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Concurrent Detection of Erroneous Responses
in Linear Analog Circuits

Haralampos-G. D. Stratigopoulos, Student Member, IEEE, and Yiorgos Makris, Member IEEE

Abstract—This paper presents a novel methodology for concur-
rent error detection in linear analog circuits. The error-detection
circuit monitors the input and some observable internal nodes
of the examined circuit and generates an estimate of its output.
The estimate coincides with the output in error-free operation,
while in the presence of errors, it diverges. Thus, concurrent error
detection is performed by comparing the two signals through an
analog comparator. In essence, the error-detection circuit operates
as a duplicate of the examined circuit, yet it is smaller, in general,
and never exceeds the size of an actual duplicate. The proposed
methodology is demonstrated on three analog filters.

Index Terms—Analog test, concurrent error detection, linear
analog circuits, state observation.

I. INTRODUCTION

NALOG test solutions are essential to the success of mod-

ern systems that comprise analog interfaces [1]. While
off-line test methods are capable of detecting manufacturing
faults, wear-and-tear faults and transient errors require addi-
tional care. In high-safety applications, a circuit should monitor
itself and report potential deviations from its correct function-
ality through a concurrent-error-detection mechanism. Concur-
rent error detection is achieved by continuously examining
whether an inherent or imposed invariant property of the circuit
is satisfied. This property should reflect valuable information
regarding the operational health of the circuit and, ideally,
should deviate from its nominal state if and only if an error
occurs in the response of the circuit. The objective of concurrent
error detection in analog circuits is to examine whether the
invariant signal remains within a predefined band around its
nominal value and to indicate any deviation that is unacceptably
large.

The invariant is realized and concurrently checked by addi-
tional on-chip circuitry. The main challenges in designing such
circuitry are related to the retrieval and processing of infor-
mation to generate the invariant. In particular, retrieving and
processing are steps that should be performed continuously and
in parallel with the normal operation of the monitored circuit,
without interrupting or degrading its performance. Continuous
processing implies that the error-detection circuit must respond
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accurately to all realistic input signals at the speed of operation.
The various signals that are combined to construct the invariant
should be synchronized in order to avoid inadvertent viola-
tion due to phase lags. The error-detection circuit should also
translate the invariant into a test criterion that can be evaluated
concurrently. In order to optimize error detection, this test
criterion should reflect the compliance of the circuit response
to its performance parameters. Otherwise, the probability of
false alarms would become nonnegligible. Last but not least, an
efficient concurrent-error-detection method should result in an
error-detection circuit of smaller size than the monitored circuit.
Otherwise, duplication would be a more palatable choice.

In this paper, we present a novel concurrent-error-detection
method for linear analog circuits that meets the aforementioned
objectives. After discussing related work in Section II, we
provide a conceptual overview of the proposed method in
Section III. The mathematical foundation and the imple-
mentation details of the proposed method are presented in
Sections IV-IX. Finally, in Section X, we provide experimental
results on three example circuits that validate the theory and
demonstrate the practical viability of our method.

II. RELATED WORK

A comprehensive overview of previously proposed method-
ologies for concurrent error detection in analog circuits can be
found in [2]. This topic has attracted increased interest recently,
particularly for the class of linear circuits.

The simplest way to perform concurrent testing is to dupli-
cate the system and compare the outputs of the two replicas
while they are driven by a common input. The authors in [3]
propose a strategy that avoids full replication of the system,
provided that some modularity exists. In particular, a universal
biquadratic section, which is able to mimic any of the filter
types, is successively programmed to match the function of
every filter stage.

In [4], the time-invariant matrices of the state-variable equa-
tions are encoded into a single continuous checksum as coef-
ficients of observable signals and their derivatives. The error
signal is then generated by a cascade of voltage-summing
configurations and integrators. An extension of this work is
presented in [5], where the authors derive an optimal design
of the error-detection circuit that minimizes the number of false
alarms under specific fault assumptions. The optimization prob-
lem consists of finding appropriate values for the elements of
the coding vector. Another algorithm, presented in [6], finds the
coding vector that realizes the optimal error-detection circuit in
terms of hardware overhead.
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The idea discussed in [4] is also applicable to linear digital
state-variable systems with appropriate modifications [7]. An
extension of this work is presented in [8], where the state
space is expanded by embedding the original system into a
larger redundant one. It is shown how to select the redundant
dynamics and the coding matrix that allow tracking of error
propagation during the operation of the system and, thus, enable
nonconcurrent detection of errors.

In [9], the authors take k successive derivatives of the output
state-space expression and combine the k£ equations in a matrix
form. k is chosen such that the coefficient matrix that multiplies
the state-variable vector is nonsingular. The combined equation
is multiplied by a vector that projects the coefficient matrix to
0. This eliminates the state variables and results in a residual of
inputs, outputs, and their derivatives up to the order necessary
to generate a nonsingular coefficient matrix. An error-detection
circuit computes this residual and generates a fault-indicating
signal whenever it deviates from 0.

In [10], the system is represented in its state-space form
by eliminating redundant node voltages. Subsequently, state
variables are judiciously deleted from the system of state equa-
tions, ensuring that all circuit components are represented in the
reduced system. The final set of equations is composed into an
invariant signal. If k states are deleted and n is the order of the
original circuit, then the order of the circuit that monitors the
invariant signal is n + k.

III. METHODOLOGY OVERVIEW

The general framework of the proposed method is depicted
in Fig. 1. Given a linear analog circuit, we construct an error-
detection circuit that monitors its operation and asserts an
output indication whenever an error occurs. The error-detection
circuit consists of an estimator and an analog checker. The
estimator is a linear dynamic circuit that monitors the inputs
and a select set of observable nodes and estimates the output.
In error-free operation, the estimate § converges exponentially
to the output g with a time constant that can be controlled
to be arbitrarily small. Once convergence is accomplished,
the difference g — g remains invariably 0. If an error occurs,
g diverges from ¢ and, thus, this invariant is violated. The
analog checker is used to compare g to g and generate an error
indication whenever their difference is unacceptably large. The
key points of the proposed methodology and the corresponding
sections where they are discussed are outlined below.

1) The estimator is designed based on a formal method
for estimating nonobservable state variables of a linear
dynamic circuit. Therefore, in the error-free case, g and
g converge by construction. The corresponding theory
and a theorem proving that convergence can be made
arbitrarily fast are provided in Section IV. Appropri-
ate realization of the output estimate g is discussed in
Section V.

2) Divergence in the presence of an error occurs because,
despite sharing the observable nodes, the circuits com-
puting the two signals are fundamentally different and,
thus, are affected distinctly by the error. In Section VI,
we discuss the ability of the estimator to reflect errors
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Yyvyy Y

Error
Indication

Checker

Estimator

.

Error Detection Gircuit

Fig. 1. Signal flow in the proposed concurrent-error-detection method.

affecting any circuit component. Moreover, the estimator
and the analog checker indicate their own faults or retain
the ability to process the retrieved information correctly.
Thus, in Section VII, we conclude that the system is
totally self-checking (TSC).

3) The order of the estimator equals at most the number of
node voltages that need to be estimated. Thus, the estima-
tor is less complex than a duplicate of the circuit, which
generally implies that it occupies less area. In essence, the
estimator duplicates the response of the monitored circuit,
but it is smaller since it shares information available in its
observable nodes. Estimator-size issues are discussed in
Section VIIIL.

4) In order to provide an error indication whenever the
invariant is violated, the output and its estimate are
continuously compared through the analog checker. The
checker establishes a threshold within which the two
analog signals are deemed equal. Checker design issues
are discussed in Section IX.

IV. ESTIMATING NONOBSERVABLE STATE VARIABLES

A linear time-invariant analog circuit has the following state-
variable representation:

T = Az + Bu
g=Cz+ Du (D)

where u is the m x 1 input vector, x is the n x 1 state-variable
vector, g is the £ x 1 output vector and A, B, C, and D are real-
valued matrices of appropriate dimensions. Suppose that p state
variables are observable, namely, we can monitor their value
without affecting the normal operation of the circuit. Let x,, and
x5 denote the p x 1 observable and (n — p) x 1 nonobservable
parts of x. x, and z are linked with a p X n transformation
matrix Y that has rank p

o =Y. (2
Let P~ be
Y
=l ®

where P, is an (n — p) X n matrix that has Boolean elements
subject to the requirements that P is indeed invertible. We
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rearrange the state-variable vector x by applying the transfor-
mation P~!, such that the first p elements of the new vector 2’
correspond to the p observable state variables

¢ = [%‘] — Pz (4)
o

The first equation in (1) can now be written as
i =Fz' + Gu (5)

where F = P~1AP and G = P! B. Equation (2) can also be
written as
To =Y P2’
= [Ip 0p X(n*p)} @', (©)

The partitioned form of (5) is

To Fy1 Fio Lo Gy
. = + U. 7
[ﬂ%} [Fm FzJ [xﬁ} [G2 @
In the following, we show how to generate an asymptotic es-
timate of the n — p state variables g through a linear dynamic
system that monitors u and z, [11]. Our aim is to define a linear
observer of the general form
iy =Hx, + Kzo +Tu
W =2y + Nz (8)
in such a way that along any trajectory of the combined linear

system (5)—(8), W converges to the nonobservable part x5 in the
limit t — oo

lim (@ — xzg) = 0. )

t—o0

For this purpose, we define the error difference

€g = Tg — . (10)

For % to asymptotically estimate xg, it is therefore adequate
to ensure that eg converges to 0 as t — oo. Using (7) and (8)
and after some simple algebraic manipulations, we obtain the
following error differential equation:

ég == He/g (1 1)
provided that the conditions below are satisfied
H =Fy — NFyy
K=Fy —NF;1+HN
I'=Gy — NG;. (12)
The solution of (11) can be written as

eg(t) = @H(t70)65(0) (13)

where @ (t,0) = eft is the transition matrix of H. Hence, if
we choose an exponentially stable! matrix H, then eg (t) — 0,
t — oo. Note that in this case, the linear system (8) that pro-
duces the estimate is stable itself.

Using the Jordan normal form of H, it can be shown that
H is exponentially stable if and only if all its eigenvalues have
negative real parts [11]. Moreover, the dominant time constant
of the exponential decay |let|| — 01is 1/),,, where \,, is the
largest eigenvalue of H. The following theorem states that the
convergence can be made arbitrarily fast if the time-invariant
linear state system (5) and (6) is observable.> The proof is
outlined in the Appendix.

Theorem 1: Suppose that the linear state system (5) and (6) is
observable. Given any (n — p)-degree monic polynomial g(\),
there exists gain H such that the reduced-dimension observer
defined by (8) has an error state (11) with characteristic poly-
nomial g(\).

V. ESTIMATING THE OUTPUT

In the previous section, we showed how to obtain an estimate
w = &3 of the nonobservable part g of x. In this section, we
proceed in explaining how this theory can be used to produce an
estimate g of the actual output vector g. Note that if the output
itself is a state variable, then it is treated as nonobservable in
order to produce its estimate.
According to (1), an estimate of g is given by
§g=CcZ+ D.u (14)
where  is an estimate of the state-variable vector, C, = C,
and D, = D. The proposed concurrent-error-detection method
relies in realizing the above expression of § with additional
hardware. The resulting circuit is referred to as the estimator. In
order to realize an estimate of g, it is required to estimate all the
nonobservable state variables that appear in the expression C..z.
The linear system that describes the estimator can be derived by
setting W = £ 3 and combining (8) and (14)

iy =Hxy+ Kzo +Tu

G =(CeP)gry+[(CeP)a+(CeP)gN]zq + Deu  (15)
where (C.P), and (C.P)g contain the first p and last n — p
columns of C¢ P, respectively.

'A matrix H is exponentially stable if there exist positive constants z and A
such that:

lleft|| < pe=™  ve>o.

2The n-dimensional time-invariant system (5) and (6) is observable if and
only if

YP
YPA
rank

Il
s

Yy PAn-1

Other equivalent definitions may also be listed [11]; for example, one may
consider the eigenvalue test given in the Appendix.
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VI. ERROR DETECTION

In the absence of permanent faults or transient errors, the
difference g — g converges exponentially to 0

SMCP[ _OM] — 0, t — oo. (16)
e

In the following, we show that the difference g — ¢ diverges
from 0 if a fault is present either in the circuit or in the estimator,
or if a transient error occurs. First, we discuss the case of
permanent faults.

Possible component variations in the circuit appear as addi-
tive perturbations in the elements of the time-invariant matrices
in (1). We group these perturbations in the difference matrices
AA, AB, AC, and AD. Dropping squares of difference ma-
trices and for a sufficiently large tg, such that ®x(¢,0) ~ 0,
Vit > tg, it can be shown that, for ¢t > ¢, the difference g — §
under process variations becomes

t
g- g=cwﬁ/6H NQidr + T a7
0

where
Q=[-N IIP'[AA AB]
T=[AC AD]
and
fo) =l "

Similarly, let AH, AK, AN, AT, AC,, and AD, denote the
discrepancies in the matrices that correspond to the estimator.
Then, (17) can be rewritten to include process variations within
the estimator as

t
g— @:CP5/QMMHtﬂQﬂ)W+Tﬂﬂ+U
’ (18)

where

—(CP)s | ®pian(t,7)Q f*(r)dr

o—_ .

+T'f(r) + ®usan(t,0)es(0)
Q = [AN Ompjun-p AK—HN) AH AT
—[AC, AD,]

and

f;‘(T)z[P’lzt Pz )T

From the expression of (), it can be seen that if N has
nonzero columns, then all component deviations in the circuit
and the estimator are represented in the expression of g — g.
Therefore, the circuit-estimator scheme has the capability to
indicate its own faults through a nonzero g — g.

Special attention must be paid in the case where the circuit
under test can be partitioned in a cascade of stages. In particular,
if the input of a stage is included in the observable part x,, of
x, then all information processed from previous stages will be
redundant and, thus, will be canceled out in the construction
of g. As a result, component deviations in previous stages will
not be represented in the difference g — §g. A remedy to this
problem is to avoid including the connection nodes between
stages in the set of observable states or to apply the method
separately for each stage.

With regards to transient errors, we can only give a
qualitative argument. Such errors inject a charge on a node
that temporarily alters the response of the circuit. If the output
is affected, then at least one state variable that contributes
to the construction of ¢ is also affected. Therefore, there is
an inconsistency in the state variables with respect to the
nominal case. Since the circuit and the estimator are inherently
different, they process this inconsistency distinctly. In other
words, the estimator is designed to follow the actual output
only in an error-free scenario. When a transient error occurs,
the estimator behavior is uncorrelated. Thus, it is expected that
the difference g — g will deviate from 0.

VII. SELE-CHECKING PROPERTY

Often, there exist components that do not play a role in the
formation of the output response for some inputs. For instance,
a component might be inactive for a specific bandwidth. If its
value deviates when the circuit operates in a frequency within
this particular bandwidth, then the state vector still evolves as in
the nominal case. Thus, the estimator does not “comprehend”
the deviation and the difference g — g remains 0. In terms
of the g — g expression in (17), this behavior is attributed to
the multiplication of ) by the transition matrix of H within the
integral. The transition matrix cancels out process variations
that do not have an impact on the nominal operation. On the
other hand, if a component in the circuit is inactive, then there
must be a respective component in the estimator that is also
inactive. Similarly, any deviations in this component do not
contribute to the formation of g, but instead are nullified by the
multiplication of Q* by ® g4 ap(t,7) within the integral that
appears in the expression of v.

Therefore, the circuit-estimator system is fault secure, that
is, a fault will either be indicated through a nonzero difference
g — g or will not affect g — g at all. Moreover, for every com-
ponent, there exists an input signal that compels the difference
g — ¢ to decisively depend on it. Thus, the system is also self-
testing, that is, for every fault, there exists an input signal that
generates a nonzero g — g. The above two properties make the
circuit-estimator system TSC. More details on these properties
can be found in [12]. In order to ensure the TSC property for the
entire error-detection scheme, we need to ensure that the analog
checker is strongly code disjoint, that is, after the occurrence
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of a fault within the checker, either the checker indicates it or
retains its ability to assess the difference g — ¢ correctly. As
discussed in [13], this is typically done by a periodic off-line
test phase for the checker.

VIII. ESTIMATOR SIZE

The estimator can be realized as an active linear circuit that
monitors the input of the circuit under test and a subset of the
observable internal nodes. In particular, the solution of (15) in
the frequency domain is

§=[(CP)o+(CP)s((sI —H) 'K+ N)] z4

+[©P)s (s1 =)' T+ D] u. (19)

The matrix (sI — H)~! can be written as

_ adj(sI — H)
[—H)y =20
(s —H) |sI — H]
where adj(sI — H) is the adjoint matrix and | - | denotes the

determinant. |sI — H| is an (n — p)-degree polynomial in s.
Thus, the order of the estimator equals, at most, the number of
state variables that are estimated. This is a very useful result
since the upper order of the estimator can be deduced by simple
observation of the circuit. It also indicates the potential of the
proposed method: Usually, observable nodes exist in the inter-
nal stages and, hence, the order of the estimator will be lower
than that of a duplicate of the circuit under test. Lower order
generally implies smaller area overhead and less complexity.
Moreover, in the worst case scenario where none of the internal
nodes is observable and only the input is available, (15) reduces
to (1). In other words, the estimator becomes a duplicate of the
examined circuit. An example for which our method does not
have any advantages over duplication is the Sallen—Key biquad.
In Sections X-A and X-B, we present two examples where it
is sufficient to estimate only one state variable. It is also likely
that some poles of the transfer functions in (19) are canceled by
zeros due to inherent symmetries. In this case, the order of the
estimation circuit is less than n — p. In Section X-C, we present
a third example where five out of eight state variables need to
be observed, yet the order of the resulting estimation circuit is
only three.

As a last remark, since we are interested in an estimator
that occupies minimal area, one should consider observing
even nonobservable states by inserting additional buffers in
the design [14]. The cost efficiency of using such test-point
structures depends on the hardware that can be potentially
saved, as compared to estimating these nonobservable states.

IX. ANALOG-CHECKER CONSIDERATIONS

The proposed concurrent-error-detection method relies on
examining the difference g — g, which ideally is O in the ab-
sence of errors. Yet, due to mismatches and other nonidealities,
the comparison cannot be made exact. Rather, it should reflect
the correlation between the encoded signals. For this pur-
pose, the absolute difference |g — §| is compared to a threshold

TABLE 1
TOTAL RESISTANCE AND CAPACITANCE OF THE CIRCUIT UNDER TEST
AND ITS ESTIMATION CIRCUIT

biquadratic leapfrog butterworth

circ. | estim. || circ. | estim. circ. estim.

R (in KQ2) 85 42 130 47 807.77 | 385.44
C (in nF) 40 20 60 10 63.52 43
# op-amps 3 2 6 3 6 4

Vs > 0 in order to realize a tolerance window within which
the two signals are deemed equal. Vs is chosen so that the
probability of false alarms, both positive and negative, is min-
imized. Its optimal value can be found on the basis of a worst
case tolerance analysis [15], which aims to identify the worst
case parameter sets. V5 depends on both the frequency and the
magnitude of the evaluated signals

Vs =Vs(w, g, 9). (20)

Accurate threshold assignment is a common problem among
existing analog test solutions [16]. Essentially, any threshold
establishes an inherent bias when evaluating a signal pair and,
thus, the probability of false alarms can be minimized but
cannot be eliminated. This happens because V5 accounts for the
probability of nominal process drifts in the circuit under test
and the checker itself. Since the magnitude of these nonideal
effects is not known a priori, the assignment of V; inevitably
introduces a bias towards accepting or rejecting a signal pair.

Analog checkers that have the ability to adjust their threshold
to the input pair magnitude have been presented in [17] and
[18]. These checkers provide better moderation of the bias as
compared to other solutions that implement a constant threshold
[13]. They implement a threshold that is defined as a percentage
of the absolute average value of the input signals, plus a small
constant Vs i, which accounts for nominal offsets

lg + g

‘/:S:ET D)

+ V6 ,min- (2 1 )
The constant €, can be chosen to achieve the highest possible
accuracy in the bandwidth of interest.

X. EXPERIMENTAL RESULTS

In this section, we demonstrate the various points of the
developed concurrent-error-detection methodology on three
linear analog filters, a biquadratic, a leapfrog lowpass, and a
Butterworth bandpass. The circuits are breadboarded to prove
the practical viability of the method. If the initial condition of
the error differential equation (11) is 0, i.e., eg(t = 0) = 0, the
estimate converges to the output value immediately. In order to
impose a nonzero initial condition on the differential equation
and demonstrate the exponential reduction of g — g, we insert
switches at some inputs of the estimation circuit, which we turn
ON at an arbitrarily chosen time ¢,. The experiments illustrate
the following.

1) Estimator area: In all cases, the derived estimator is sim-
pler than a duplicate of the circuit. As shown in Table I,
the reduction in the total resistance and capacitance is, in
most cases, more than 50%.
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Fig. 2. Biquadratic filter.

2) Error-free case: In error-free operation, the estimate con- Xy
verges exponentially to the output value. Since the input 20K “
space is infinite, we illustrate this convergence for arbi- 4, 1K
trarily chosen inputs. 20k 10n

3) Faulty conditions: The estimate fails to converge to the ~ 1|0||1 —|
output value in the presence of errors. We present mea- . 11 - g
surements in the presence of faults in the monitored +
circuit and the estimator as well as a measurement that —
shows the response to a transient error. =

4) Convergence speed: Regarding the biquadratic and the Fig. 3. Estimation circuit for the biquadratic filter.

leapfrog filters, a single state variable needs to be esti-
mated. Hence, H reduces to a scalar, which equals the
inverse of the time constant of the exponential decay.
Regarding the bandpass filter, five state variables need
to be estimated. Hence, the dominant time constant is
the inverse of the largest eigenvalue of H. In order to
illustrate the impact of H on the rate of convergence, we
choose the largest eigenvalue of H in the third example
to be largely different than the scalar H in the first two
examples.

We emphasize that the proposed method does not rely on
a prescribed fault model. Rather, it detects any malfunction
that leads to an unacceptably large discrepancy between the
circuit output and the estimate. The magnitude of the detection
threshold depends on the specific application and data collected
from the manufacturing process.

A. Biquadratic Filter

A Biquadratic filter is shown in Fig. 2. This circuit has
two state variables. The state-variable equation can be formu-
lated as

1 1 _1
CR CR CR

xr = [ 1 x + ] U
-5 O 0

where z = [z1  22]T, R = 10k, and C = 0.02 uF. All state
variables are observable. The lowpass output can be expressed
as g=Cx =[0 1]z = 3. Therefore, the problem reduces
to estimation of xo by monitoring x; and w. The reduced-

size state-variable vector is 2, = [1 0]z and, thus, the trans-
formation matrix P! is simply the identity. This yields

0
6=
5000

Hence, the necessary conditions for the output of the observer
in (8) to exponentially converge to x5 are

[—5000 5000}
| =5000 —100]"

H = —5000N <0
K = —5000 + 5000N + HN
I' = —5000N.

Choosing N = 1yields H = K =T' = —5000. From (19), we
obtain the following estimate:

s 5000
xr1 — u.
s+ 5000 s+ 5000

g:

This function can be implemented by the active circuit shown
in Fig. 3. The estimator is activated at ¢ = t,, so that eg(t =
to) # 0. Fort < t,, its input u is disconnected from the input of
the biquadratic filter and, thus, the estimate is not constructed
properly. Fig. 4 illustrates the exponential convergence in the
fault-free case for a square-wave input signal at a low frequency
of the passband. The measurement is repeated for a faulty value
of 15 nF for the capacitor C;. The result is shown in Fig. 5.
Due to this fault, the estimate never converges to the output
of the circuit. Fig. 6, illustrates the exponential convergence
for an arbitrary aperiodic input signal u. The measurement
is repeated in Fig. 7 for Ry = 15 k). Due to this fault, the
estimate diverges.
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Y:200 p/ X:1.00 m/ 1

Fig. 4. Estimation converges in the absence of faults.

Y:200 %/ X:1.00 7/ — 1

Fig. 5. Estimation fails to converge in the case of a faulty value of 15 nF for the capacitor C1.

Y:1.00 v/ X:500 %/ ~t

Fig. 6. Estimation converges in the absence of faults.



STRATIGOPOULOS AND MAKRIS: CONCURRENT DETECTION OF ERRONEOUS RESPONSES IN LINEAR ANALOG CIRCUITS

Y:1.00 v/ X:500 £/

Fig. 8.

Leapfrog lowpass filter.
B. Leapfrog Lowpass Filter

The second example is a leapfrog lowpass filter, shown in
Fig. 8. There are six state variables, one of which is the out-

put itself, g = xg. Moreover, note that zo = —x7 —x4 and
x5 = —m4. Hence, if we choose z = [z; 73 x4 x6]7T, the
state-variable equation is
1 1
— — L 1
RCy RCy 0 0 ~RC,
: - Rlc 0 Rlc 0 0
xr = 2 1 2 1 x + 0 U
0 T RC, 0 " RCy
0 0 _1 1 0
RC, RC,

where R =10 k2, C7; =10 nF, and Cy = 20 nF. We will
estimate g by monitoring x1, x3, x4, and u. Hence, the reduced-
size state-variable vector is specified as

1 0 0 0
To=1(0 1 0 0] x.
00 1 0

Again, the transformation matrix P! is the identity. Thus,

—104 —104 0 0
Fo —5-.103 0 5-10° 0
- 0 —5-103 0 —5-103
0 0 104 10*
—10*
0
G = 0
0

If we denote by N,, ¢ = 1,2, 3, the elements of the 1 x 3 matrix
N, the conditions for exponential convergence become

H=—10* 4+ 5000N;3 < 0

K= N3Ni{—Ny N;—Ny Ng(Ng-i-l) 1—N3 N32_N2
2-10~4 104 2-10~4 104 2-10~4
'=10*N;.

Hence, choosing N3 = 1, N; = Ny = —1, we obtain

H = —5000
K=[0 0 10%
I = —10"

From (19), the estimate for the output is

104
u
s + 5000

10*
X
s 4+ 5000

g =16 = 5— —T1— T3 — Ts.

The estimation circuit is shown in Fig. 9. Fig. 10 illustrates
the convergence for a triangular input wave within the pass-
band, when all components have nominal values. Once again,
we utilize switches that we turn ON at t = ¢, to impose random
initial conditions. Since the value of H in this example is the
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Sl

Fig. 9. Estimation circuit for the leapfrog lowpass filter.

Fig. 10. Estimation converges in the absence of faults.

. —% g
Y:200 #/ X:1.00 ™/ — 1
Y:500 7/ X:1.00 7/ — tO
3 :.|.|.|.|.i.|.|.|.|.:. |.|.E.|.|.|.|.‘__|_

Fig. 11.

same as in the previous one, convergence is achieved with the
same time constant. Fig. 11 shows that the estimate fails to
converge when resistor R; in the estimation circuit takes a
faulty value of 22 k(2. Fig. 12 illustrates the convergence for an
arbitrary aperiodic input u. In this case, convergence is faster
than in the cases shown in Figs. 4, 6, and 10 since the initial
error eg(t = t,) is very small. Fig. 13 shows that the estimate

Estimation fails to converge in the case of a faulty value of 22 k(2 for the resistor R .

fails to converge for this random input when resistor Ry in the
filter takes a faulty value of 15 k).

Fig. 14 illustrates the respective responses in the occurrence
of a transient error. A short pulse is added to the signal of
a randomly selected node at around t, 4+ 4 ms. The invariant
difference g — g becomes temporarily nonzero and decreases
exponentially to 0 again.
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Y:1.00 v/ X:500 %/ ~t

Fig. 12. Estimation converges in the absence of faults.

Y:1.00 v/ X:500 &/ L
; - ; ; .

e e e m bt e ot et R e

Fig. 13. Estimation fails to converge in the case of a faulty value of 15 k2 for the resistor R;.

Y:1.00 v/ X:2.00 m/ 1

Fig. 14. Estimation diverges temporarily in the occurrence of a transient error.

C. Butterworth Bandpass Filter

As a third example, we designed the error-detection circuit to estimate the four nonobservable state variables, x5, x4, 7,
of a Butterworth bandpass filter, shown in Fig. 15. The circuit xg, as well as x4. A step-by-step illustration of the method is
has eight state variables, only four of which are observable. The avoided here because of the large-sized matrices. The largest
output can be written as ¢ = —x4. Hence, in this case, we need  eigenvalue of the chosen H is \,, = —828.65.
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7.96k

\

7.96k

Fig. 15. Butterworth bandpass filter.

The estimation circuit is shown in Fig. 16. The biquadratic
functions are implemented by the single-amplifier general bi-
quad [19]. The convergence in the error-free case for a sinu-
soidal input signal is shown in Fig. 17. Switches are inserted
in the signal paths of both inputs of the estimation circuit
and, thus, for t < t,, its output is 0. In this example, H is
a matrix and, thus, the difference g — ¢ is contained within
an exponential decay, as (13) suggests. As it can be seen,
since A, is larger than the scalar H in the previous examples,
convergence is slower. Finally, Fig. 18 shows that the estimate
fails to converge when resistor R, takes a faulty value of 75 k{2,
causing an error at the output of the circuit.

XI. CONCLUSION

We presented a rigorous concurrent-error-detection method-
ology for linear analog circuits. Our approach relies on estimat-
ing the response of the circuit by means of information available
at observable nodes and comparing the estimate to the circuit
response. The estimate matches the output only in the error-
free case and diverges otherwise. By and large, this approach
results in an error-detection circuit that is smaller than a du-
plicate of the examined circuit. By construction, the invariant
signal spans the entire parameter space of the circuit and is

monitored continuously. Response correctness information is
obtained at the operational speed for any input value and for the
entire frequency spectrum. Hence, concurrent detection of both
transient errors and permanent faults is ensured. The various
points of this method were demonstrated through representative
experiments on three linear analog filters.

APPENDIX

The proof is based on three well-known results in linear
system theory [11], [20], which are stated in Theorems 2—4.

Theorem 2: For every n-dimensional controllable pair
(A, B) and each symmetric set of complex numbers A, there
exist a matrix L such that

spectrum(A + BL) = A.

Theorem 3: A pair (C, A) is observable if and only if for
every complex scalar v the only complex n x 1 vector ¢ that
satisfies

AC=v(, C(=0

is¢=0.
The next theorem follows directly from Theorem 3.
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Fig. 16. Estimation circuit for the Butterworth bandpass filter.

2213k

WA

Y:200 7/ X:1.00 7/ _

Fig. 17. Estimation converges in the absence of faults.

Theorem 4: A pair (C, A) is observable if and only if

=n

k
ran [VI B A]

for every complex scalar v.

This observability test criterion need only be applied for
those values of v that are eigenvalues of A.

We need to prove that there exists H = Foo — NFjo
such that

AL — (Fa2 — NF12)| = q(N). (22)
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Fig. 18.

Equivalently, noticing that (Fyy — NFyo)T = Fih, — FENT,
(22) becomes

M — (Fyy — F5NT) | = q(N). (23)
According to theorem 2, it is adequate to show that the pair
(F35, F15) is controllable. If (Fg, F1) is controllable, then
there exists a matrix /N such that (23) is satisfied. However,
we know that controllability of (FL5, Fih) is equivalent to the

observability of (F12, Fa2). Hence, it is adequate to show that
the (n — p)-dimensional linear state equation

T :Fggl‘

g = F 12T (24)
is observable. Supposing the contrary, a contradiction is ob-
tained as follows. If (24) is not observable, then by Theorem 3,
there exists a nonzero (n —p) x 1 vector ¢ and a complex
scalar v such that

Fyl(=v(, Fi20=0. (25)
Therefore,
Iy Fig | | Opxr Flzc} |:0p><1:|
= = 26
[le FQQH ¢ } [F22C i (20
And
0
(1, 0][ ”“] =0. 27)
¢
The above two equations can be written in matrix form
I, O0|{Opx1|
bl =0 @
Hence,
I, 0
k| ® 2
ran [u[ B F} n (29)

Estimation fails to converge in the case of a faulty value of 75 k(2 for the resistor R1.

By theorem 4, the linear system (5) and (6) is not observable,
which is a contradiction to the observability hypothesis. This
completes the proof.
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