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Abstract—Advanced technology nodes suffer from high system-
atic defectivity. A significant part of such defectivity is caused
by Lithographic Hotspots. Hotspots are Design Rule Check
(DRC) clean areas of a layout which tend to show abnormal
variation due to complex design-process interactions. In the past
decade, we have witnessesed several Pattern Matching (PM)
and Machine Learning (ML)-based hotspot detection solutions.
However, there is little research towards addressing two pressing
needs of the industry: (a) Development of hotspot detection
models during early stages of technology development, and (b)
Detecting Truly-Never-Seen-Before (TNSB) hotspots in incoming
layouts. In this work, we propose solutions to address these issues
and quantitatively demonstrate the effectiveness of the proposed
methodologies.

I. INTRODUCTION

With extensive scaling, the Integrated Circuit (IC) fabrica-

tion process has become extremely complex. Among the unit

processes, perfecting lithography is crucial and has become a

major challenge. This is partly because, as shown in Figure 1,

in the latest technology nodes the wavelength of light used for

lithography is much larger than the features being printed. This

rise in fabrication complexity is increasing the challenges in

the manufacturability space, which in turn, affect the bottom-

line of yield. One such manufacturability challenge is what is

known as Lithographic Hotspots. Hotspots are certain areas

of a layout which are DRC clean and, yet, show unexpected

variation which causes defects [1]. Though the root causes

of hotspots are not very well understood, it is believed that

the polygons surrounding the hotspot area are responsible for

causing defects.

More than a decade ago, the industry resorted to Hotspot
Detection in order to prevent the yield loss caused by hotspots.

The basic idea was to maintain a database of known hotspots

which could be identified through inline inspections, diagnosis,

failure analysis etc., and use this database to detect hotspots

in incoming designs. Initially, Pattern Matching (PM) tools

were used for this purpose [2]. PM tools demonstrated high

accuracy and could potentially obtain zero false-alarms while

performing an exact match to known hotspots. Such methods,

however, could not generalize and identify hotspots which

were slight variations of known hotspots. Consequently, fuzzy

PM methods [3] were introduced, but they required the user

to make a trade-off between accuracy and false-alarm rates.

In 2007, for the first time, the use of Machine Learning

(ML) for hotspot detection was proposed in [4]. Soon after,

ML-based hotspot detection methods gained great popularity

and were widely adopted by the community. Almost all ML-

based methods proposed thereafter claim that they not only
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(Adapted from [13])

reduce false alarms but can also detect Never-Seen-Before

(NSB) hotspots [5], [6], [7], [8], [9], [10], [11]. In [12], how-

ever, we demonstrated that the State-Of-The-Art (SOTA) ML-

based hotspot detection methods could interpolate between

known hotspots but could not detect Truly-Never-Seen-Before

(TNSB) hotspots. Moreover, we also suggested potential solu-

tions for TNSB hotspot detection. In this work, we implement

one of those methods and quantitatively demonstrate TNSB

hotspot detection.

Until now, major focus of hotspot detection work has been

on its usage in fairly mature technology nodes. This is, mainly,

because a database of known hotspots is not available during

early stages of technology development. Therefore, early cus-

tomers/designs of a technology node are unable to leverage

the benefits of hotspot detection. Generating a database of

hotspots in early stages of technology development would be

very beneficial but it is extremely challenging. Authors of [14]

proposed the use of a commercially available tool to generate

synthetic layout patterns and explore the design space. Essen-

tially, they suggest generating a large number of synthetic pat-

terns, subjecting them to lithographic simulations / on-silicon

experiments [15] to determine whether they are hotspots or

non-hotspots and, thereby, building a hotspot database. Several

variations of this methodology were proposed in [16], [17],

[18]. All these methods presented qualitative results wherein
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Fig. 2: The proposed methodology

examples of a few hotspots identified using their methods were

shown, but none of them quantitatively demonstrated ML-

based hotspot detection. In this work, we build an early hotspot

detection model solely using synthetically generated training

patterns and quantitatively demonstrate hotspot detection on

test patterns from real designs.

The main contributions of this paper include:

1) The first quantitative demonstration of hotspot detection

during early technology development.

2) The first quantitative demonstration of TNSB hotspot

detection.

The rest of the paper is organized as follows. The proposed

methodology is described in Section II. The experimental

results are presented in section III and conclusions are drawn

in Section IV.

II. PROPOSED METHODOLOGY

A. Hotspot Detection During Early Technology Development

The proposed methodology is shown in Figure 2. The basic

design rules, which are usually available in the early stages of

technology development, are fed into an Early Design Space

Exploration (EDSE) tool. The EDSE tool generates a wide

variety of DRC clean patterns. They are, then, subjected to

lithographic simulations in order to identify potential hotspots

for the given technology node. The generated database, con-

sisting of hotspots and non-hotspots, is used to build early

hotspot detection models.

B. TNSB Hotspot Detection

TNSB hotspots are test hotspot patterns which are very

different in appearance in comparison to the hotspots found in

the training dataset. When projected to a hyper-dimensional

space, such test patterns are usually located farther away from

the training patterns [12]. An illustration depicting TNSB

patterns is shown in Figure 3a. It is challenging for ML entities

to make predictions on such patterns, mainly because they

are located in a space which is fairly ‘unknown’ to the ML

entity. To empower an ML entity towards making accurate

predictions on TNSB patterns, we use a methodology similar

to the one detailed in the previous subsection. Essentially, we

use the EDSE tool to explore the design space and find NSB

hotspot patterns. We add such synthetically generated hotspot

patterns into the training dataset and, thereby, increase its

information-theoretic content and potentially transform previ-

ously unknown spaces into known spaces. Such transformation

is illustrated in Figure 3b.

Known 
space

Y

X(a)

Known space

X(b)

Y

Training pattern
Testing pattern (in known space)
TNSB testing pattern
Synthetic training pattern

Training pattern
Testing pattern (in known space)
TNSB testing pattern
Synthetic training pattern

Fig. 3: Illustration of the impact of synthetic training patterns

C. Early Design Space Exploration

The EDSE process consists of a synthetic layout pattern

generation tool at its core. An effective pattern generation

tool must ensure that it generates a wide variety of random

patterns, which accurately reflect various regions of the design

space, and also ensures that the resulting patterns obey DRs

and resemble real IC layout snippets. Several EDSE tools,

including a commercially available tool [14], are available.

In [19], we demonstrated that our pattern generation method,

Versatile and Intuitive Pattern genERator (VIPER), performs

about 3X better in terms of design space exploration in

comparison to previously proposed methods. Therefore, in this

work, we use VIPER for synthetic pattern generation. Further

details of VIPER are out of the scope of this work and the

interested reader is referred to [19].

D. Lithographic Simulations

Synthetic patterns generated using the EDSE process are

subjected to lithographic simulations in order to determine

their ground truth (hotspot/non-hotspot). Generally, a pattern

is considered a hotspot when a defect(s) occurs in the central

region of the pattern, as shown in Figure 4a [11]. We refer

to such region under consideration as the hotspot region. A

small hotspot region is preferred in order to ensure that the

context (neighborhood) is captured effectively. In this work,

however, the primary objective of this step is to identify as

Hotspot
Region

Hotspot
Region

(a) (b)

Fig. 4: Patterns with (a) a small hotspot region, (b) a large

hotspot region
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many hotspots as possible. Therefore, we use a large hotspot

region which spans almost the entire area of the pattern, except

the periphery, as shown in Figure 4b.

III. EXPERIMENTAL RESULTS

We perform our experiments on a 45nm technology node

[20]. An open-source circuit is placed and routed using the

Nangate open cell library [21] to obtain baseline design pat-

terns. The basic design rules from the same PDK are provided

as inputs to VIPER to generate synthetic layout patterns. In the

rest of the paper, we refer to patterns captured from the real

design as ‘Design patterns’ and patterns obtained from VIPER

as ‘VIPER patterns’. The Design patterns were captured from

the baseline design using a moving window scheme [11]. All

patterns correspond to Metal1 and have their side dimensions

equal to 8.5*layer pitch, which translates to 1105nm. All

patterns used in this analysis are DRC clean, and their true

labels (hotspots/non-hotspots) are determined through litho-

graphic simulations. Co-ordinate transformation [11] is used

for feature extraction. Principal Component Analysis (PCA)

is used for dimensionality reduction and only the first 250

principal components are used in our experiments. Formulas

used in this work are:

accuracy =
hotspot hits

total hotspots

false alarms =
false positives

total patterns tested

The main objectives of this work are: (a) to demonstrate

hotspot detection early during technology development, and

(b) to demonstrate TNSB hotspot detection. Corresponding

results are presented in the following subsections.

A. Hotspot Detection During Early Technology Development

To demonstrate the effectiveness of the proposed method-

ology, we train a hotspot detection model solely using 40,000

VIPER patterns and test them using 40,000 design patterns. A

TABLE I: Early hotspot detection results

Training dataset Testing dataset Accuracy False alarms

VIPER patterns Design patterns 54.83% 19.16%

Support Vector Machine (SVM) with a Radial Basis Function

(RBF) kernel is used as a two-class classifier. To find the

optimal hyper-parameters of the SVM, we used the grid

search method [22] along with k-fold cross validation [23].

We varied the hyper-parameters across a wide range (546

combinations) and performed 3-fold cross validation for every

hyper-parameter combination. The result of this analysis is

shown in Figure 5. Each data point in this plot indicates the

accuracy and false alarm rates obtained for a certain hyper-

parameter combination. The data points along the pareto-front

represent optimal hyper-parameter combinations and the user

can choose any one of them depending on the desired region

of operation.

In case of early hotspot detection models, our priority is

to identify as many hotspots as possible. Therefore, during

training, we choose the hyper-parameters which provide higher

accuracy rates and accept a slight increase in false alarms.

In this work, we train the hotspot detection model using the

hyper-parameter combination which shows about 20% false-

alarm rate, and observe the model performance on the actual

testing dataset. The results are shown in Table I. We observe

that the early hotspot detection model detects about 55% of

the hotspots found in real designs. This is a significant result

considering that a very small-sized dataset, solely consisting

of synthetic patterns, was used for training.

B. TNSB Hotspot Detection

In this analysis, we consider an initial dataset of 5,000

design patterns for training. This dataset acts as a proxy to a

known database built by a foundry over time. We train a model

using this dataset, test it on a testing dataset containing 40,000

design patterns, and use the results as our baseline. Prior to

such analysis, however, we need to ensure that our testing

dataset contains TNSB test hotspots. Therefore, to visualize

the distribution of testing patterns w.r.t. the training patterns,

we performed Principal Component Analysis (PCA) on the

training dataset and projected the testing dataset onto the same

space. We plot the first three principal components in Figure

6. For brevity, the test non-hotspots are not shown in the plot.

From Figure 6, we observe that all the test hotspots align well

with the training hotspots, thereby, indicating that this testing

dataset does not contain TNSB hotspots.

In order to create a test case which consists of TNSB

hotspots (as illustrated in Figure 3a), we trim down the original

training dataset by removing the training hotspots whose first

principal component value is greater than or equal to -2. Then,

we consider all the test hotspots which are located far away

from the training hotspots (specifically, test hotspots whose

first principal component value is greater than +2) as TNSB

hotspots. The PCA plot of the new dataset is shown in Figure
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Fig. 6: Distribution of testing hotspots w.r.t. training dataset
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7. This plot shows that, similar to the illustration in Figure 3a,

the test hotspots identified as TNSB hotspots are located far

away from all the training patterns. Therefore, in the rest of

the paper, we use this training dataset as our baseline training

dataset and we refer to the model trained using this dataset as

the baseline model. The new baseline training dataset consists

of 4,131 training patterns, of which 340 are hotspots. The

complete testing dataset consists of 30,413 non-hotspots and

9,587 hotspots, of which 2,477 are TNSB hotspots.

We train a classifier using the baseline dataset and test it on

the complete testing dataset which includes TNSB hotspots.

The results are shown in the Table II. We observe that the

TABLE II: TNSB hotspot detection results

Training
dataset Testing dataset Accuracy False

alarms

Baseline
dataset

Complete testing dataset
(including TNSB hotspots)

39.86% 16.30%

TNSB hotspots only 0% Not
applicable

Enhanced
dataset

Complete testing dataset
(including TNSB hotspots)

56.25% 15.48%

TNSB hotspots only 21.52% Not
applicable

baseline model provides about 40% accuracy. When tested on

only the TNSB test hotspots, however, we find that the model

accuracy drops to 0%.

According to the proposed methodology, described in Sec-

tion II-B, we enhance the baseline training dataset by adding

synthetic patterns. The baseline training dataset is highly

imbalanced due to its large number of non-hotspots and few

hotspots. Therefore, of the 40,000 VIPER patterns, we only

use the hotspots (1,346) for enhancement. We train a hotspot

detection model using the enhanced dataset. Hereafter, we

refer to this model as the enhanced model. Results from the

enhanced model are also shown in Table II. We observe that

the enhanced model has an accuracy rate of about 56% while

maintaining a similar false alarm rate as that of the baseline

model. The enhanced model shows a modest improvement in

accuracy when tested on the complete testing dataset. When

tested on only TNSB hotspots, however, we find that the

enhanced model detects about 22% of TNSB hotspots (533 out

of 2477 TNSB hotspots), which is a significant improvement

over the baseline results.

For both enhanced and the baseline models, we used an

SVM with an RBF kernel for classification. Hyper-parameter

selection was performed through grid-search and 3-fold cross

validation on their respective training datasets, using the same

procedure as detailed in the previous subsection.

IV. CONCLUSION

In this work, we have proposed methodologies to perform

early hotspot detection and TNSB hotspot detection. We have

demonstrated about 55% accuracy in the case of early hotspot

detection and about 22% accuracy in TNSB hotspot detection,

which is a significant improvement over the baseline. While

plenty of room for improvement remains, this is the first

quantitative demonstration of both early hotspot detection and

TNSB hotspot detection, which we hope that will motivate the

research community to look more diligently into this problem.
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