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Abstract—We present recent developments on post-production
calibration of analog and radio frequency (RF) integrated circuits
(ICs) mainly focusing on on-chip solutions. Specifically, we
summarize the state-of-the-art on both direct and statistical
calibration techniques. The latter typically employ on-die sensors,
which estimate the circuit under test (CUT) performances and
tuning knobs, which along with machine learning-based methods
are capable of calibrating the CUT. Existing sensors, tuning
knobs and machine learning-based implementations are discussed
and their limitations are outlined. Lastly, a fully integrated
new architecture for on-chip calibration of a low-noise amplifier
(LNA) through the use of an analog neural network is introduced.

I. INTRODUCTION

ICs are typically designed to operate within a specific
range of acceptable performances which is dictated by the
application and the standard they need to comply. However,
when deployed in the field, ICs are likely to be impacted
by several factors which either move their performances
outside the accepted range or shift their operating point to
a non-ideal yet acceptable value, thus, resulting in yield loss
and reduced performance, respectively. While environmental
conditions and aging play an important role for this unde-
sired behavior, process variations constitute the fundamental
factor for performance shifts and yield loss. The problem
becomes more serious as technology scales down to the deca-
nanometer regime, wherein process variations become a non-
negligible percentage of the transistor size. Analog/RF ICs
exploit the downscaling of the semiconductor processes to
achieve higher unity gain frequencies, which correspondingly
improves certain device characteristics. However, at the same
time, analog and RF ICs are highly affected by process
variations, which may deteriorate their performances. Typi-
cally, analog/RF designers will follow conservative approaches
in order to achieve moderate rather than extreme (close to
the edge of specifications) circuit performances. However,
such conservative approaches may significantly degrade output
characteristics. Hence, more drastic techniques are needed to
counteract the effect of process variations in analog/RF ICs
and fine tune their operating point in order to improve their
output characteristics and recover yield.

To this end, post production calibration techniques have
been introduced, which can be generally categorized as off-
chip and on-chip. The former are performed during production

test whereas in the latter the calibration mechanism is inte-
grated on-die. Further on, based on whether performances of
the analog/RF IC are measured directly or indirectly via statis-
tically correlating low-cost measurements, i.e. alternate tests
with performances, existing on-chip calibration methods can
be sub-categorized to direct and statistical methods. Statistical
methods employ three entities1 to achieve the desired results:
(a) sensors, which monitor all types of circuit variations, (b)
tuning knobs, which adjust circuit performances, and (c) ma-
chine learning algorithms which build a model given the tuning
knob settings and their corresponding sensor measurements
and accordingly select a tuning knob setting which optimizes
certain performances of the CUT. Sensors are split to intrusive
and non-intrusive depending on whether they are connected to
the CUT. Tuning knobs may be found as ideal power sources
as well as passive and active components. Finally, machine
learning-based algorithms can be categorized into software
solutions and hardware implementations. A taxonomy of post-
production calibration methods is summarized in Figure 1.
The rest of this paper is structured as follows: Section II
presents recent developments on both off-chip and on-chip
post-fabrication calibration and elaborates on direct and sta-
tistical methods. Section III outlines the state-of-the-art on
sensors, tuning knobs as well as implementations of ma-
chine learning blocks. Their characteristics and limitations are
pointed out. Finally, in Section IV, a fully integrated solution
employing an analog neural network for self-test and self-tune
is introduced.

II. OFF- AND ON-CHIP SOLUTIONS

As discussed in [1]–[3], several implementations of cali-
bration methods during production test have been proposed
in the literature. The most lengthy in time is based on
iterative test and tune using external automatic test equipment
(ATE), wherein performance testing is repeated for every knob
setting until all desired performances are reached. A time-
wise improvement of the iterative test and tune method relies
on alternate (low-cost) tests in which multiple performances
are inferred from simple measurements [1]. To further reduce
test time, one-shot approaches can be used [4]. One-shot
calibration methods rely on a set of low-cost measurements

1We note that off-chip solutions may also comprise these three entities [1].
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Fig. 1: Taxonomy of post-production calibration techniques.

obtained for a single setting of the tuning knobs, and employ
statistical learning in order to train models which are used
for selecting a final knob position based on the low-cost
measurements. Yet, the trained model is external to the CUT
as shown in Figure 2(a). Off-chip calibration methods do not
impose significant overhead since the machine-learning block
(if any) is implemented off-chip. However, they experience
certain limitations, since the CUT needs to periodically interact
with off-chip components. On-chip calibration methods on
the other hand, offer an alternative which addresses this
limitation by integrating all required components on the same
die with the CUT [5]–[8], as shown in Figure 2(b). The trained
model can be implemented in software using for example a
digital signal processor (DSP), as depicted in Figure 2(b), or
using a hardware implementation [5]. On-chip integration of
the required hardware imposes a significant area overhead.
However, it not only reduces reliance on expensive ATE but
also facilitates periodic adaptation to operating conditions,
aging, and wear-&-tear [5].

A. Direct Methods

Direct methods typically employ various probe points in
the chip which directly sample the performance of the CUT
[6]. For example in [7], the frequency of a voltage controlled
oscillator (VCO) is measured by a frequency-to-digital con-
verter, whereas its phase noise is estimated by the current
of the VCO’s tail transistor. Accordingly, tuning knobs are
used to compensate for shifts in the VCO’s frequency charac-
teristics. A similar approach, which enables measurement of
the gain and phase mismatch of an RF phased array for in
field calibration, was recently presented in [9]. Using such a
perspective though, a limited number of output characteristics
can be improved. This drawback can be overcome by using
an on-chip optimization engine which facilitates simultaneous
tuning for multiple CUT characteristics. Specifically in [6], a
built-in-self-test (BIST) measures the response of the analog
CUT under excitation in the time or frequency domain and
accordingly the transfer function of the CUT is calculated.
Based on the difference between the estimated and target
transfer function, multiple CUT performances are optimized
using a fully-digitized optimization engine.

B. Statistical Methods

In order to enable a more flexible and adaptable cali-
bration method, statistical techniques, which replace direct

performance measurements with low-cost sensors, have been
recently presented [5]. Machine learning-based techniques are
used to build a correlation model between the indirect low-
cost sensor measurements and the circuit performances and ac-
cordingly to predict the knob position which optimizes perfor-
mance of the CUT solely based on the indirect low-cost mea-
surements [2]. As discussed in [6], statistical methods suffer
from two limitations: (i) limited accuracy between predicted
and actual characteristics and (ii) difficulties in integrating the
statistical model on-chip. However, recent developments have
shown that both limitations can be addressed. In [5] the analog
neural network which provides the required intelligence for
on-die learning achieves a very low power overhead while
simultaneously being able to predict the optimal knob setting
which maximizes the overall CUT performance. Specifically,
out of the 64 CUT (LNA in this case) instances that we
tested, 61 were tuned to the knob setting providing the best
performance, whereas the remaining 3 were tuned to the
setting with the second best performance. Yet, the average
percentile overall performance difference when the second best
setting is chosen is negligible.

III. SENSORS, TUNING KNOBS AND MACHINE-LEARNING
IMPLEMENTATIONS

A. Sensors

Alternate tests can be either based on intrusive sensors, i.e.
sensors which are electrically connected to the CUT or non-
intrusive, transparent sensors, which do not have any electrical
connection to the CUT. Intrusive sensors can be found in the
form of current as well as envelope detectors [10] and peak
detectors [5], which provide a DC output equivalent to the
peak value of the transient signal. On the other hand, non-
intrusive sensors are inspired by the process control monitors,
which are used to monitor technology specific parameters on
a wafer [1] and can have a wide range of implementations
based on the CUT topology. For example, in [11], wherein the
CUT is a three-stage 60GHz LNA, non-intrusive sensors are
chosen as active common-source and cascode configurations
as well as passive structures, such as capacitors, resistors and
micro-strip transmission lines. By placing these non-intrusive
sensors close to CUT, it is likely that the process variations
affecting the CUT will be adequately captured, i.e. the CUT
performances will be strongly correlated to the measurements
of these non-intrusive sensors.

(a) (b)

Fig. 2: Calibration (a) during testing, (b) after deployment [1].
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Fig. 3: Proposed (a) self-test and (b) self-calibration method.

B. Tuning Knobs

Tuning knobs are an integral part of the calibration process
and operate on the design parameters of the IC, e.g., bias
voltages and currents. In [12], tuning knobs are considered
as ideal supply sources. Practical implementations of tuning
knobs have been proposed in the literature, mainly in the form
of tunable MOS capacitors, current sources, transistors with
programmable width, adjustable inductors, bias actuators, and
transmission lines [7], [8], [13]. Reported results verify that
tuning knobs can adjust performances of RF ICs, such as
power amplifiers and LNAs, and recover yield under exces-
sive process variations. Nevertheless, tuning knobs are also
subject to process variations and, thus, their impact on tuning
effectiveness has to be considered. The problem arises when
multiple instances of the knob circuitry are not available during
derivation of the training dataset. In such a case, training is
performed with ideal knob values, i.e. not affected by process
variations whereas testing is performed with real values, i.e.
affected by process variations. To account for such external
knob non-idealities and the corresponding higher calibration
error, the existing knob data can be synthetically enriched by
Monte Carlo simulations to account for the impact of knob
process variations on the performances and alternate tests [14].

C. Machine-Learning Implementations

The intelligence provided by the machine learning algorithm
which is used for selecting the best knob setting is typically
implemented in software, running either on an external com-
puter or on an on-chip DSP [12]. While this implementation
provides accurate results, its power overhead is inherently
high. An alternative solution could be to use an on-chip
digital neural network. However, not only its power and area
overhead would be prohibitive but also additional analog-
to-digital converters (ADC) and digital-to-analog converters
(DAC) would be required to translate the signals between
the analog CUT space and the digital neural network space.
A hardware realization of an on-die analog neural network
implementing a regression function was firstly introduced in
[5], [15]. The analog neural network is trained to predict a
Figure of Merit (FoM) reflecting the overall performance of
the CUT, based on a single set of low-cost alternate tests pro-
vided by on-chip sensors in response to an on-chip generated
stimulus. The intelligent entity (analog neural network) and
CUT (LNA) have been implemented on two different boards,
using 0.35um and 130nm CMOS processes respectively and
interact externally. The results from the two boards show that

the analog neural network is capable of efficiently calibrating
the LNA. Despite the very promising results, this work was
mainly used as a proof of concept since the intelligence entity
and the CUT were implemented on separate chips.

IV. A FULLY INTEGRATED ON-CHIP SOLUTION

To address most of the limitations summarized in the
previous Sections and verify the proof-of-concept presented
in [5], [15], we introduce a statistical method for self-test and
self-calibration, wherein the intelligent entity is integrated on
the same chip with the CUT.

As depicted in Figure 3, the proposed self-test and self-
calibration method requires the integration of measurement
sensors, a stimulus generator, and an on-die learning machine
alongside the CUT. During self-test/tune, the stimulus gen-
erator is connected to the CUT, and outputs a set of test
signals to initiate the test/tune process. A set of sensors capture
the responses of the CUT to the applied test signals, and
passes them to the learning machine entity which will perform
the desired actions. For self-test, the process is described
in Figure 3(a). The on-die learning machine is trained to
perform the task of classification by using the output of
measurement sensors. Essentially, the learning entity will make
a pass/fail decision based on the responses of the CUT to
the test signals produced by a stimulus generator. As depicted
in Figure 3(b), for self-calibration along with tuning knobs,
whose various settings are capable of varying the performances
of the circuit, permanent storage for their selected values,
is also included. In addition, an on-die learning machine,
implementing a regression function which will be trained to
predict the value of an optimization criterion, based on the
values produced by the sensors in response to the generated
stimulus, is required. Additional simple logic for controlling
the self-calibration process, as well as selecting the optimal
knob position based on the predicted optimization criterion
completes the proposed architecture.

The knob tuning process is shown in Figure 4. It starts
with the self-calibration control logic activating the stimulus
generator and the measurement sensors, in order to collect
the required alternate tests. We emphasize that, in line with
the previously proposed one-shot calibration methods [4],
only one set of alternate tests is required for predicting the
optimization criterion for all positions of the knobs. Once

Fig. 4: Knob tuning process.
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Fig. 5: Layout of fabricated die.

the alternate tests are collected, the self-calibration control
logic cycles through all possible knob settings, one at a
time. Each knob setting is provided along with the saved
alternate tests to the trained on-die learning machine, which
predicts the corresponding value of the performance criterion.
A comparator is then used to evaluate whether this value
is better than the best value seen so far during the tuning
process. In case it is, it replaces the stored best value and the
corresponding best knob setting seen so far is also updated.
Otherwise, the controller proceeds to the next knob setting
and the process repeats until all knob settings have been
considered. At the end of this process, the best knob setting
is used to calibrate the tunable circuit.

Training of the on-die learning machine is performed sim-
ilarly to [5], i.e. a training dataset is produced based on
measurements from multiple CUT instances, for all possible
knob positions and for all desired performances along with the
corresponding sensor measurements. We emphasize that along
with self-test and self-calibration, the proposed architecture
can be reused for on-line test, collecting diagnostics, etc.

The proposed architecture includes a tunable LNA, both
intrusive (peak detector) and non-intrusive (simple transistors)
sensors, a VCO, which serves as an on-die stimulus generator,
three low-dropout regulators (LDOs) [14], which act as the
tuning knobs biasing the LNA, five unity-gain high precision
sample and hold (S/H) circuits, and a custom-designed analog
neural network (NN core).The neural network peripheral cir-
cuits that provide support for fast programming and interfacing
with the external world, i.e. a differential transconductor
(GM), a current-to-voltage converter (ITOV), and a digitally
controlled current source (IDAC) are also integrated on-die.
The NN core operates below threshold, achieving sub-µW
power consumption and incorporates floating gate transistors
for long-term retention of the learned functionality.

The chip layout is shown in Figure 5, highlighting all the
components previously described. It is fabricated in a 130nm
CMOS process, and occupies an area of 6mm2.

V. CONCLUSION

We summarized the recent developments on post-production
calibration methods for analog/RF ICs and provided a taxon-

omy of the available solutions. Toward addressing most of the
shortcomings of the available solutions we introduced a fully
integrated mechanism for self-tune and self-calibration of a
LNA. The mechanism employs a low-power reconfigurable
analog neural network fabricated in 130nm CMOS, which
along with tuning knobs and low-cost sensors is capable of
optimizing the overall performance of the LNA in the field.
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