
Hardware-based Workload Forensics

and Malware Detection in Microprocessors

Liwei Zhou and Yiorgos Makris
Electrical Engineering Department, The University of Texas at Dallas

Richardson, TX 75080, USA

Abstract—We investigate the possibility of performing work-
load forensics and/or malware detection in microprocessors
through exclusively hardware-based methodologies. Specifically,
we first introduce a general architecture which a hardware-
based forensics or malware detection method would need to
follow, as well as the various processor-level information which
could potentially be harnessed to ensure system security and/or
integrity. In contrast to traditional forensics and/or malware
detection methods implemented at the operating system (OS)
and/or the hypervisor level, whose data logging and monitoring
systems are vulnerable to spoofing attacks at the same level,
moving implementation to hardware ensures immunity to such
attacks. This work focuses on two recent incarnations of this
general concept, illustrating the effectiveness of hardware-based
forensics and/or malware detection. Several other recent methods
related to this topic are also discussed. Experimental results
corroborate that even a low-cost hardware implementation can
facilitate highly successful forensics analysis and/or malware
detection, while taking advantage of its innate immunity to
software-based attacks.

I. INTRODUCTION AND MOTIVATION

Over the last few decades, the prevalence of electronic

devices has resulted in rapidly increasing amounts of pri-

vate/sensitive information, such as personal details or trade

secrets, being stored, processed and exchanged in electronic

form. Unfortunately but inevitably, this has also lead to the

emergence of hundreds of millions of malicious software1, or

malware, which seek to interfere with the underlying computer

systems and to steal or disrupt such information, in order to

benefit from such illegitimate access. As a result, developing

a defense mechanism which is able to identify the events that

led to the compromising of sensitive data, during or after such

malicious acts occur, becomes indispensable.

Traditional methods to achieve this goal can be categorized

into retroactive investigation, known as computer forensics,

and active defense, known as malware/intrusion detection. The

former performs ex post facto analysis on data of interest in

order to reveal and/or reconstruct the events that occurred. The

latter, on the other hand, detect and/or prevent the execution

of potential threats in the underlying computer system in

real time. In each of these categories, a large number of

methods have been developed by industry and academia. Most

of them focus at the operating system (OS) level, wherein

they take advantage of the rich semantics at this level, such

as OS-level objects, file system structure, etc. [1]–[3]. OS-

level solutions, however, can be vulnerable to software attacks

1http://www.mcafee.com/us/resources/reports/
rp-quarterly-threats-sep-2016.pdf

staged at the same level. Kernel rootkits, for example, may be

used to hijack OS control flow so that it can spoof an OS-level

logging/monitoring system and eliminate traces associated

with malicious actions.

To address this limitation, hypervisor-level methods have

also been proposed [4]–[6]. A hypervisor provides virtualiza-

tion, thereby allowing multiple operating systems (guests) to

run concurrently on a single physical machine, without in-

truding each other’s context. A management core, designed to

be isolated from the guest-OSs whose execution is facilitated

by the hypervisor, may naturally provide ground for more

secure forensics or malware detection solutions. Therefore,

data collected by an investigation/defense system at the hyper-

visor level is generally immune to OS-level software attacks.

Nevertheless, the hypervisor itself can be the target, as several

vulnerabilities and intrusion methods have been identified in

recent work [7]. As a result, similar attacks compromising

integrity of the logged data of interest to conceal malicious

events can also be staged at the hypervisor level.

Given the weakness of both OS-level and hypervisor-

level approaches, recent research has explored the possibility

of performing forensics analysis and/or malware detection

through hardware-based methodologies [8]–[12]. Specifically,

hardware-based approaches rely exclusively on data collected

directly through the hardware, without the intervention of a

hypervisor or an OS, whereby the logged information may be

compromised. Accordingly, traces obtained from hardware are

expected to be immune to software-based tampering. On the

other hand, a hardware-based solution requires circuitry ad-

dition and modification in the microprocessor for identifying,

extracting, and logging the relevant information. Therefore,

judicious selection of information sufficient for fulfilling the

targeted task becomes crucial. To this end, most of the current

methods rely on processor-level information available through

relatively low-cost extraction mechanisms, in order to ensure

their practicality.

The remainder of the paper is structured as follows. In

Section II, we introduce the general architecture which most

hardware-based methodologies need to follow, as well as the

potentially helpful information for performing forensics analy-

sis and/or malware detection. Two incarnations illustrating the

proposed concept, as well as their corresponding experimental

results and design overhead, are introduced in Section III.

Several other recent related works are presented in Section

IV, while conclusions are drawn in Section V.

2016 17th International Workshop on Microprocessor and SOC Test and Verification

2332-5674/16 $31.00 © 2016 IEEE

DOI 10.1109/MTV.2016.20

45

software

hardware

user environment
(untrusted)

analysis environment
(trusted)

data logging
component

off-line
analysis

component

on-line
analysis

component

option 1

option 2

Fig. 1: High-level system architecture

II. DESIGN

The design of hardware-based methodologies for foren-

sics analysis or malware detection involves three parts: (1)

designing the system architecture of the approaches, which

determines how data should be collected, (2) selecting objects

of interest according to the specific objective, and (3) selecting

appropriate analysis methods to process the collected data for

the corresponding purpose.

A. System Architecture

Generally speaking, a complete system of a hardware-based

approach consists of two main components, namely a data

logging component and a data analysis component. The data

logging component collects data of interest exclusively from

hardware and has to be implemented in hardware, integrated

with the underlying microprocessor. Unlike software-based

approaches, in this way, there exists no physical pathway for

the OS, hypervisor, or any application running on the system to

interfere with the logged data, ensuring resistance to software

tampering.

The data analysis component, on the other hand, is responsi-

ble for performing specific analyses on the logged data, while

its actual implementation depends upon the type of defense

mechanism to be employed. As stated in Section I, a defense

mechanism branches into either a retroactive investigation or

a real-time detection. In the former case, since the retroactive

investigation applies ex post facto analysis, the logged data can

be exported through a secure hardware channel to a trusted

software environment, where the data analysis component

can be implemented off-line with flexibility, e.g. choice of

analysis methods, adaptive analysis models, etc. On the other

hand, real-time detection requires prompt on-line reaction

when malicious events occur. As a result, the data analysis

component is generally also implemented in hardware, deeply

integrated with the data logging component, to ensure both

security and a timely response. Essentially, on-line methods

detect and/or prevent malicious events at an early stage, at the

cost of loss of flexibility and increased design overhead. Figure

1 illustrates the general system architecture that a hardware-

based forensics or malware detection method may follow.

B. Object of Interest

Depending on their core objective, state-of-the-art forensics

or malware detection methods can be categorized into data-
centric or program-centric. Data-centric methods generally

focus on the integrity of a piece of specific data in order to

investigate whether any unauthorized modification occurs and

disable it. Given the nature of malicious software, popular

objects of interest of methods in this category include kernel

image, kernel service table, control flow of kernel service,

network channel, etc. Program-centric methods, on the other

hand, model the expected behavior of a program in order to

identify what program it actually is or whether it is malicious.

The OS-level abstraction of a program, i.e. process, is the

common object of interest of methods in this category.

C. Analysis Method

Similar to the object of interest, existing forensics or

malware detection methods employ various analysis methods,

which fall into either signature-based methods or behavior-
based methods. Signature-based methods generate checksums
over their objects of interest, which can be used as a golden

reference for integrity checking or as a description of the

expected behaviors. These methods benefit from their simplic-

ity of implementation and may work well with those objects

whose execution is fixed or infrequently changed. Given the

complexity of program execution, however, behavior-based

methods are more favorable when a process is the object of

interest. These methods aim at modeling program behavior

dynamically based on a number of features. In order to

allow enough flexibility to account for program execution

variation and, at the same time, be able to distinguish benign

from malicious program behavior, machine learning and/or

statistical analysis is typically employed.

Overall, a hardware-based approach for forensics analy-

sis/malware detection can be constructed through combina-

tion of these three dimensions, i.e. off-line/on-line, data-

centric/program-centric, signature-based/behavior-based.

III. CASE STUDY

In this section, we discuss two incarnations of the pro-

posed concept to illustrate the effectiveness of hardware-based

methodologies. Specifically, we present an off-line, program-

centric, behavior-based workload forensics method, as well

as an on-line, data-centric, signature-based intrusion detection

method.

A. Workload Forensics

1) Implementation: The primary objective of the workload

forensics method proposed herein is to develop a system-level

workload reconstruction capability, which reconstructs work-

load at the granularity of a process [9]. This method, therefore,

follows an off-line system architecture, which implements the

data logging in hardware while analyzing collected data in

software. When developing a hardware-based data logging

solution, the semantic gap problem needs to be addressed.

Indeed, we need to identify a process directly at the circuit

46

level (i.e. without relying on data available at the OS level),

so that we can associate with it the logged information that will

be used for workload reconstruction. Fortunately, thanks to the

work in [13], the CR3 register of x86 resolves this problem,

as changes in the CR3 value perfectly match the events of

process creation, switching and termination. Accordingly, by

monitoring the CR3 register, delineating processes becomes

possible, thereby bridging the semantic gap.
To describe the behavior of the process, this approach uses

user-space instructions causing iTLB misses as the logging

object, inspired by the fact that program execution has phases

[14]. The reason of selecting TLB profile is as follows. A TLB

is a small cache memory which maintains recent translations

of virtual addresses to physical addresses. The actual TLB

implementation is split into two parts, one for instruction

addresses (iTLB) and the other for data access addresses

(dTLB). In x86, when the CR3 value changes, the entire TLB

is flushed. This design convention benefits the approach in two

ways. First, all TLB events can be accurately associated with

the process represented by the current CR3 value. Second, the

effect of different order of program execution is mitigated,

as the TLB starts fresh with every process. Therefore, the

granularity of the logged data (i.e., process-level) matches our

analysis target.
The actual behavior model employs multiple descriptive

features generated from the raw TLB profile, as shown in

Figure 2. Specifically, this approach initially splits the raw

TLB profile into partitions, where counts of occurrences of 6

types of operators as well as 12 types of operands are extracted

as features. The operator (Op.) types include:

1) Data Op.: operations performing data manipulation,

such as storing/loading values, setting flags, etc.

2) Stack Op.: operations performing stack manipulation.

3) ALU Op.: operations performing arithmetic or logic

calculation.

4) Control Flow Op.: operations changing instruction ex-

ecution flow.

5) I/O Op.: operations working with x86 I/O ports and

interacting with peripherals.

6) Floating Point Op.: operations performing all FP re-

lated manipulation.

The remaining 12 operand (Opr.) features include 8 features

corresponding to the 8 general purpose registers of 32-bit

x86, one for memory reference, one for XMM registers

and floating point stack, one for all segment registers, and

one for immediate value. Ultimately, a vector F.V.i =<
Op.1, ..., Op.6, Opr.1, ..., Opr.12 > is generated for each par-

tition. For each process, as identified through its CR3 value, a

list of feature vectors [F.V.1, ..., F.V.i, ...F.V.end] is collected,

reflecting the order of partitions.
As introduced in Section II-C, behavior-based methods

generally apply machine learning for analysis. Given the

objective of workload reconstruction, this method employs

multi-class classification, where each class corresponds to

a single process. Additionally, previously unseen processes

are identified through outlier detection. Regarding process

CR3 value
Instruction 1
Instruction 2
…...
…...
Instruction 100

Instruction 1
Instruction 2
…...
…...
Instruction 100

operator operand(s)

update feature vector for each partition

6-class operator counters 12-class operand counters

F.V. 1
F.V. 2
…...
…...
F.V. end

final feature vector list attached to this CR3

Fig. 2: Feature extraction mechanism

classification, we experimented with two different non-linear

multi-class classifiers of varying complexity and performance,

namely K-Nearest Neighbors (KNN) and Support Vector Ma-

chine (SVM). To perform outlier screening, we leverage the

probability estimation available in the SVM. Given a sample,

the SVM provides not only the chosen class, but also a vector

containing the probabilities that this sample belongs to each

known class. The conjecture of the outlier detection method

is that when the sample comes from a known distribution

(i.e., previously seen), the probability of the winning class will

dominate all others, while when it comes from an unknown

distribution (i.e., outlier), multiple classes will exhibit fairly

similar probability. Therefore, a simple outlier screening cri-

terion is the probability difference between the first and second

most likely classes. If this difference exceeds a threshold,

which can be learned through cross-validation, the process is

classified as an outlier. In our implementation, we used KNN

from the Matlab library and SVM from the LIBSVM library

[15].

2) Evaluation: Evaluation of this workload forensics

method was performed in Simics, wherein we simulated a 32-

bit x86 machine with a single Intel Pentium 4 core running

at 2Ghz and containing 4GB of RAM, on which we loaded

a minimum installation Ubuntu server that embeds a Linux

2.6 kernel as the OS. All collected data is normalized and fed

to the analysis software via Python/Matlab. We use MiBench

[16], a free commercially representative benchmark suite as

our workload, which contains tens of application classes. The

entire suite was executed 100 times, with each application

invoked with various valid arguments or in the background

(& option). The workload execution was also randomized to

avoid the bias that a specific order might impose.

The process classification results using KNN and SVM

are shown in Table I. As may be observed, both classifiers

performed very well in correctly classifying the processes,

reaching an overall classification accuracy of 96.97% and

96.63% respectively. For most classes, this accuracy was

even higher. However, parasite processes such as savelog,

cmp, etc., can be created sporadically during the execution of

MiBench applications in our simulation environment. Samples

of these processes were considered in our experiments but

their low frequency of occurrence limits the available samples

and undermines the corresponding classification accuracy.

Fortunately, considering their weight, their overall impact on

process classification accuracy is small.

To evaluate the effectiveness of our system in identifying

previously unseen processes, we repeated the experiment,

47

application
class

training
samples

testing
samples

KNN
accuracy

SVM
accuracy

overall 2386 2376 96.97% 96.63%

bash 1088 1087 100% 100%

cjpeg 25 25 100% 100%

djpeg 25 25 96% 100%

search 50 50 98% 98%

tiff2rgba 50 50 100% 100%

tiffmedian 50 50 96% 100%

toast 50 50 96% 96%

......

dpkg 11 11 72.73% 72.73%

savelog 9 9 55.56% 55.56%

cron 4 3 66.67% 66.67%

cmp 3 3 33.33% 33.33%

TABLE I: Process classification accuracy (subset of classes)

with 5 randomly selected classes omitted from the training

set, while retaining them in the testing set to mimic outlier

processes. Through cross-validation, we set the threshold for

outlier screening to 0.6, which is applied to the processes in

the testing set. Ultimately, we observed that even the simple

outlier screening method described above can achieve high

outlier detection accuracy, with the average false positive

(i.e. seen process classified as outlier) and false negative (i.e.

outlier classified as seen process) rate at 12.31% and 5.13%,

respectively. Nevertheless, advanced outlier detection methods

can further improve the results.

Since the only hardware component involved in this method

is the logging component, we evaluate the overhead of this

method in term of required data logging rate, which is calcu-

lated as follows. For each partition of a process, our method

requires one feature vector containing 18 elements. If we

assume partition_size to be 100, as in our experiments,

we only need 7 bits for each element. The number of partitions

generated per second is determined by the iTLB miss rate.

Assuming clock cycles per instruction (CPI) has an optimal

value of 1, the estimated logging rate is calculated step by

step by the equations below:

F.V. size = 18× �log2 partition size� (1)

partition generation rate =
iTLB miss rate

partition size
(2)

bits/inst. = F.V. size× partition generation rate (3)

est. logging rate(bits/sec) =
bits/inst.× clk freq.

CPI(assumed = 1)
(4)

We ran our benchmark suite several times to obtain an average

iTLB miss rate, the value of which was 0.0016%, resulting in

an estimated data logging rate of only 5.17 KB/sec. While a

typical TLB miss rate is expected to be around 0.01-1% [17],

since we consider only user-space virtual addresses and only

iTLB misses, the relevant miss rate for our scheme is much

less. Furthermore, since we assumed an optimal CPI of 1, the

logging rate should be even lower in realistic cases.

B. Intrusion Detection

1) Implementation: This method proposes a hardware-

based on-line intrusion detection to ensure integrity of an

executed system call service routine in a way that is immune

to tampering by software, hence, follows the on-line system ar-

chitecture. The idea is motivated by the fact that most malware

detection methods rely on system call-related information, yet

their logging/monitoring mechanisms rarely inspect the actual

system call execution flow, which leaves room for malwares

to evade detection through system call hijacking.

System call hijacking enables an attacker to control the ex-

ecution flow of one or several system calls; thereby, malicious

code can be introduced and executed without the knowledge

of the legitimate system user. In Linux OS, for example,

this can be achieved through a kernel rootkit exploiting the

Loadable Kernel Module (LKM), which is intended to extend

or customize the functionality of the original kernel. When the

extended or customized functionality is no longer required,

the kernel module can be unloaded, restoring the kernel to its

original state and, thereby, leaving no trace. This work focuses

on three types of system call hijacking:

1) System Call Table Redirection: The type 1 attack redi-

rects the OS to a different system call table controlled

by the attacker when a system call is invoked.

2) System Call Table Modification: The type 2 attack

modifies the value of certain entries in the original

system call table so that the attacker can redirect the

service routine of certain system calls to his/her own

malicious code snippet.

3) Service Routine Modification: The type 3 attack di-

rectly modifies the service routines of one or more

system call.

Theoretically, the type 1 attack requires the least design

complexity but suffers more risk to be detected, while the

type 3 attack is the most complicated by design yet the most

likely to evade detection.

The proposed hardware-based intrusion detection system,

which consists of two components both implemented in

hardware, i.e., a data logging component and a validation

component, addresses the three types of system call hijacking

separately. In particular, the data logging component collects

three critical pieces of information related to the integrity of

system call execution, namely the base address of the system

call table, the contents of the system call table, and the actual

system call service routines. When a system call is invoked, the

validation component, then, contrasts this information against

their corresponding valid signatures, stored in the hardware as

well, in order to detect the three types of system call hijacking

attacks in real time.

Considering the design cost, it is not feasible to store the

uncompressed benign system call table content and corre-

sponding service routines as valid signatures in hardware.

Instead, this method employs a Multiple Input Signature

48

Data Logging
Component

SYSENTER/
INT 80h

Validation Component

benign system
call table base

address

= ?

benign hash
of system
call table

= ??
b

benign
fingerprints of

basic blocks

Component

benign system call
table base address

system call table
content

inst. 1
inst. 2

inst. n

inst. 1
inst. 2

inst. n

basic blocks

inst. n

inst. 1

b
c

?

= ?
f

?

××
?

××
?

??

×

alarm ×××

×

execute
instructions
concurrently

ecu

suspend
execution
s

ee

generated
fingerprints

Fig. 3: High-level design of the hardware-based on-line intru-

sion detection

Register (MISR) to compress and generate fingerprints of

this critical information. Using a MISR for our purpose has

three advantages: (1) the hardware structure of a MISR is

relatively simple, involving only D-Flip-Flops (DFF) and XOR

gates, whose interconnection is defined by a characteristic

polynomial; thus, it incurs low design overhead. (2) A MISR

is scalable and can process multiple inputs simultaneously,

independent of the input length; this allows us to efficiently

process entire table contents or instruction sequence in order

to generate fingerprints. (3) The MISR has a relatively low

aliasing probability. Aliasing occurs when identical signatures

are generated for different input sequences and can undermine

our ability to detect invalid instruction sequences. An approx-

imation of the aliasing probability of a MISR is 2−n, where

n is the degree of its characteristic polynomial.

Generating fingerprints of system call table content using a

MISR is relatively straightforward while it is slightly more in-

volved in the case of system call service routines. Specifically,

our method generates a fingerprint for each basic block of the

executed routine, which is compared afterwards against a set of

known acceptable fingerprints for basic blocks of this routine.

The choice of a basic block, as opposed to the entire system

call service routine, as the minimum entity to be fingerprinted

is driven by practicality. A basic block is a snippet of atomic

code executed between two control flow transfers. Therefore,

the actual instructions executed are fixed, hence the golden

fingerprint of a basic block can be statically computed. In

contrast, the instructions executed by the entire system call

service routine depend on the arguments with which it is

invoked at run-time; hence there is a multitude of golden

fingerprints which are not only harder to exhaustively identify

but may also leave more room for malicious modifications

to go undetected. A high-level architecture of the proposed

method is depicted in Figure 3.

As stated above, fingerprinting the system call service

routine produces sets of multiple golden fingerprints, therefore,

requiring a space-efficient storage solution. To this end, this

method employs a Bloom filter for compactly storing the

golden fingerprints and rapidly performing membership tests.

A Bloom filter is a space-efficient probabilistic data structure,

used to test whether an element is a member of a set [18]. A

typical Bloom filter consists of an m-bit array and implements

DecodeInstr.
mem.
Instr.
mem.

P. C.

Logging componentL i

MISR Bloom
Filter

Intrusion
alarm

Exec.

Validation component

B. B. of sys. calls

Decode

enables
fingerprint gen.

Fig. 4: Architecture of proposed method

TABLE II: Kernel rootkit detection summary

rootkit description detected?
Type-1 attack system call table redirected �
Type-2 attack table entry sys open() redirected �
Type-2 attack table entry sys write() redirected �
Type-2 attack table entry sys mkdir() redirected �
Type-3 attack sys write() routine modified �

k different hash functions hi, i ∈ [1, k], each of which maps

an input element E to one of the positions in the array through

a uniform random distribution. An empty Bloom filter is an

array with all 0s. When adding an element, all k position bits

mapped by the hash functions for this element are set to 1.

As a result, an element is a member of the set if and only if

∀i ∈ [1, k], hi(E) = 1. Accordingly, a fingerprint of a basic

block of the actual system call routine is valid if and only if its

corresponding position bits remains all 1s. Figure 4 illustrates

the hardware implementation of the validation process.

2) Evaluation: Evaluation of this hardware-based intrusion

detection method was also performed in Simics with the same

configuration as the one in the case of workload forensics.

To evaluate effectiveness of this method, we first perform

static analysis to collect the golden fingerprints of the basic

blocks for each system call service routine, and to program the

corresponding Bloom filters. Next, we use MiBench to collect

fingerprints for legitimate workload. On the other hand, to

collect fingerprints for contaminated workload, five rootkits

which exploit LKM to launch system call hijacking attacks of

the three types introduced in Section III-B1 were implemented

based on the Linux rootkit template maKit2.

Table II summarizes the five kernel rootkits which we used

to launch system call hijacking attacks. Following the defini-

tions in Section III-B1, the first one is Type 1, the next three

are Type 2 and the last one is a Type 3 threat. All five were

successfully detected by this method, as they invoked system

calls whose service routine execution generated fingerprints

that were rejected by the corresponding Bloom filter.

The incurred hardware overhead of this method, which

is evaluated using a predictive 45nm Process Design Kit

(PDK) [19], is dominated by the implementation of MISR

and the hash function in Bloom filter. Compared with a 45nm

Intel Processor3, whose area is 107 mm2 and average power

consumption is 65 W , the total overhead of this hardware

implementation is negligible, as summarized in Table III.

IV. RELATED WORK

In this section, we briefly present several other efforts in

the hardware-based forensics and/or malware detection. For

2https://github.com/maK-/Syscall-table-hijack-LKM
3http://ark.intel.com/products/35605

49

TABLE III: Design overhead summary

area (μm2) power (mW)
logging 1810.56 5.55

validation 7419.16 15.9
total 9229.72 21.45

microprocessor 107× 106 65× 103

overhead 0.008625% 0.033%

example, similar software-based data-centric signature-based

methodologies, such as Control Flow Integrity (CFI) checking,

can be applied at the hardware level, which are expected to

incur less runtime overhead [11], [20], [21]. Furthermore, in

contrast to traditional CFI methods, CFIMon uses performance

counters to model code execution behavior and detect control

flow deviation [22], which falls into the data-centric behavior-

based methodologies. Nevertheless, these methods generally

require specific support from the underlying OS or compiler

to bridge the semantic gap [20], [21].

While system call-related information can also benefit

hardware-based program-centric approaches in malware detec-

tion [23], most of the approaches in this category try to lever-

age low-level information extracted directly through hardware

in order to model the program behavior and perform forensic

analysis and/or malware detection. For instance, performance

counters can be used to model program behavior through

machine learning methods, based on which on-line malware

detection can be performed [8], [24]. Besides performance

counters, an alternative method may also collect low-level

architectural information, e.g. memory address reference, in-

struction opcode, etc., to model program behavior and perform

malware detection [10].

V. CONCLUSION

We explored the possibility of performing workload foren-

sics and/or malware detection through hardware-based logging

and/or analysis mechanisms. Unlike traditional software-based

methods, a hardware-based approach benefits itself from its

innate immunity to software tampering, which ensures the

security and reliability of the logging and analysis system.

We introduced a general architecture which the hardware-

based forensics/malware detection systems need to follow,

whose possible implementations can be constructed through

combinations of three dimensions (i.e. on-line/off-line, data-

centric/program-centric, signature-based/behavior-based), de-

pending on their various purposes. We illustrated this general

concept through two incarnations, the first of which performs

a hardware-based workload reconstruction through TLB pro-

filing while the second of which performs a hardware-based

on-line intrusion detection through system call fingerprinting.

Experimental results corroborate that even low-cost hardware

implementations can facilitate highly successful forensics anal-

ysis and/or malware detection.

REFERENCES

[1] L. Garber, “Encase: A case study in computer-forensic technology,”
IEEE Computer Magazine, Jan. 2011.

[2] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-flow
integrity for commodity operating system kernels,” in Proc. of the 2014
IEEE Symp. on S & P, 2014, pp. 292–307.

[3] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse attacks with
control-flow locking,” in Proc. of the 27th Annual Computer Security
Applications Conf., 2011, pp. 353–362.

[4] S. Krishnan, K. Snow, and F. Monrose, “Trail of bytes: New techniques
for supporting data provenance and limiting privacy breaches,” IEEE
Trans. on Information Forensics and Security, vol. 7, no. 6, pp. 1876–
1889, 2012.

[5] X. Wang and R. Karri, “Reusing hardware performance counters to
detect and identify kernel control-flow modifying rootkits,” in IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, 2016, pp. 485–498.

[6] Y. Fu and Z. Lin, “Space traveling across VM: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data
redirection,” in IEEE Symp. on S & P, 2012, pp. 586–600.

[7] D. Perez-Botero, J. Szefer, and R. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in Intl. Workshop on Security
in Cloud Computing, 2013, pp. 3–10.

[8] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in 40th Annual Intl. Symp. on Computer
Architecture, 2013, pp. 559–570.

[9] L. Zhou and Y. Makris, “Hardware-based workload forensics: Process
reconstruction via TLB monitoring,” in IEEE Intl. Symp. on Hardware
Oriented Security and Trust, 2016, pp. 167–172.

[10] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. V. Ponomarev, “Hardware-based malware detection using low
level architectural features,” in IEEE Trans. on Computers, vol. PP,
no. 99, 2016.

[11] A. Kanuparthi, J. Rajendran, and R. Karri, “Controlling your control
flow graph,” in IEEE Symp. on Hardware Oriented Security and Trust,
2016.

[12] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity,” in The Network and
Distributed System Security Symp.(NDSS), 2016.

[13] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Antfarm: Track-
ing processes in a virtual machine environment,” in Annual Conf. on
USENIX, 2006, pp. 1–14.

[14] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro, vol. 23, no. 6,
pp. 84–93, 2003.

[15] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Trans. on Intelligent Systems and Technology, vol. 2, pp. 1–27,
2011.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in IEEE Intl. Workshop on Workload Characteriza-
tion, 2001, pp. 3–14.

[17] D. A. Patterson and J. L. Hennessy, Computer Organization And Design.
Hardware/Software Interface. 4th edition. Morgan Kaufmann, 2009.

[18] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[19] J. Stine, I. Castellanos, M. Wood, J. Henson, and F. Love, “Freepdk:
An open-source variation-aware design kit,” in Proc. of the IEEE Intl.
Conf. on Microelectronic Systems Education, 2007, pp. 173–174.

[20] L. Davi, P. Koeberl, and A. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded systems
against software exploitation,” in Proc. of the 51st Annual Design
Automation Conference, 2014, pp. 1–6.

[21] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent rop
exploit mitigation using indirect branch tracing,” in 22nd USENIX
Security Symp., 2013, pp. 447–462.

[22] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation
of control flow integrity using performance counters,” in Proc. of the
2012 42nd Annual IEEE/IFIP Intl. Conf. on Dependable Systems and
Networks, 2012, pp. 1–12.

[23] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE Trans. on Information Forensics and Security, vol. 11,
no. 2, pp. 289–302, 2016.

[24] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Proc. of 17th Intl.
Symp. RAID, 2014, pp. 109–129.

50

