
Non-Intrusive Design of Concurrently Self-Testable FSMs

Petros Drineas∗and Yiorgos Makris
Departments of Computer Science and Electrical Engineering

Yale University
{petros.drineas, yiorgos.makris}@yale.edu

Abstract

We propose a methodology for non-intrusive design
of concurrently self-testable FSMs. Unlike duplication
schemes, wherein a replica of the original FSM acts as
a predictor-comparator that immediately detects potential
faults, the proposed method selects and optimizes only a
minimal portion of the original FSM, adequate to detect all
possible faults, yet at the cost of potential fault detection la-
tency. Furthermore, in contrast to concurrent error detec-
tion approaches, which presume the ability to re-synthesize
the FSM and exploit parity-based state encoding, the pro-
posed method is non-intrusive and does not interfere with
the state encoding and implementation of the FSM. Experi-
mental results on FSMs of various sizes and densities indi-
cate that the proposed method detects more than 92% of all
faults with an average latency of 4 clock cycles and more
than 99% of all faults with an average latency of 35 clock
cycles. Furthermore, a hardware overhead cost reduction
of up to 30% is achieved, as compared to duplication.

1. Introduction

Electronic circuits are employed in a wide variety of
modern life activities, ranging from mission critical appli-
cations, where the slightest malfunction may have catas-
trophic consequences, to simple commodity devices, where
a potential malfunction may cause no damage other than
the inconvenience of discarding and replacing them at an
almost negligible cost. As a result, circuit designers are
faced with a broad spectrum of dependability, reliability,
and testability requirements, which now become system
specifications similar to speed, cost, power consumption,
etc. Consequently, several approaches of various cost and
efficiency levels have been devised to provide an indication
of the operational health of a circuit.

While the ability of a circuit to test itself during its in-
tended functionality is a highly desirable attribute, design-
ing a self-testable circuit which conforms to the rest of the
design specifications is not a trivial task. Parameters to be
considered include the additional hardware cost and design
effort incurred, potential performance degradation due to
∗The author is supported in part through NSF grant CCR-9820850.

interference of the circuit logic and the self-test logic, as
well as the level of assurance that the circuit is required to
provide. In this paper, we focus our interest on controller
circuits and we explore the trade-offs between the afore-
mentioned parameters, in order to devise a non-intrusive
design methodology for concurrently self-testable FSMs.
Non-intrusiveness implies that logic may only be added in
parallel to the given FSM which is encoded, optimized, and
implemented to meet specific requirements and may not be
modified. The additional logic is expected to be able to test
and detect any fault that may appear in the circuit, therefore
rendering a self-testable design. Moreover, self-test needs
to be performed concurrently and may not delay or degrade
the normal functionality of the FSM.

To motivate the proposed methodology, we first examine
related work in the areas of concurrent self-test, concurrent
error detection, and on-line test. While the ability to de-
tect all faults is a unifying theme across almost all previous
research efforts in these areas, they typically address two
ends of a spectrum. Towards the low end, we find low cost
concurrent test methodologies, which provide coarse infor-
mation once the whole circuit has been examined, therefore
incurring tremendous fault detection latency. More specif-
ically, [1] proposes the C-BIST method, which employs an
input monitoring technique and existing off-line Built-In
Self-Test hardware, such as LFSRs and MISRs, to perform
concurrent test. While the hardware overhead is very low,
the method relies on an ordered appearance of all possible
input vectors before any indication of circuit correctness can
be provided, resulting in very large fault detection latency.
This problem is slightly alleviated in the R-CBIST method
described in [2], where the ordered appearance requirement
of all input combinations is revoked at the cost of a small
RAM employed for input monitoring. Nevertheless, all in-
put combinations still need to appear before any indication
of the correctness of the circuit functionality can be pro-
vided. Additionally, though inexpensive and non-intrusive,
such methods are limited to combinational circuits.

Towards the high end, we find expensive concurrent er-
ror detection methods for sequential circuits that provide
fine-grained information once every clock cycle, therefore
guaranteeing zero error detection latency. Duplication is
the simplest of these methods, limited however by its ex-

pensive hardware overhead. Reducing the area overhead
below the cost of duplication typically requires redesign of
the original FSM, thus leading to intrusive methodologies.
One of the first successful attempts along this direction is
described in [3], where resynthesis is employed to favorably
encode the FSM states, incorporating parity information in
the FSM and employing TSC checkers and several alterna-
tive encoding schemes. Limitations of this method such as
structural constraints requiring an inverter-free design were
alleviated in [4], where a single parity bit and several cir-
cuit partitions are employed to reduce the incurred hardware
overhead. Utilization of multiple parity bits is examined in
[5] within the context of finite-state machines, leading to
the most encouraging results so far. All these methods ren-
der totally self-checking circuits and guarantee error detec-
tion with zero latency but they alter the original FSM design
and typically only provide hardware savings in the range of
10%, if at all, as compared to duplication.

While each of the two extremes has both strong and weak
points, very few attempts have been made to bridge the gap.
Among them, a method based on properties of non-linear
adaptive filters is proposed in [6], achieving a 20% cost re-
duction with minimal latency penalty. A similar technique
is proposed in [7], where the frequency response of lin-
ear filters is used as an invariance property of the circuit.
The corresponding scheme achieves a 50% cost reduction
but introduces a more significant latency penalty. Finally,
a concurrent test approach exploiting transparency behav-
ior of RT-Level components is described in [8], where over
90% fault security is achieved with 40% hardware over-
head. However, no estimation is given for the fault detection
latency, although a few heuristics are described for selecting
frequently activated transparencies.

2. Proposed Method

The method proposed in this paper attempts to fur-
ther bridge the aforementioned gap by introducing a non-
intrusive method for designing concurrently self-testable
FSMs, where the original implementation of the circuit (i.e.
state encoding and next state logic) may not be modified.
While coverage may not be sacrificed, the proposed method
targets the detection of faults as opposed to errors, there-
fore imposing more lenient requirements in terms of fault
detection latency, as opposed to the stringent zero-latency
required for concurrent error detection. Therefore, infor-
mation is provided frequently, yet not at every clock cycle.
While such circuits are notfault-secureand therefore do
not guarantee correctness of the results, they are stillself-
testable, thus guaranteeing that there is a way to eventually
detect any potential fault. In the rest of this section, we de-
scribe the proposed methodology and we provide an analy-
sis and justification of its expected performance.

2.1. Description

The proposed scheme is depicted and contrasted to du-
plication in Figure 1. In duplication-based concurrent error
detection, a replica of the FSM1 is added to the design and
the results of the two identical FSMs are compared at each
clock cycle, thus detecting any error in the design through
a monitoring output that becomes ’1’ if an error occurs. To
avoid fault masking by common-mode failures, design di-
versity [9] has also been examined, wherein the duplicate
FSM is functionally equivalent but structurally different and
possibly more expensive than the original FSM.

In an effort to reduce the hardware overhead of dupli-
cation, the proposed method replicates only a portion of
the original FSM, capable of detecting all faults in the de-
sign. More specifically, ATPG is performed on the combi-
national next state logic of the original FSM and a complete
set of test vectors is obtained2. These test vectors are subse-
quently synthesized, rendering the prediction logic that will
provide the expected next state of the original FSM when
an input / previous state combination matches a test vector.
In order to reduce the required hardware, input / previous
state combinations that are not test vectors are treated as
don’t caresduring synthesis. However, an additional func-
tion is now required, indicating whether an input / previous
state combination is a test vector and directing (through the
AND gate in Figure 1) whether the comparison outcome is
a valid indication of correct functionality. Furthermore, in
order to also detect the faults in the state register, we delay
the comparison of the predicted next state by one clock cy-
cle, similarly to [5]. Thus, instead of comparing the outputs
of the predicted logic, we compare the outputs of the state
registers one clock cycle later, at the cost of an additional
flip-flop for the extra function. Notice also that, in order
to avoid false alarms, the predicted next state calculation
is driven by the original FSM state register and not by the
predicted state register. This is because the predicted state
register may not contain the correct value after an input /
previous state combination that is not a test vector, since the
output for such combinations is arbitrarily decided during
synthesis to minimize the prediction logic hardware.

As shown in Figure 1, unlike approaches such as [3,
4, 5] that attempt to reduce the hardware overhead by
re-encoding the FSM using parity schemes, the proposed
method leaves the original FSM design intact. Furthermore,
assuming a sizeable yet not exhaustive set of vectors and
despite the addition of one extra function, we expect a con-

1For simplicity, we assume that the FSM outputs are driven by the state
register. The method can be readily extended to output logic.

2 In the presence of a fault a state may become unreachable in an FSM.
If ATPG selects such a state as part of the test vector that tests this fault, the
fault becomes untestable. A state reachability analysis in the presence of
each fault is required to preclude such vector/fault pairs. Our experimental
observation is that such cases amount to less than 0.5% of all faults.

CONCURRENT FSM SELF-TEST BASED ON DUPLICATION

COMBINATIONAL

NEXT STATE

LOGIC

n-BIT

INPUT

k-BIT

STATE

REGISTER

k-BIT

NEXT STATE

FSM OUTPUT

COMBINATIONAL

NEXT STATE

(DUPLICATE)

k-BIT

STATE

REGISTER

(DUPLICATE)

DUPLICATE k-BIT

NEXT STATE

k-BIT INEQUALITY

COMPARATOR

TEST OUTPUT

(ERROR IF '1')

ORIGINAL

FSM H/W

TESTABILITY

H/W

COMBINATIONAL

NEXT STATE

LOGIC

n-BIT

INPUT

k-BIT

STATE

REGISTER

k-BIT

NEXT STATE

FSM OUTPUT

COMBINATIONAL

NEXT STATE

LOGIC FOR TEST

VECTORS ONLY

PREDICTED k-BIT

STATE

REGISTER

PREDICTED k-BIT

NEXT STATE

1-BIT

REGISTER

IS A

TEST

VECTOR?

k-BIT INEQUALITY

COMPARATOR

TEST OUTPUT

(ERROR IF '1')

CONCURRENT FSM SELF-TEST BASED ON DUPLICATION OF TEST VECTOR LOGIC

Figure 1. Duplication vs. Proposed Methodology

siderable hardware overhead reduction. On the down side,
a fault may cause an error which will go undetected until
a test vector detecting this fault appears, thus introducing
fault detection latency. Given a sizeable vector set, tests
are expected to be performed frequently and low average
latency is expected. The following paragraph discusses and
analyzes quantitatively these expectations.

2.2. Analysis

In this section we predict the performance of the method-
ology (fault coverage, hardware overhead and fault detec-
tion latency) proposed in Section 2.1. We focus mainly on
the hardware overhead of the proposed scheme. After intro-
ducing some notation, we state a rather obvious remark on
the fault coverage for the “stuck-at” fault model.

We usen to denote the number of input bits of a Finite
State Machine (FSM),k to denote the number of state bits,
N = 2n to denote the number of possible inputs andK =
2k to denote the maximum number of states of the FSM.
We also usesi, i = 1 . . . 2k to denote the states of the FSM
andvi, i = 1 . . . 2n to denote possible input vectors. We
denote the original circuit implementing theNEXT STATE

LOGIC of the FSM byA and the prediction logic byP . The
prediction logic is split in two parts, thePNS part, which
predicts the next state and thePISV part, which decides
whether the predicted next state is valid.

Remark 1 Assuming that we can generate a set of test vec-
tors that detects100% of the faults inA, our methodology
guarantees the same fault coverage as duplication does.

Observe thatA andP do not share any hardware. In the
presence of non-redundant faults inA, P 3 is fault free; we

3The other direction (faultyP and fault freeA) is similar.

also know that there exists some test vector (essentially a
pair (si, vi)) that detects the fault. Thus, whenA reaches
si and the next input isvi, P andA will output different
next states and the fault will be detected. We stress that
no latency guarantees can be given; indeed, the fault inA
might appear early and go undetected until(si, vi) appears.

We now outline our intuition on the hardware overhead
of the methodology. Our first remark relates the hardware4

required to implement a random boolean function withn
input bits and one “fully-specified” output bit vs. the hard-
ware required to implement a random function withn input
bits and one “a-specified” output bit. We start with the fol-
lowing definition:

Definition 1 An a-specified output bit has at leastda2ne
don’t cares(a ∈ [0, 1]). The positions of thedon’t caresare
fixeda priori.

A fully-specified output bit is equivalent to a0-specified
output bit.

Remark 2 Almost all boolean functionsf : {0, 1}n →
{0, 1} require at least

1. 2n/n gates, if the output bit is fully-specified.

2. (1− a)2n/n gates, if the output bit isa-specified.

Proof (Sketch):The first statement is Shannon’s counting
argument [10]. For the second statement, we observe that
the number of different functionsf : {0, 1}n → {0, 1}with
da2ne don’t caresis 2d(1−a)2ne. Thus, the same counting
argument proves our statement.

We emphasize that for our statement to hold the positions
of thedon’t caresare pre-specified.

�
4We assume that all functions are implemented as multi-level circuits

using 2-input gates.

Our second remark relates the hardware required to im-
plement one fully-specified bit with the hardware required
to implementk fully specified bits whenk is a small con-
stant (k << 2n) and the bits areuncorrelated.

Remark 3 Almost all boolean functionsf : {0, 1}n →
{0, 1}k require at leastk2n/n gatesif thek output bits are
uncorrelated and fully specified.

Proof (Sketch):Again, we observe that the number of func-

tionsf : {0, 1}n → {0, 1}k is
(

22n)k
= 22kn

. Thus, Shan-
non’s counting argument proves our statement.

�
The NEXT STATE LOGIC of our FSM is a combina-

tional circuit with n + k inputs andk outputs (the next
state). Our technique generates a set of test vectors for the
NEXT STATE LOGIC, which can be viewed as a function
f : {0, 1}n+k → {0, 1}k. Assume for the moment that
thek output bits are uncorrelated and the cardinality of the
test vector set isa2n+k. Then, using remark 3, the hard-
ware required forPISV would be1/k times the hardware
required for theNEXT STATE LOGIC. Similarly, the hard-
ware required forPNS would be(1−a) times the hardware
required for theNEXT STATE LOGIC. Thus, theminimum
hardware required forPNS would be(1−a+1/k) times the
minimumhardware required for theNEXT STATE LOGIC.
Depending ona andk, the hardware overhead of our tech-
nique might be significantly smaller than duplication.

In practice, thek state bits representing the next state
are correlated (otherwise some states of our FSM would not
be reachable). It is not clear though that as the state bits
become more and more correlated the size ofPNS overA
increases; one could expect the size ofPNS to decrease as
correlation increases. On the other hand, it seems natural
that the size ofPISV overA would increase. We also note
that we can only examine how thelower boundof the size of
P is diminishing; indeed, tight bounds for circuit sizes are
notoriously hard to prove even under stringent assumptions.
Finally, PNS andPISV are not implemented separately; in-
deed, in order to minimize the cost ofP we try to maximize
their sharing. Thus, we expect the cost ofP to be less than
the sum of the individual costs ofPNS andPISV .

Although it is essentially impossible to predict the la-
tency of our technique, we would like to stress that, assum-
ing random inputs, our technique checks for faults in a clock
cycle with probabilitya. In our experiments, typical values
for a range from 0.4-0.5; practically, half of the2n+k pos-
sible vectors are test vectors! This empirical observation
can also be justified using results of [11]. Thus, we are
checking in almost every other clock cycle. Also, we may
reasonably assume that most “stuck-at” faults are detected
by many test vectors. Thus, we expect the latency of our
scheme to be very small on average; in Section 3.3 we see
that this prediction is experimentally justified.

3. Experiments

In an effort to assess experimentally the proposed
methodology, we compare it to the traditional duplication
scheme in terms of area overhead, fault coverage, and fault
detection latency. The experimental setup, comprising tools
and FSMs employed for this purpose, is described in this
section, followed by a presentation and discussion of the
obtained results.

3.1. Setup

The experimental setup employed is shown in Figure 2.
For the purpose of preserving generality, the experiments
are applied on random FSMs, generated using MATLAB
[12]. The characteristics of these FSMs are described in the
following subsection. Subsequently, these FSMs are syn-
thesized and optimized using theruggedscript of the SIS
system [13], mapped to a standard cell library, and con-
verted to ISCAS89 [14] format. This step serves only as
a standard method to provide us with the actual implemen-
tation of the FSMs and no assumptions as to how the FSMs
are encoded and optimized are made. Since the proposed
methodology is non-intrusive, the hardware implementation
of the FSMs is our starting point.

Given the implementation of an FSM, the combinational
next state logic is extracted and a combinational ATPG run
is performed on it using ATALANTA [15]. Under the as-
sumption that the next state logic comprises no redundan-
cies, a complete test set achieving 100% fault coverage is
obtained. These vectors, along with an additional function
that indicates whether an input combination is a test vector,
are then synthesized using theruggedscript of the SIS sys-
tem [13], mapped to a standard cell library, and converted to
ISCAS89 [14] format, rendering the hardware implementa-
tion of the prediction logic for the proposed method. Since
the prediction logic is the only difference between the pro-
posed method and duplication, a comparison to the next
state logic of the FSM - which is used for prediction in du-
plication - indicates the hardware savings of the proposed
method. Subsequently, the proposed self-testing FSM is
constructed, and a sequential ATPG run using HITEC [16]
is performed to provide the total number of faults and the
number of testable faults in the circuit. Notice that these
numbers comprise faults both in the original FSM and the
self-testing logic.

As discussed in the previous section, while the proposed
method guarantees, by construction, that all non-redundant
faults in the circuit are testable by the self-testing mech-
anism, the hardware savings over duplication come at the
cost of fault detection latency. Similar to [1], in order to
calculate the average fault detection latency, we generate
sets of random inputs, which we fault simulate twice on the

Random

FSM

Generator

(MATLAB)

Random

FSM

Synthesis (SIS)

& Conversion to

ISCAS89 Format

FSM

Implementation

Extract

Combinational

Next State Logic

Next

State

Logic

ATPG

(ATALANTA)

Complete

Set of Test

Vectors

Synthesis (SIS)

& Conversion to

ISCAS89 Format

Test

Vector

Logic

Construct

Proposed Self-

Testing FSM

Self-Testing

FSM

Implementation

ATPG

(HITEC)

Testable

Faults

Random

Test Vector Set

(HOPE)

Fault-Simulation with

All Outputs Observable

(HOPE)

Fault-Simulation with

only TEST Output

Observable (HOPE)

Fault Detection

Latency Calculation

Average Fault

Detection Latency

List of Undetected

Faults by this Set

Area

Overhead

Comparison

Area

Savings

Proposed Method

Starting Point

Figure 2. Experimental Setup

constructed FSM, the first time observing all outputs (in-
cluding the TEST output) and the second time observing
only the TEST output. For fault simulation we use HOPE
[17], which reports the newly detected faults for each simu-
lated vector. The two fault simulation reports are, then, pro-
cessed and the time step difference between detecting each
fault in the first and second fault simulation is obtained and
averaged over all faults. The result indicates the average
fault detection latency for the simulated random set of vec-
tors. The number of faults that are only detected in the first
fault simulation but not in the second, i.e. faults that the
proposed method did not detect within the limited number
of simulated test vectors, is also reported.

3.2. Random FSMs

We briefly outline the process of generating random
FSMs withK states andn inputs (for notation see Section
2.2). We start by building the “connected component” of
the FSM, to guarantee that there exists a path from some
ROOT node to every state.

Starting from theROOT, we add a random numberr of
children to each state-node;r is picked uniformly at ran-
dom from 0 . . . N and independently for each state-node.
We visit the states-nodes in a breadth-first search order and
we stop when a full tree with allK states is built. We subse-
quently addN − ri edges from state-nodesi to other nodes
in the tree5, whereri is the number of children ofsi. Fi-
nally, we label theK states-nodes using a random permuta-
tion of 1 . . .K; we also label theN out-edges from eachsi

using random permutations of1 . . . N .

5We pick these nodes uniformly at random with replacement.

1 2 3 4 5
65

70

75

80

85

90

95

100

Number of Inputs

A
re

a
O

ve
rh

ea
d

(o
ut

 o
f 1

00
%

)

8 States
16 States
32 States
64 States

Figure 3. Average Area Overhead = 84%

Our objective is to build large and complex FSMs in or-
der to test our technique; one could potentially suggest dif-
ferent strategies for the same task. It is important though to
note that our strategy can generateall possibleFSMs with
K states andn inputs.

3.3. Results

As we mentioned in Section 2.2, our technique guaran-
tees the same fault coverage as duplication does (subject to
the restriction of footnote 2). Thus, our experiments focus
on the hardware overhead and the latency of our scheme.

We ran our experiments on 17 different “types” of FSMs,
namely 17 different(K, n) combinations. We remind that
K denotes the number of states andn the number of in-
put bits. The “types” are (8,1), (8,2), (8,3), (16,1), (16,2),

1 2 3 4 5
82

84

86

88

90

92

94

96

98

100

Number of Inputs

D
et

ec
te

d
F

au
lts

 (
%

)

8 States
16 States
32 States
64 States

Figure 4. The proposed method detected 92.2% of
the faults that appeared in the first 100 cycles.

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Number of Inputs

A
ve

ra
ge

 L
at

en
cy

8 States
16 States
32 States
64 States

Figure 5. The average latency for faults detected in
the first 100 cycles was 4.02 cycles

(16,3), (16,4), (32,1), (32,2), (32,3), (32,4), (32,5), (64,1),
(64,2), (64,3), (64,4), (64,5). We generated 2 FSMs for each
type and we report the average. Figure 3 shows the area
overhead of our technique over duplication. We present 4
curves, for FSMs with 8, 16, 32 and 64 states.

To report results regarding the latency, we examine our
FSMs using 100 random input vectors. Figure 4 shows the
percentage of non-redundant faults that appearedand we
were able to detect using our scheme. Figure 5 shows the
average latency for the faults that we were able to detect.
We should stress that not all possible faults appeared in this
small simulation; our data though indicate that on average
almost84.16% of the faults did appear! The reported la-
tency is the average latency over the detected faults.

We now examine our FSMs using the previous 100 ran-
dom input vectorsand9900 additional random vectors. Fig-
ures 6,7 show the percentage of non-redundant faults that

1 2 3 4 5
97

97.5

98

98.5

99

99.5

100

Number of Inputs

D
et

ec
te

d
F

au
lts

 (
%

)

8 States
16 States
32 States
64 States

Figure 6. The proposed method detected 99.1% of
the faults that appeared in the first 10000 cycles.

1 2 3 4 5
0

20

40

60

80

100

120

140

160

Number of Inputs

A
ve

ra
ge

 L
at

en
cy

8 States
16 States
32 States
64 States

Figure 7. The average latency for faults detected in
the first 10000 cycles was 34.97 cycles

we were able to detect and their average latency. On aver-
age,99.6% of all non-redundant faults appeared!

One can see that the latency of our technique is small,
as predicted in Section 2.2. We will now show that we also
predicted the hardware overhead quite accurately. We re-
mind that we predicted the ratio of our methodology over
duplication to be1− a + 1/k. We remind thata is the ratio
of the2n+k (state, input) combinations that are test vectors.
Tables 1 and 2 show our prediction for the specific values of
a (as generated by our experiments) andk for each FSM.

On average, our prediction and the observed hardware
overhead differ by9.78%. We remind that our prediction
does not take into account the potential sharing between the
PNS andPISV ; thus, the difference might be even smaller.
We believe that the discrepancy is the effect of two factors:
correlation of next state bits (see Section 2.2) and inability
of the tools used to fully optimizePNS in large circuits.

FSM 8,1 8,2 8,3 16,1 16,2 16,3 16,4 32,1 32,2
Test Vectors 12 20.5 35 21 35 58 119 37 67.5

Prediction (%) 108 97 88 91 80 70 71 78 73

Table 1. PREDICTED OVERHEAD

FSM 32,3 32,4 32,5 64,1 64,2 64,3 64,4 64,5
Test Vectors 125 233 481 71.5 125 242 491 959

Prediction (%) 69 66 67 73 65 64 65 63

Table 2. PREDICTED OVERHEAD (cont’d)

4. Conclusions

Cost-efficient design of FSMs with embedded concur-
rent fault detection capability necessitates a careful consid-
eration of the conflicting objectives of low hardware over-
head, low fault detection latency, and high fault coverage.
The corresponding trade-offs become even more stringent
in the presence of design specification constraints requiring
that the original FSM implementation be left intact. Along
these lines, we discussed a test vector logic replication and
optimization methodology for designing FSMs that can be
fully self-tested concurrently with their normal functional-
ity, without paying the cost of duplication and without inter-
fering with the original FSM implementation. Experimental
results demonstrate the ability of the proposed methodology
to reduce the hardware overhead incurred by duplication
schemes by as much as 30%, while preserving the ability
to detect all faults in the circuit, yet at the cost of non-zero
latency. Nevertheless, the experimentally observed average
fault detection latency of the method is very low, ranging
from 4 clock cycles for 92% of the faults to 35 clock cycles
for 99% of the faults.

References

[1] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent
testing technique for digital circuits,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 7, no. 12, pp. 1250–1260, 1988.

[2] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis, “R-
CBIST: An effective RAM-based input vector monitoring
concurrent BIST technique,” inInternational Test Confer-
ence, 1998, pp. 918–925.

[3] N. K. Jha and S.-J. Wang, “Design and synthesis of self-
checking VLSI circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12,
no. 6, pp. 878–887, 1993.

[4] N. A. Touba and E. J. McCluskey, “Logic synthesis of mul-
tilevel circuits with concurrent error detection,”IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 16, no. 7, pp. 783–789, 1997.

[5] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state ma-
chine synthesis with concurrent error detection,” inInterna-
tional Test Conference, 1999, pp. 672–679.

[6] A. Chatterjee and R. K. Roy, “Concurrent error detection
in non-linear digital circuits with applications to adaptive
filters,” in International Conference on Computer Design,
1993, pp. 606–609.

[7] I. Bayraktaroglu and A. Orailoglu, “Low-cost on-line test
for digital filters,” in VLSI Test Symposium, 1999, pp. 446–
451.

[8] Y. Makris, I. Bayraktaroglu, and A. Orailoglu, “Invariance-
based on-line test for RTL controller-datapath circuits,” in
VLSI Test Symposium, 2000, pp. 459–464.

[9] A. Avizienis and J. P. J. Kelly, “Fault tolerance by design
diversity: Concepts and experiments,”IEEE Computer, vol.
17, no. 8, pp. 67–80, 1984.

[10] C. E. Shannon, “The synthesis of two-terminal switching
circuits,” Bell System Technical Journal, vol. 28, pp. 59–98,
1949.

[11] K. Raahemifar and M. Ahmadi, “Novel test generation al-
gorithm for combination circuits,”Journal of Circuits, Sys-
tems, and Computers, vol. 10, pp. 27–65, 2000.

[12] “MATLAB,” Available from
http://www.mathworks.com/ .

[13] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldahna, H. Savoj, P. R. Stephan, R. K. Brayton,
and A. Sangiovanni-Vincentelli, “SIS: a system for sequen-
tial circuit synthesis,” ERL MEMO. No. UCB/ERL M92/41,
EECS UC Berkeley CA 94720, 1992.

[14] “ISCAS’89 benchmark circuits information,” Available
from http://www.cbl.ncsu.edu .

[15] “ATALANTA combinational test generation tool,” Available
from http://www.ee.vt.edu/ha/cadtools .

[16] T. Niermann and J. H. Patel, “HITEC: A test generation
package for sequential circuits,” inEuropean Conference on
Design Automation, 1992, pp. 214–218.

[17] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuits,”IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 15, no. 9, pp. 1048–1058, 1996.

