damage other than inconvenience, the slightest malfunction in the
latter may have catastrophic consequences. Inevitably, frequent occurrence of
malfunctions is a fact of life, instigated either by permanent failures (e.g.,

142 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

environmental impact, wear and tear), or by transient error sources (e.g.,
electromagnetic interference, cosmic radiation). Therefore, shielding electronic
circuits against malfunctions, while meeting design constraints such as cost and
performance, is of paramount importance.

Towards this end, CED methods are typically employed to monitor a circuit
during its course of operation. The simplest approach is to duplicate the circuit
and use a comparator to continuously monitor the outputs of the original circuit
and the replica and report any discrepancy. Duplication (possibly with design
diversity to avoid common-mode failures (Avizienis & Kelly, 1984)) is very
effective in immediately detecting all errors. However, it incurs significant
hardware overhead that exceeds 100% of the original circuit. Therefore,
alternative CED methods that reduce the area overhead while preserving error
detectability are necessary.

In this work, we extend a previously-developed non-intrusive parity-based
CED method for FSMs (Almukhaizim et al., 2004). Parity-based CED is based
on compaction of the state/output bits of an FSM via parity trees and
comparison to the error-free compacted responses, which are predicted through
additional hardware. Similar to duplication, this method is latency-free, since it
detects all errors during the FSM transition in which they occur. The key
challenge is to identify low-cost parity functions required for lossless
compaction, and not necessarily the minimum number of parity trees as in
(Almukhaizim et al., 2004). We formulate the problem as an integer program
and we employ an algorithm based on linear programming and randomized
rounding to approximate the feasible solutions. Moreover, we guide the
selection of parity trees based on their entropy, which has been shown to
correlate with the implementation cost of logic function. As a result, parity-
based CED incurs significantly lower hardware overhead than duplication.
Then, we extend this method to accommodate CED with bounded latency. The
objective of this approach is to further reduce the overhead of CED by allowing
a small delay between error occurrence and error detection. We emphasize,
however, that the worst-case delay is bounded. Thus, while the area overhead
necessary for performing CED may be reduced, it is still possible to guarantee
error detection within the specified latency bound.

The proposed method is capable of detecting all errors in a specified error
model. Such a model can be prescribed by providing the error-free response and
all erroneous responses for every FSM transition. Target models are expected to
be restricted, in the sense that the set of resulting erroneous responses should be
a subset of all possible circuit responses. Indeed, for an unrestricted fault model,
wherein an error-free response may be transformed into any arbitrary erroneous
response, information theory proves that any non-intrusive concurrent error

Parity-based concurrent error detection with bounded latency in finite state machines 143

detection circuit will be as complex as the original circuit (Meyer & Sundstrom,
1975). In such cases, duplication constitutes the most appropriate solution.
When a restricted fault model is specified, however, more cost-effective solutions
may be devised through lossless compaction of the circuit outputs
(Sogomonyan, 1970).

The use of any CED method with bounded error detection latency is dictated
by the fault tolerance design methodology wherein the CED method is
employed. In general, fault tolerance can be divided between an error detection
phase and an error recovery phase. For real-time systems, however, the real-
time constraint necessitates that error detection be immediate, rending the
proposed method unsuitable for such applications. For other fault tolerance
systems (e.g. checkpointing), CED with bounded detection latency can be
employed safely. In general, the proposed CED method can be applied in any
sequential circuit (e.g. sequential ALU, instruction scheduler, etc.) as long as the
latency between the output of the controller and any induced system change is
longer than the error detection latency.

The research described herein provides a cost-effective CED solution over
previously-proposed methods. Specifically, the main contributions of this work,
and key differences to previous methods, include:

e Entropy-based selection of parity trees: Unlike the previously-proposed CED
method with bounded latency in (Almukhaizim et al., 2004) (where the cost of
the parity predictor is minimized by reducing the number of parity trees
required for lossless compaction), the proposed method herein selects low-
entropy parity functions through a biased random walk in the set of feasible
solutions, which ensures reducing the cost of the parity predictor. Hence, the
proposed method herein provides significant cost reduction over that in
(Almukhaizim et al., 2004).

o ILP-based formulation for performing CED with bounded detection latency:
Unlike the previously-proposed latency-free CED method in (Almukhaizim
et al., 2006) (where the cost of the parity predictor is minimized by selecting
low-cost parity functions while ensuring that all errors are detected
immediately), errors are detected in the proposed method herein within a
given latency bound, which relaxes the constraints in selecting the parity
functions by allowing more flexibility as to when errors are detected. Thus,
the proposed method herein provides additional reduction over that in
(Almukhaizim et al., 2006).

In short, the proposed CED method herein combines both objectives for
reducing the cost of the predictor function in (Almukhaizim et al., 2004, 2006)

144 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

(i.e. by allowing a bounded detection latency and by driving the selection of
parity trees based on the entropy of the parity predictor). Thus, the proposed
method is superior to the previously-proposed methods, as its implementation
cost is always lower than that achieved by using a single minimization objective
only (i.e. by minimizing the number of parity trees while allowing bounded
detection latency, or by driving the selection of parity trees using low entropy).

RELATED WORK

The importance of concurrent test is accentuated by the plethora of methods
that have been developed. Most such methods are either expensive but
guarantee latency-free detection and high coverage, or are low-cost but cannot
guarantee neither coverage nor a latency bound. We review next these methods
and classify them according to their error detection latency.

Latency-Free Detection

Towards the high-cost end, several latency-free CED methods have been
proposed for both combinational and sequential circuits (Gossel & Graf, 1993;
Piestrak, 1996; Mitra & McCluskey, 2000). Reducing the area overhead below
the cost of duplication typically requires redesign of the original circuit, thus
leading to intrusive methodologies. Several redesign and resynthesis methods
(Aksenova & Sogomonyan, 1975; Dhawan & Vries, 1988; Jha & Wang, 1993)
employ parity or various unordered codes to encode the states of the circuit.
Limitations of the method by Jha & Wang (1993), such as structural constraints
requiring an inverter-free design, are alleviated by Touba & McCluskey (1997),
where partitioning is employed to reduce the incurred hardware overhead.
Utilization of multiple parity bits, first proposed by Sogomonyan (1974), is also
examined by Zeng et al. (1999) within the context of FSMs. These methods
render totally self-checking circuits and guarantee latency-free error detection;
on the down side, they are intrusive and relatively expensive. Non-intrusive
CED methods have also been proposed. The general algebraic model is
introduced in (Danilov et al., 1975). Implementations based on Bose-Lin and
Berger codes are presented in (Das & Touba, 1999) and (Parekhji et al., 1995),
respectively. Finally, parity-based CED methods are described in (Gossel &
Graf, 1993), and the general compaction-based CED methodology in
(Almukhaizim et al., 2005). A parity-based partially self-checking design
methodology has been described in (Mohanram et al., 2003). While most of the
aforementioned methods guarantee latency-free detection of all errors in
prescribed error models, their cost is often prohibitive.

Parity-based concurrent error detection with bounded latency in finite state machines 145

Detection with Unbounded Latency

Towards the low-cost end, several non-intrusive concurrent fault detection
(CFD) methods have been proposed for stuck-at faults in combinational
circuits. C-BIST (Saluja et al., 1988) employs input monitoring to perform
concurrent self-test. While hardware overhead is very low, the method relies on
an ordered appearance of all possible input vectors before a signature indicating
circuit correctness can be calculated, resulting in very long average detection
latency and infinite worst-case latency. This problem is alleviated in R-CBIST
(Voyiatzis et al., 1998), where the requirement for a uniquely ordered
appearance of all input combinations is relaxed at the cost of a small RAM.
Alternatively, average detection latency is reduced through the comparison-
based method (Sharma & Saluja, 1988), which uses additional logic to predict
the circuit responses for a complete test set. Similar CFD methods have been
also proposed for FSMs as well (Drineas & Makris, 2003). In a different line of
work, synthesis of self-monitored FSMs has been extensively examined
(Leveugle & Saucier, 1990; Robinson & Shen, 1992). In this case, signatures are
calculated during normal operation and compared against reference signatures
at designated check points. The overhead of these schemes is very low, but the
achieved coverage is also low. While the aforementioned methods guarantee
that all faults are detectable, the fault detection latency is unbounded. Thus,
resulting errors may elude detection and, in the worst case, the causing faults
may remain undetected indefinitely.

Detection with Bounded Latency

To our knowledge, the only previously proposed method that provides an upper
bound to the detection latency is based on the use of convolutional codes. In this
method, additional logic is utilized to generate key bits during every FSM
transition, such that these bits are valid sequences in a convolutional code if and
only if the FSM is operating correctly. Any erroneous transition in a prescribed
error model will be detected with latency which will not exceed the latency of the
convolutional code. The theoretical foundation for this method is described
extensively by Holmquist & Kinney (1991), yet no indication of its cost is provided.

PARITY-BASED CED in FSMs

In this section, we review the parity-based CED in FSMs method (Almukhaizim
et al., 2006). We first provide an overview of parity-based CED, and then model
the problem of parity tree selection for lossless compaction as a set of integral
inequalities. Finally, we describe how the entropy of the parity predictor can be
utilized as a potential function for guiding a search algorithm that selects parity
trees that incur low overhead.

146 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Method Overview

Consider the next state/output combinational logic of the FSM shown in Fig. 1(a),
which has m inputs and n = n, + n, outputs, out of which », are state bits and »,
are output bits. For every combination of input and previous state, any error will
manifest itself as a difference between the correct response and the erroneous
response. This difference is detectable in a non-empty set of state and output bits.
Each such set constitutes an Erroneous Case (EC). Clearly, several combinations
of a transition and an error may lead to the same erroneous case, i.e. the same set
of bits on which the error may be detected during the transition. The set of all
erroneous cases may be represented in the tabular format of Fig. 1(b), where
columns correspond to the n state/output bits, rows correspond to the f distinct
ECs, and entries of ““1”” in the table indicate the state/output bits at which each EC
is detectable (Aksenova & Sogomonyan, 1975). This Error Detectability Table
(EDT) is the mechanism for prescribing any target error model.

n_-bit
PREVIOUS STATE
m-bit
INPUT]
NEXT STATE / T neBIT
OUTPUT STATE
COMBINATIONAL REGISTER
LOGIC —

n,-bit n_-bit
OUTPUT NEXT STATE

(a)

ERROR DETECTABILITY TABLE

bns bns+1 bns+2
Erroneous Case, | 1 1 1
Erroneous Case, 1
Erroneous Case; 1 1 1

(b)

Figure 1. Example FSM and Error Detectability Table

Detecting all errors requires that at least one state/output bit in each EC be
predicted through additional hardware and compared to its actual run-time
value. Instead of duplicating the circuit, however, we employ state/output
compaction via parity trees. The key observation is that the parity (XOR)
function of several state/output bits, an odd number of which detects an EC,

Parity-based concurrent error detection with bounded latency in finite state machines 147
also detects the EC. Therefore, it is possible that a small number of parity
functions compacting the state/output bits will be adequate to cover all ECs in a
prescribed error model. Using the information in the EDT, the optimization
objective of parity-based CED is to minimize the number of parity bits, k, that
need to be constructed out of the next state/output bits such that all ECs are
detected. An EC is detected by a parity tree if and only if the parity tree
comprises an odd number of bits that detect the EC.

Based on the above observations, parity-based CED is rather straightforward,
as depicted in the form of a block diagram in Fig. 2. Given an FSM with d inputs,
k parity trees are used for lossless compaction of the state/output bits.
Combinational logic is employed to predict the values of the k bits that compact
the n state/output bits for each FSM transition (i.e. prediction logic in the figure),
and a comparator is used to detect any discrepancy. The logic functionality of the
parity predictor is realized for each parity function separately, by XORing the
functionality of the outputs in its parity group. Hence, the selection of which
parity functions to implement for lossless compaction directly controls the cost of
the associated parity predictor circuitry. Similar to Zeng et al. (1999), registers are
added to hold the output and the predicted parity so that comparison is
performed one clock cycle later to detect faults in the state register. Thus, all FSM
errors are detected without latency but are reported one clock cycle later.

|
d-bit INPUT
/ v 4 /
NEXT STATE OUTPUT
e» COMBINATIONAL | COMBINATIONAL PnggEON
LOGIC LOGIC
| \ \
ng-bit n,-bit g-bit
NEXT STATE OUTPUT PREDICTION
Y Y Y
STATE OUTPUT PREDICTION
REGISTER Bhcl g
REGISTER REGISTER
n, | |
4; Ny 3
PARITY TREE . INEQUALITY
FUNCTIONS q COMPARATOR
CED OUTPUT
[ORIGINAL FSM H/W | (ERROR IF 1)
| CED H/W |

Figure 2. Parity-Based CED Method

148 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Lossless Compaction via ILP

We start by introducing some notation and useful facts that will be repeatedly
used throughout this section (Almukhaizim et al., 2006). Let [x] denote the
sequence 1,2, 3, ..., x for any non-zero positive integer x. Given a FSM, let m be
the total number of inputs of the FSM and let n = ny + n, be the total number
of outputs of the next state/output combinational logic, which we denote by
{b',b%,...,b"}. The set of ECs that need to be detected is denoted by
F={EC'EC?, ..., EC’}, where |[F| = f. The EDT of Fig. 1(b) is stored in a
matrix, which we denote by V. The dimensions of matrix V are f x n, and we
denote its (7, j)-th element by V(i, j) for all i € [f], j € [n]. We remind the
reader that for boolean variables xj,x;, X ® x; = (x1 + xz) mod 2. Also, any
subset of {b!,h?, ..., b"} may be represented by an n-dimensional 0-1 vector, e.g.,
the subset {b!, b3, b*} may be represented by [1 0 1 1... 0].

We first define the entries of the f x » matrix V, which can be either 0 or 1.

Definition 1: For all i € [f], j € [n], V(i) is set to 1 if and only if the erroneous
case EC;is detectable by the j-th output bit b;. Otherwise, V(i) is set to 0.

Our problem may now be stated as follows:

Statement 1: Given a positive integer k, find k subsets i, ..., B of {b',*, ..., 0"}
such that

cov(®01) U cov(®52) ... cov(®pk) =
or report the lack thereof.

Here, ®0; (for all / € [k]) denotes the parity tree formed by the next state/
output bits in §; and cov(®0;) denotes the erroneous cases detected by this
parity tree. An erroneous case EC; is detected by the parity tree formed by the
bits in g if and only if

> V(i,y) | mod2>1
byEﬂ]

The above formula essentially checks whether the XOR of the bits in 5
detects EC;. Thus, we can check whether the & parity trees (the parity trees
corresponding to 3, for all / € [k]), detect all erroneous cases. The problem may
now be stated in matrix notation:

Statement 2: Given a positive integer k, find k& n-dimensional 0-1 vectors
B, ..., 8% such that

k
Z m0d2 > 1
=1

Parity-based concurrent error detection with bounded latency in finite state machines 149

or report the lack thereof. Here, 1, is an f~-dimensional vector of Is.
We now remove the mod operator by adding new variables:

Statement 3: Given a positive integer , find vectors 3, #) w(), | € [k], such that
V-0 =2 w4 0

VoG =2 w4

V-8R =2 wk) 4 pk)
PR > 1y
De{o,1}"
/) € {071}/"

Defo,1,..., LgJ}f

or report the lack thereof.

In order to understand the above constraints, observe that the remainder ")
is an f'-dimensional 0-1 vector denoting whether ECy,..., ECyare detected by the
parity tree corresponding to 5). We note that w) is also an f -dimensional
vector that removes the mod 2 operation from the ILP formulation. Each
element in the sum of the remainders) is required to be at least one, in order
to guarantee that all erroneous cases are detected. Given the above integer
program formulation, the goal is to find a feasible point; namely, values for all
ra) wi) and 5 such that all the restrictions of statement 3 are satisfied. While
the above ILP formulation is NP-Complete, it can be efficiently approximated
through a well-known method combining linear program relaxation and
randomized-rounding (Raghavan & Thompson, 1987).

Entropy-Driven Parity Tree Selection

The entropy of a multi-output logic function (Cheng & Agrawal, 1990), or the
parity predictor in parity-based CED (Almukhaizim et al., 2006), has been
shown to correlate with its area cost. Cheng & Agrawal (1990) pioneered the use
of entropy for estimating the complexity of a multi-output function, and their
observations have been followed by a body of work (Shanbhag, 1997; Macii et
al., 1997; Nemani & Najm, 1996, 1998), establishing the correlation between the

150 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

entropy of a function and the area and power consumption overhead incurred
by its implementation. Essentially, smaller values of entropy! imply that the
function is less random and, hence, its implementation overhead is expected to
be low, while values of entropy close to k imply that the function is random and,
hence, its implementation overhead is expected to be high.

Low-cost parity functions are identified as depicted in the flowchart in Fig. 3.
Once the ILP is solved by identifying a feasible solution u of k parity trees that
guarantee the detection of all potential errors, its hardware cost is estimated by
approximating its entropy. Then, a neighboring feasible solution v, namely a
solution that preserves detection of all ECs and is ‘“‘close” to the previous
solution in some well-defined proximity metric, is examined. Subsequently, the
overhead of the new solution is estimated, once again by approximating its
entropy, and a move is accepted or rejected to this neighbor with a probability
that depends on the estimated overhead of the new solution. More specifically,
“better”” solutions are almost always accepted, while “worse” solutions are
accepted with a probability that becomes exponentially smaller as their quality
decreases. This is essentially the classical Metropolis algorithm, which is the
basis of Simulated Annealing techniques (Kirkpatrick et al., 1983) that have
been very successful in tackling non-linear optimization problems in various
contexts. The randomized selection process is repeated a fixed number of times,
and the algorithm terminates after 1000 solutions are examined with no
additional reduction to the entropy of the parity predictor. Please refer to
(Almukhaizim et al., 20006) for details.

Entropy-Driven Parity Tree Selection

Did u change in ~No
the last 1,000
steps?

FSM >

(implementation)

V Yes
Construct EDT Identify new feasible solution v Construct the parity
Build ILP Model Approximate the entropy of v predictor for u

v

Solve ILP Relaxation

u = current solution

" With probability P
(proportional to the difference in
entropy of u and v)

Parity Predictor
(implementation)

Figure 3. Parity-Based CED with Entropy-Driven Parity Tree Selection

(1) Recall that the entropy of a k-output function ranges between 0 and k.

Parity-based concurrent error detection with bounded latency in finite state machines 151

PARITY-BASED CED WITH BOUNDED LATENCY in FSMs

In this section, we extend the parity-based CED method to perform CED with
bounded latency in FSMs. In essence, the objective of this approach is to reduce the
overhead of CED by allowing a small delay between error occurrence and error
detection. We emphasize, however, that the worst-case delay is bounded. Thus,
while the hardware necessary for performing CED may be reduced, it is still
possible to guarantee error detection within the specified latency. Preliminary
discussions of the proposed method appear in Almukhaizim et al. (2004)

General Requirements for CED with Bounded Latency

In latency-free CED, erronecous FSM transitions are detected immediately.
Bounded latency, on the other hand, provides more freedom as to when to
detect errors. Consequently, an erroneous transition may be ignored, as long as
it is guaranteed that the causing source will result in another error that will be
detected within p clock cycles, where p is the specified latency bound. For this to
be possible, we assume that the error source remains active for at least p clock
cycles after causing an error. This assumption reflects realistically permanent
faults and intermittent faults due to wear-&-tear. It may also reflect transient
errors, if the causing source has a continuous duration of at least a few clock
cycles, which is the targeted latency bound. However, it does not reflect single
event upsets (SEUs). For SEU detection, the latency-free parity-based CED
method should be employed. Alternatively, SEUs can also be detected with
bounded latency if a CED method employs some form of memory, such as the
convolutional encoding method proposed by Holmquist & Kinney (1991). Such
methods, however, increase the overall cost significantly.

In order to omit immediate detection of an erroneous response, we need to
enumerate all erroneous paths of length p, starting from the state where the error
is initially activated. A CED mechanism should be capable of detecting the
underlying error source in a// such paths, yet not necessarily during the initial
transition. Note that the error source may affect each path in more than one
transition, providing more detection opportunities. Path enumeration, either
explicit or implicit, is a costly procedure. However, since we only target a
bounded latency of a few clock cycles, the exponential explosion is contained and
the number of paths is manageable. Similar bounded enumeration methods have
been successfully employed in processor validation (Shen & Abraham, 1999).

By permitting latency in error detection, we anticipate simplification of the
circuit necessary for implementing a CED method. In essence, latency relaxes
the constraints in designing a CED circuit by allowing more flexibility as to
when errors are detected. Unfortunately, overhead reduction due to latency

152 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

reaches a saturation point, after which increasing the latency bound does not
provide more choices. This happens because of loops during path enumeration.
As soon as a loop occurs, enumeration along this path is terminated, since any
additional latency increase will result in at least one path that expands along the
loop. Detecting an error along this path implies detection of errors along all
paths comprising the loop. Given a restricted error model, we can find the
maximum latency of interest by finding the length of the shortest loop on each
erroneous FSM and selecting the largest value.

Transition 1 Transition 2 Transition p

b, b by b | o [G by b Yo o | [

Erroneous Case, | 1 1
Erroneous Case, L1 | [N) 1
. 1 1 1 1 1 1 1 1 1 1
Erroneous Case | 1 1 1 1 1 1 1 1 1

Figure 4. Extended Error Detectability Table for CED with Bounded Latency

Extending the Error Detectability Table for Bounded Latency

Since the error source persists for at least p clock cycles, we do not necessarily
need to detect the error during the first transition. Rather, we need to ensure
that the selected parity functions will detect an error along every possible path
of length p. In this case, the definition of erroneous cases needs to be slightly
adjusted. Consider again the FSM shown in Fig. 1(a). For every combination of
a sequence of inputs A = a,...,a,, where, a; € {0,...,2" — 1}, jel,..,p, and
previous state ¢, ¢ € {0,....,2" — 1}, any error, e, will manifest itself as a
difference between the sequence of error-free responses, GM(A,c),
GM(A,c) €{0,...,2" —1}Y , and the sequence of erroneous responses,
BM,(A,), BM,(4,¢) €{0,...,2" — 1}. During each of the p FSM transitions,
this difference is detectable in a set of state and output bits b;, where i € 1,...,n.
The concatenation of these p sets defines an Erroneous Case, EC (A,c,e). Again,
several combinations of a transition sequence, (A,c), and error, e, may lead to
the same erroneous case, i.e. the same p sets of bits through which the error e
may be detected across the p transitions of the sequence (4,c). The union of all
erroneous cases, F = (JV(4,.), is represented in tabular format in an extended
error detectability table, as shown in Fig. 4. In this table, super-columns
correspond to the p transitions, columns correspond to the n state/output bits,
rows correspond to the f erroneous cases, and entries of ““1” indicate the state/
output bits at which each erroneous case may be detected.

Parity-based concurrent error detection with bounded latency in finite state machines 153

The benefit of allowing bounded latency stems from the larger number of
alternative ways to detect each erroneous case. This can be seen in the last row
of the error detectability table of Fig. 4, where erroneous case f may be detected
by more bits and combinations of bits across the p transitions than just in the
first transition. Of course, it is also possible that for some erroneous cases
latency will not provide any additional flexibility. This is the case, for example,
for erroneous cases 1 and 2 in the table of Fig. 4. In the first case, the fault only
affects the first transition and cannot be detected at a later time within p
transitions. In the second case, the fault affects exactly the same bit in every one
of the p transitions.

Given the extended error detectability table, we are faced with the same
optimization problem as in the latency-free case. Essentially, the objective is to
select k parity trees such that all erroneous cases are detected while the CED
overhead is minimized. An erroneous case is detected with bounded latency, p,
by a parity tree if and only if the parity tree comprises an odd number of bits b;
that detect the erroneous case at any specific time-step between 1 and p.

Overall Algorithm

In this section, we demonstrate how to extend the integer programming
formulation of the latency-free CED method to incorporate bounded detection
latency. First, we introduce the necessary modified notation to incorporate
latency. Then, we formulate a set of integral constraints that detect all erroneous
cases given a fixed number of parity trees within a given latency bound.

The bounded number of FSM transitions allowed for error detection is
denoted by p, which is a non-zero positive integer. Essentially, p = I represents
the basic latency-free CED scheme, p = 2 represents CED with a maximum
latency of one clock cycle, p = 3 represents CED with a maximum latency of two
clock cycles, and so on. The error detectability table of Fig. 4 is stored in a 3-
dimensional array, which we denote by V. The dimensionality of V is f X p; we
denote the (i, j, ¢)-th element of V by V(i,j,q) for all, i€ [f], j€ [n], ¢ € [p].
We use the notation V(:, 1, q) to denote all elements V(i,,) for all i € [f']. Notice
that V(:,j,q) is an f-dimensional vector; similar definitions may be given for
V(i,:,q) and V(i,j,:). We also note that V{(:,j,q) corresponds to an f x n matrix
whose (i, j)-th element is the (7, j, g)-th element of V. We first define the entries of
the f x n x p array V, which can be either 0 or 1.

Definition 2: For all i € [f'], j € [n], g € [p], V(i,j,q) is set to 1 if and only if
the erroneous case EC; is detectable by the j-th output bit b; during the g-th
FSM transition; Otherwise, V{1, j, ¢) is set to 0.

154 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Our problem may now be stated as follows:

Statement 4: Given a positive integer k, find k subsets i, ..., B of {b',b*, ..., 0"}
such that

cov(®f1) | cov(®62) ... cov(®px) = F,

or report the lack thereof.

Here, ®0; (for all / € [k]) denotes the parity tree formed by the next state/
output bits in §; and cov(®3;) denotes the erroneous cases detected by this
parity tree. An erroneous case EC; is detected by the parity tree formed by the
bits in 5 if and only if

S D Viy) | mod2 | >1

p
q=1 byE/j]

The above formula essentially checks whether the XOR of the bits in [,
detects EC; within ¢ FSM transitions, ¢ € [p]. Thus, we can check whether the &
parity trees (the parity trees corresponding to (3, for all /€ [k]), detect all
erroneous cases. The problem may now be restated as follows:

Statement 5: Given a positive integer k, find k& n-dimensional 0-1 vectors
B ..., %) such that

k| »p
35S S V(l,p,q9) | mod2 || >1
==t =1 -

k[_
3 V(2,y,q) | mod 2 >1
==\ gl =
kK | »p
Z Z Z V(f, ¥, q) mod 2 >1
=1 [g=1 ()

or report the lack thereof.

In order to understand the above constraints, consider the special case p = 1,
which corresponds to latency-free error detection; notice that, in this special
case, Visan f x n array. If

Parity-based concurrent error detection with bounded latency in finite state machines 155

k
S D vl ygmod2 | > 1

P

there exists some index / € [k] such that

V(i)
Z mod 2 =1

Vv 55_/) =1

Thus, the parity tree that consists of the bits that are set to 1 in 5;(;1) detects the
erroneous case EC; within the first FSM transition (i.e latency-free). Hence, the
constraints of Statement 5 essentially guarantee that at least one of the k parity
trees corresponding to the vectors, ﬂf;]), [€ [k], detects EC; within p FSM
transitions (i.e. p — 1 clock cycles). The problem may now be stated in matrix
notation:

Statement 6: Given a positive integer k, find k& n-dimensional 0-1 vectors
B, ..., Y such that

k
=1

i(G5). mod2)121f

g=1

or report the lack thereof. Here, 1¢1s an f~dimensional vector of 1s.

Notice that V(:,:,q) is an f x n array denoting the erroneous cases detected
by the next state/output bits with latency exactly equal to ¢ — 1. We now remove
the mod operator:

Statement 7: Given a positive integer k, find vectors g, v w9 [€ k], q € [p],
such that

Vg € [pl, V(s q) - BV =2 wle) 4 (19)
Vg € [p], V(i1 q) - BE) = 2 wlko) 4 plka)
zp:(19 4 4 k) > |

qﬂg(l),"’ ®) e {0,1}"
) ¢ {o, l}f
wla) € {0,1, ..., bJ V

or report the lack thereof.

156 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

In order to understand the above constraints, observe that the remainder 9
is an f-dimensional 0-1 vector denoting whether EC;,.., ECy are detected by the
parity tree corresponding to 3} with latency ¢ — 1. We note that the quotient
w4 is also an f-dimensional vector that removes the mod 2 operation. For every
q € [p], each element in the sum of the remainders r’?), where /€ [k], is
required to be at least one, in order to guarantee that all erroneous cases are
detected.

In order to identify a feasible point for the integer program, the
randomized rounding technique (Raghavan & Thompson, 1987) is utilized to
find the integer solution. The above formulation answers the detection
problem with bounded latency. Together with the entropy-driven parity tree
selection method, a set of parity trees that minimize the overhead of CED
with a bounded latency can be found.

EXPERIMENTAL RESULTS

In this section, we evaluate experimentally the area overhead of the proposed
parity-based CED with bounded detection latency. Since the proposed method
is non-intrusive, i.e. it does not interfere with the state assignment or the
implementation of the original circuit, the starting point for our method is the
synthesized circuit generated by SIS (Sentovich et al., 1992) using the rugged
script and a standard library containing only 2-input gates. For the purpose of
comparison, we first implement the duplication-based CED method. Then, we
construct the EDT for all single errors without latency (p = I) and with
bounded latency of one clock cycle (p = 2) and two clock cycles (p = 3). For
the benchmark circuits, we perform exhaustive functional fault simulation using
internally developed software, which is built around the fault simulator HOPE
(Lee & Ha, 1996) and identifies all pairs of error-free and erroneous responses.
Starting from the EDT, we use internally developed software that implements
the entropy-driven parity tree selection method with/without latency, and
Ipsolve (Berkelaar, M.) to solve the ILP.

Parity-based CED without Latency

The results of duplication-based CED and parity-based CED are summarized in
Table 1. Under the first major heading, we provide details about the FSM
circuits that were used: name, number of primary inputs, number of state bits
and number of primary outputs. Under the second major heading, we provide
the results of duplication-based CED: number of parity functions, number of

Parity-based concurrent error detection with bounded latency in finite state machines 157

gates, and hardware cost reported by SIS in \>, where) is the smallest feature
size. Under the third (fourth) major heading, the same information is reported
for latency-free parity-based CED without (with) entropy-driven selection of
parity trees. The use of the entropy-driven parity tree selection method increases
the average area reduction, over the minimum parity tree count selection
method in (Almukhaizim et al., 2004), from 25% to 40%. These results
corroborate that parity-based CED significantly outperforms the duplication-
based approach.

For certain highly-random parity functions, the cost of a single complex
parity function may require the same or more area than a larger number of
output functions. This is the case for dk16, where the cost of parity-based CED
(with or without bounded detection latency) is higher than the cost of
duplication-based CED; such example illustrates that duplication-based CED is
more effective than parity-based CED in circuits with a highly-regular
implementation.

Table 1. Parity-Based CED without Latency (p = 1)

Parity-Based CED
Circuit Details Duplication-Based CED (Almukhaizim et al., 2004) Proposed CED Method

Name I/S/O Parity Gates Area Parity Gates Area Parity Gates Area

cse 7/4/7 11 196 256128 5 131 171680 5 97 127136
donfile 2/5/1 6 97 128064 4 57 74704 4 56 75632
dkle 2/5/3 8 240 316448 6 323 428736 6 294 389760
dks512 1/4/3 7 74 96048 4 79 104400 6 61 80272
keyb 7/5/2 7 228 298352 5 82 107648 5 67 86304
pma 8/5/8 13 347 453792 6 186 243136 6 138 180496
sse 7/4/7 11 131 178640 5 80 104864 5 59 77488
styr ~ 9/5/10 15 413 547056 8 217 287216 8 162 213904
sl 8/5/6 11 167 217616 5 121 156832 5 61 77024
sla 8/5/6 11 153 199056 6 96 124816 5 61 77024
s27 4/3/1 4 20 25056 3 15 18096 3 7 8352
s386 7/7/6 13 123 158688 4 83 105328 4 72 92336
tav 4/2/4 6 28 34336 4 31 39440 4 26 33408
tbk 6/5/3 8 146 190240 5 160 207872 5 151 198592

tma 7/5/6 11 219 285824 5 130 169824 7 131 172144

158 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Table II. Parity-Based CED with Bounded Latency

Circuit Proposed Method (p = 2) Proposed Method (p = 3)
Name Parity Gates Area Parity Gates Area
cse 6 91 119712 5 93 122032
donfile 4 56 75632 4 56 75632
dk16 7 257 342896 7 257 342896
dkS12 6 65 86304 5 63 83984
keyb 4 64 83984 5 70 90016
pma 6 129 170288 5 125 165648
Sse 6 50 68208 6 52 70064
styr 8 162 213904 5 151 200448
sl 5 61 77024 6 56 71456
sla 6 63 78880 6 63 78880
s27 3 7 8352 3 7 8352
s386 4 72 92336 4 72 92336
tav 3 25 31552 3 25 31552
tbk 5 151 198592 5 151 198592
tma 4 131 150800 4 131 150800

Parity-based CED with Bounded Latency

The results of parity-based CED with bounded detection latency are
summarized in Table II. The second (third) major heading indicates the cost of
parity-based CED with p = 2 (p = 3). The results indicate that the addition of
one clock cycle of bounded latency reduces the area overhead of the parity
prediction logic by 4% over that of the parity logic required for latency-free
detection, and by 10% over the area cost in (Almukhaizim et al., 2004). For
certain circuits such as c¢se and s27, the area cost of the parity predictor is
reduced by 50%. Further increase of the latency bound to two clock cycles,
yields an additional 3% reduction in the area overhead. The benefits of adding
latency diminish as latency increases. In smaller FSMs, errors result in a large
number of self-loops. For example, this is the case for circuits donfile, s27, s386
and tbk. As the FSM becomes larger, self-loops are less frequent and the
benefits of increasing latency are more significant. This is for example the case
for circuits dkl16, pma, and tma. The results of the proposed method are
compared to the results of previously-proposed parity-based CED methods
(Almukhaizim et al., 2004, 2006) in Fig. 5. Overall, the average results support
the efficacy of the proposed method in identifying the least-cost parity
prediction circuitry.

Parity-based concurrent error detection with bounded latency in finite state machines 159

—— Almukhaizim et al., 2004 Almukhaizim et al.,, 2006 —>%—Proposed

w
o

H
wv

S
o

l

\

% Area Reduction (over duplication)
w
(%]

N
o

1 2 3
p (Latency)

Figure 5. Comparison Between Proposed Method and Previously-Proposed
Parity-Based CED Methods

CONCLUSIONS

We present a non-intrusive method for identifying appropriate parity trees for
performing CED with bounded latency in FSMs. Given a restricted error
model, the outputs of the circuit are compacted through parity trees and
compared to the expected values that are computed through a parity predictor.
Our method allows detection of errors either without latency, or with bounded
latency of a given number of clock cycles. We formulate the problem of
identifying the minimal number of required parity bits as an integer program
and we devise an algorithm based on linear program relaxation and randomized
rounding to solve it. Moreover, we guide the selection of parity trees based on
their entropy, in order to reduce the implementation cost of the parity predictor
circuitry. Experimental results confirm that a small number of parity functions
are typically adequate to detect all errors in a prescribed model. Thus, the
incurred overhead is significantly smaller than duplication-based CED, and is
further reduced by allowing a small bounded latency in the detection of errors.

REFERENCES

Aksenova, G., & Sogomonyan, E. 1975. Design of self-checking built-in check circuits for automata
with memory. Automation and Remote Control, 36(7), 1169-1177.

Almukhaizim, S., Drineas, P., & Makris, Y. 2004. On Concurrent Error Detection with Bounded
Latency in FSMs. Proceedings of the Design Automation and Test in Europe Conference, pp.
596-601, Paris, France.

Almukhaizim, S., Drineas, P., & Makris, Y. 2005. Compaction-based concurrent error detection for
digital circuits. Microelectronics Journal, 36(9), 856-862.

160 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Almukhaizim, S., Drineas, P., & Makris, Y. 2006. Entropy-driven parity-tree selection for low-
overhead concurrent error detection in finite state machines. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25(8), 1547-1554.

Avizienis, A., & Kelly, J. P. J. 1984. Fault tolerance by design diversity: Concepts and experiments.
IEEE Computer, 17(8), 67-80.

Cheng, K.-T., & Agrawal, V. D. 1990. An entropy measure for the complexity of multi-output
boolean functions. Proceedings of the ACM/IEEE Design Automation Conference, pp. 302-
305, Orlando, FL, USA.

Danilov, V. V., Kolesov, N. V., & Podkopaev, B. P. 1975. An algebraic model for the hardware
monitoring of automata. Automation and Remote Control, 36(6), 984-991.

Das, D., & Touba, N. A. 1999. Synthesis of circuits with low-cost concurrent error detection based
on Bose-Lin codes. Journal of Electronic Testing: Theory and Applications, 15(2), 145-155.

Dhawan, S., & Vries, R. C. D. 1988. Design of self-checking sequential machines. IEEE
Transactions on Computers, 37(10), 1280-1284.

Drineas, P., & Makris, Y. 2003. SPaRe: selective partial replication for concurrent fault detection
in FSMs. IEEE Transactions on Instrumentation and Measurement, 52(6), 1729-1737.

Gossel, M., & Graf, S. 1993. Error Detection Circuits. McGraw-Hill, NY, USA.

Holmquist, L. P., & Kinney, L. L. 1991. Concurrent error detection for restricted fault sets in
sequential circuits and microprogrammed control units using convolutional codes. Proceedings
of the IEEE International Test Conference, pp. 926-935, Nashville, TN, USA.

Jha, N. K., & Wang, S. J. 1993. Design and synthesis of self-checking VLSI circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(6), 878-887.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 1983. Optimization by Simulated Annealing.

Science, Number 4598, pp. 671-680.

Lee, H. K., & Ha, D. S. 1996. HOPE: An efficient parallel fault simulator for synchronous
sequential circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(9), 1048-1058.

Leveugle, R., & Saucier, G. 1990. Optimized synthesis of concurrently checked controllers. IEEE
Transactions on Computers, 39(4), 419-425.

Macii, E., Pedram, M., & Somenzi, F. 1997. High-level power modeling, estimation and
optimization. Proceedings of the ACM/IEEE Design Automation Conference, pp. 504-511.

Meyer, J. F., & Sundstrom, R. J. 1975. On-line diagnosis of unrestricted faults. IEEE Transactions
on Computers, 24(5), 468-475.

Mitra, S., & McCluskey, E. J. 2000. Which concurrent error detection scheme to choose?
Proceedings of the IEEE International Test Conference, pp. 985-994, Atlantic City, NJ, USA.
Mohanram, K., Sogomonyan, E. S., Gossel, M., & Touba, N. A. 2003. Synthesis of Low-Cost

Parity-Based Partially Self-Checking Circuits. Proceedings of the IEEE International On-line
Testing Symposium, pp. 35-40, Kos Island, Greece.
Nemani, M., & Najm, F. 1996. Towards a high-level power estimation capability. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15(6), pp.
588-598.

Nemani, M., & Najm, F. N. 1998. Delay estimation of VLSI circuits from a high-level view.
Proceedings of the ACM/IEEE Design Automation Conference, pp. 591-594, San Francisco,
CA, USA.

Parekhji, R. A., Venkatesh, G., & Sherlekar, S. D. 1995. Concurrent error detection using
monitoring machines. IEEE Design and Test of Computers, 12(3), 24-32.

Piestrak, S. J. 1996. Self-checking design in Eastern Europe. IEEE Design and Test of Computers,
13(1), 16-25.

Parity-based concurrent error detection with bounded latency in finite state machines 161

Raghavan, P., & Thompson, C. 1987. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7(4), 365-374.

Robinson, S. H., & Shen, J. P. 1992. Direct methods for synthesis of self-monitoring state
machines. Proceedings of the International Symposium on Fault Tolerant Computing, pp. 306-
315, Boston, MA, USA.

Saluja, K. K., Sharma, R., & Kime, C. R. 1988. A concurrent testing technique for digital circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(12), 1250-
1260.

Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.,
Brayton, R. K., & Sangiovanni-Vincentelli, A. L. 1992. SIS: A system for sequential circuit
synthesis. Tech. Rep. UCB/ERL M92/41, EECS Department, University of California,
Berkeley. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html

Shanbhag, N. 1997. A mathematical basis for power-reduction in digital VLSI systems. IEEE
Transactions on Circuits and Systems, Part 11, 44(11), 935-951.

Sharma, R., & Saluja, K. K. 1988. An implementation and analysis of a concurrent built-in self-test
technique. Proceedings of the International Symposium on Fault Tolerant Computing, pp. 164-
169, Tokyo, Japan.

Shen, J., & Abraham, J. A. 1999. Verification of processor microarchitectures. Proceedings of the
IEEE VLSI Test Symposium, pp. 189-194, San Diego, CA, USA.

Sogomonyan, E. 1974. Design of built-in self-checking monitoring circuits for combinational
devices. Automation and Remote Control, 35(2), 280-289.

Sogomonyan, E. S. 1970. The design of discrete devices with diagnostics in the course of operation.
Automation and Remote Control, 31(11), 1854-1860.

Touba, N. A., & McCluskey, E. J. 1997. Logic synthesis of multilevel circuits with concurrent error
detection. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
16(7), 783-789.

Voyiatzis, 1., Paschalis, A., Nikolos, D., & Halatsis, C. 1998. R-CBIST: An effective RAM-based
input vector monitoring concurrent BIST technique. Proceedings of the IEEE International
Test Conference, pp. 918-925, Washington, DC, USA.

Zeng, C., Saxena, N., & McCluskey, E. J. 1999. Finite state machine synthesis with concurrent
error detection. Proceedings of the International Test Conference, pp. 672-679, Atalantic City,
NJ, USA.

M. Berkelaar. Linear programming solver. Software package available from: URL http://
www.cs.sunysb.edu/algorith/.

Submitted : 25/8/2008
Revised : 7/6/2009
Accepted : 11/6/2009

162 Sobeeh Almukhaizim, Petros Drineas and Yiorgos Makris

Gy 50 IM sl e O paal) dowdl Lol g3 el
3, S10) s 5L e Sl Jes oo B3does

o Sb remn 8 s e ¢) pee
g Sl = 13060 slaall = 5969 L L o — o iSU) dralr = 5 eSSl MMM
S eV ssaadl SLY I = dadadl O il Vs dgre = o) r;l-ﬁ """
Sl Bl SV = L b = Sl ke 230) gl s

I\ S

Sl Joe LT slaxT 54 s S Sl dnle dn b el s & sk
.Wa:bmw)oﬁd% Lla;d\dl.au)x,l\(wwua;\.d\ ol &L LS
Aol A 55 plasal 5L e s S1) be‘_gl&m»fm.\\ i bl
pldeial L] o A doemall B pdedl Gzl o L sliey (i) 51 23 3)
s ASS s O Letsandl Lrall Elee L) o L ESLS) o 6
G O ey o e s SVl el pen Sy (3LSY)
Sl sk 3L ke IS8 el (B e el ol Bk sl
oo M L Badome Bed 55 IO el Y1 o Gl SVsle e - il
B8 s oY e Ol gl oy b Ol e LUV 5 511 S
WSS s) op sV e Gnl die) 53 8L OF el ol
S JSei BLAYI 3L oSN s Sl

