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Abstract—Machine-learning-based test methods for analog/RF
devices have been the subject of intense investigation over the last
decade. However, despite the significant cost benefits that these
methods promise, they have seen a limited success in replacing
the traditional specification testing, mainly due to the incurred
test error which, albeit small, cannot meet industrial standards.
To address this problem, we introduce a neural system that is
trained not only to predict the pass/fail labels of devices based on a
set of low-cost measurements, as aimed by the previous machine-
learning-based test methods, but also to assess the confidence in
this prediction. Devices for which this confidence is insufficient
are then retested through the more expensive specification testing
in order to reach an accurate test decision. Thus, this two-tier
test approach sustains the high accuracy of specification testing
while leveraging the low cost of machine-learning-based testing. In
addition, by varying the desired level of confidence, it enables the
exploration of the tradeoff between test cost and test accuracy and
facilitates the development of cost-effective test plans. We discuss
the structure and the training algorithm of an ontogenic neural
network which is embodied in the neural system in the first tier,
as well as the extraction of appropriate measurements such that
only a small fraction of devices are funneled to the second tier.
The proposed test-error-moderation method is demonstrated on
a switched-capacitor filter and an ultrahigh-frequency receiver
front end.

Index Terms—Alternate testing, analog circuits, circuit testing,
machine learning, RF circuits.

I. INTRODUCTION

THE CURRENT practice for testing analog/RF devices
is specification (or parametric) testing, which involves

direct measurement of the performance parameters (e.g., gain,
integral nonlinearity, noise figure, third-order intercept point,
etc.). While specification testing is highly accurate, it often
incurs a very high cost. Indeed, testing the analog/RF functions
of a mixed-signal integrated circuit (IC) is typically respon-
sible for the majority of the total cost despite the fact that
the vast majority of the IC is digital [1]. In particular, the
base cost per second of automatic test equipment (ATE) esca-
lates rapidly when incorporating mixed-signal and RF features.
Compounding this problem, specification testing involves long
test times. Specifically, during its course, the device is con-
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secutively switched to numerous test configurations, resulting
in long setup and settling times. In each test configuration,
measurements are performed multiple times and averaged in
order to moderate thermal noise and crosstalk. In addition,
this elaborate procedure is repeated under various operational
modes such as temperatures, voltage levels, and output loads.

In recent years, machine learning inspired a new test para-
digm, wherein the results of specification testing are inferred
from a few simple measurements that are rapidly obtained
using an assortment of low-cost test equipment [2]–[20].1 The
idea is to use a training set of device instances, on which
both the specification tests and the low-cost measurements are
performed, in order to derive the underlying mapping. The
rationale is that the training set reflects the statistical mecha-
nisms of the manufacturing process, and therefore, the learned
mapping exhibits good generalization for new device instances
produced by this process.

Despite offering a low-cost alternative to specification test-
ing, the accuracy of machine-learning-based test methods is not
up to par due to the following reasons: 1) When the populations
of nominal and faulty devices are projected in a space of simple
measurements, they may overlap to some extent, unlike the
space of performance parameters, wherein they are cleanly
separated by the design specifications; 2) the finite number
of devices in the training set may result in learning a poor
representation of the actual mapping; and 3) certain methods
[2]–[5] pose restrictions on the order of the mapping; thus, they
reciprocate poorly when the actual mapping is more complex.

The aim of this paper is to bridge the accuracy of specifica-
tion testing and machine-learning-based testing. In particular,
we propose to first test all fabricated devices through the low-
cost machine-learning-based testing, assess the confidence in
the test outcome, and, in case this confidence is deemed insuf-
ficient, retest the device through more expensive specification
testing. To support this two-tier test scheme, we design a neural
system comprising a committee of ontogenic neural networks.
In a training phase, the neural system allocates guard bands2

to partition a measurement space into regions wherein test
decisions can be made with confidence or wherein ambivalence
prevails. Thus, the neural system learns to either infer the results

1Machine learning was first used for fault-diagnosis purposes [21]–[26];
however, this field of application suffers from the lack of representative and
widely accepted analog fault models.

2Guard banding is the practice of adjusting specification limits (pass/fail cri-
teria) to account for uncertainty in the measurement system. In this paper, guard
bands are in the form of decision hypersurfaces allocated in a measurement
space.
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of specification testing or defer a decision that involves risk.
In the latter case, the neural system forwards the device to
specification testing in order to reach an accurate decision.
Overall, with appropriate extraction of measurement spaces, the
number of devices that need to be retested is minimized; thus,
the average test cost per device is lower than the cost of spec-
ification testing. Moreover, by exploring various measurement
spaces and by varying the desired levels of confidence, this two-
tier method enables the exploration of the tradeoff between test
accuracy and test cost, and therefore, it can be used to develop
cost-effective test plans.

The remaining parts of this paper are organized as follows.
In the next section, we review the machine-learning-based test
methods, and we explain their inherent limitations in more
detail. In Section III, we provide an overview of the proposed
two-tier test scheme. In Section IV, we introduce the use of
guard bands to assess the confidence of the machine-learning-
based test decisions. In Section V, we present the topology
of an ontogenic neural network, its training algorithm, and
its utilization for the allocation of effective guard bands. In
Section VI, we show the structure of the complete neural
system. In Section VII, we discuss the extraction of measure-
ment spaces and the subsequent selection of effective subspaces
using a genetic algorithm (GA). Experimental results are pro-
vided in Section VIII, demonstrating the methodology on two
devices—a switched-capacitor filter and an ultrahigh-frequency
(UHF) receiver front end.

II. MACHINE-LEARNING-BASED TESTING

Test methods based on machine learning explore two direc-
tions. In the first direction [9]–[20], the training set is used to
derive the functions that map the pattern of low-cost measure-
ments to the performance parameters of the device. The func-
tions are approximated using multivariate adaptive regression
splines (MARS) [27] or multilayer-perceptron networks [28].
In the second direction [2]–[8], the devices in the training set are
projected in the space of low-cost measurements, and a hyper-
surface is allocated to separate the nominal (An) from the faulty
(Af) region. The hypersurface is used as a decision boundary
for testing a new device: If the footprint of its measurement
pattern falls in An (Af), then it is classified as nominal (faulty).
In essence, this test hypersurface encodes the specification tests
and performs them in parallel.

The scatter plot in Fig. 1 shows the projection of a training
set of devices in a 2-D measurement space x1 − x2. Each data
point represents the measurement pattern (x1, x2) of one device
in the set. Suppose now that a test hypersurface is learned
in x1 − x2, as shown in Fig. 1(a). For the reasons explained
next, and regardless of the machine-learning technique that is
employed to learn the test hypersurface, this test approach is
bound to have a nonzero test error.

First, as shown in Fig. 1(a), there exist areas around the test
hypersurface wherein the distributions of nominal and faulty
devices overlap. Overlapping occurs due to the following: 1)
the intricate correlation between the measurements and the
performance parameters (a closed-form relation does not exist);
2) noise; and 3) drift in the test equipment that is used to

Fig. 1. (a) Test hypersurface and (b) guard-band allocation in a 2-D measure-
ment space x1 − x2 extracted from the response of the switched-capacitor filter
shown in Fig. 6 when it is driven by band-limited white noise.

characterize the devices. Overlapping areas cannot be assigned
with confidence to any of the two classes; thus, new devices
whose pattern falls in such areas are subject to misclassification.
Moreover, it can be observed that there exist areas wherein the
measurement patterns are sparsely distributed. In sparse sub-
spaces, the segments of the hypersurface are randomly shaped
since there is little information to guide the curvature. As a
result, devices whose pattern falls close to the test hypersurface,
in subspaces that were empty during training, are also subject to
misclassification. Sparse subspaces could be a side effect of the
following: 1) a finite-sized training set; 2) a nonrepresentative
training set; or 3) the projection of a finite training set in
a high-dimensional measurement space (this phenomenon is
commonly referred to as curse of dimensionality [28]).

Similar arguments can be made when regression is used to
map the measurement pattern to the performance parameters
of the device. In this case, the overlap of the nominal and
faulty patterns in a measurement space corresponds to a large
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Fig. 2. Flow diagram of the proposed two-tier test scheme.

variance in performance-parameter values for similar measure-
ment patterns, and the sparsely distributed subspace problem is
equivalent to having few samples available for regression.

In extensive simulations with various devices and mea-
surement spaces, the test error (or misclassification) of
hypersurface-based tests has never been reported to be below
2% [2]–[8]. In regression-based tests [9]–[20], the error is
defined in terms of the prediction accuracy of the regression
functions and the correlation coefficients between the measured
and predicted performance-parameter values. The error of the
subsequent classification step, where the predicted values are
compared to the specification limits promised in the data sheet,
is usually omitted. In [20], it is shown by using real data from
a high-performance WLAN 802.11a/b/g radio transceiver that
the test error can be as high as 14% when considering the
predicted value of the chain gain parameter. Regression-based
test methods have the comparative advantage that they provide
a prediction of the individual performance parameters, thus
allowing diagnosis and multibinning.

However, if go/no-go testing, which is essentially a binary
classification problem, is the primary objective, then solving an
intermediate harder problem (i.e., regression) entails a possible
loss of pertinent information available in the training data.
Thus, intuitively, when regression is used as the underlying
learning method, it is expected that the test error will be of at
least similar magnitude to the error of a test hypersurface. A
comparative study to examine the test error when using various
machine-learning methods is outside the scope of this paper.

In short, to date, it has not been possible to identify a low-
cost measurement pattern for any analog/RF device, which,
when processed by even the most powerful learning machines,
results in an acceptable test-error rate for industrial standards.
Thus, additional effort is necessary in order to capitalize on the
low cost of machine-learning-based testing and to make this
approach competitive, in terms of test accuracy, to specification
testing.

III. OVERVIEW OF TWO-TIER TEST SCHEME

In this paper, we propose to locate the ambivalent areas in
the measurement space in order to identify the devices for

which the machine-learning-based test decisions are prone to
error. In particular, we propose to allocate guard bands such
that the measurement space is partitioned into three regions:
two regions of predominantly nominal and faulty devices,
respectively, and a zone interjected in between that contains
a mixed distribution. Fig. 1(b) shows a possible allocation of
guard bands in the measurement space x1 − x2, with the gray-
shaded area representing the guard-banded zone. The nominal
(faulty) guard band has the entire nominal (faulty) population
on one side, i.e., it guards the nominal (faulty) population.

The guard bands facilitate a two-tier test scheme, as shown
in Fig. 2. All fabricated devices go through the first tier, where
the low-cost pattern of measurements is obtained. The position
of the guard bands in the corresponding measurement space
is encoded in the neural system through a training routine,
which is executed prior to the testing phase and only once
for any production run. During the testing phase, the neural
system examines the relative location of the footprint of the
measurement pattern with respect to the guard-banded zone.
If it falls outside the guard-banded zone, then the device is
assigned to the respective class, i.e., the neural system infers the
results of specification testing from the measurement pattern,
with low test error εr. Otherwise, if it falls in the guard-banded
zone, the device is deemed suspect to misclassification, and the
neural system suggests that further action be taken. In this case,
the device is directed to the second tier, where it is retested
through the standard specification testing in order to reach an
accurate decision.

By enlarging the area of the guard-banded zone, the test error
εr of the first tier is reduced at the expense of retesting more
devices. In the two limits, the guard-banded zone contains the
entire device distribution, or the guard bands merge onto the
test hypersurface of Fig. 1(a). Thus, if ε′r denotes the error of
the test hypersurface and Nr denotes the percentage of devices
that go through the second tier, then εr drops from ε′r to zero
as Nr increases. In practice, in a discriminative measurement
space, the guard bands can be allocated such that εr approaches
zero when a small fraction Nr of devices are retested.

Now, let Ci and Ti denote the test cost per second and the
test time of the ith tier, respectively. Let also Cs and Ts denote
the test cost per second and the test time, respectively, when
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the standard specification testing is applied to every fabricated
device. The average test cost per device for the proposed
approach can be modeled as

C = C1 · T1 + C2(Nr) · T2(Nr). (1)

By using a first-order Taylor approximation, C2(Nr) can be
written as

C2(Nr) = C2(Nr = 1) +
dC2(Nr)

dNr

∣∣∣∣
Nr=1

· (Nr − 1)

= Cs + Ch +
dC2(Nr)

dNr

∣∣∣∣
Nr=1

· (Nr − 1)

= Cs + Ch + C∗(Nr) (2)

where Ch is the test cost per second overhead from handlers
that are used to transfer the devices to the tester in the second
tier, and

C∗(Nr) =
dC2(Nr)

dNr

∣∣∣∣
Nr=1

· (Nr − 1) ≤ 0. (3)

The test time of the second tier can be expressed as

T2(Nr) = Nr · Ts

= Nr · (T e
s + Th) (4)

where T e
s is the electrical specification test time, and Th is the

handling time spent to transfer the devices to the tester in the
second tier. Equation (1) now becomes

C = C1 · T1 + Nr · (Cs + Ch + C∗(Nr)) · (T e
s + Th) . (5)

Note that Ch = Th = 0 if the devices do not need to be trans-
ferred to another tester to undergo specification testing.

Therefore, if the inequality

C1 · T1 + Nr · (Ch + C∗(Nr)) · (T e
s + Th)

1 − Nr · T e
s +Th
Ts

< Cs · Ts (6)

holds, then

C < Cs · Ts (7)

which means that the test cost is reduced while maintaining the
accuracy of the specification testing.

As previously hinted, given a measurement space, εr and Nr

can be traded off by varying the area of the guard-banded zone.
Thereby, and through the exploration of various measurement
spaces, a tradeoff curve between εr and C is drawn. This curve
allows test engineers to devise cost-effective test plans that
target different test-quality objectives.

IV. GUARD-BAND ALLOCATION

Guard banding has been mentioned in [11] as also an option
for the regression-based methods. Therein, guard bands are
defined as a percentile deviation from the device-specification
limits, but no experimental data is reported regarding the re-
sulting percentage of retested devices. In addition, within the

Fig. 3. Steps in the guard-band allocation.

context of specification-test compaction [29], guard bands are
allocated by perturbing the entire test hypersurface by a prede-
fined distance, thus creating a guard-banded zone of constant
width. This rigidity of the guard-band allocation method might
inadvertently enclose areas with nonoverlapping populations,
resulting in an unnecessarily large percentage of the retested
devices. Instead, in the proposed method, the guard bands
are viewed as independent decision boundaries and, thus, are
allocated regardless of the position of the test hypersurface.

Each guard band is allocated separately to perfectly classify
all the training patterns of the guarded class and, under this
constraint, to provide an optimum classification for the training
patterns of the opposite class. Without loss of generality, con-
sider the allocation of the nominal guard band, which is shown
on the left-hand side of Fig. 3. First, we draw hyperspheres of
radius Dn centered at nominal training patterns, as shown in
Fig. 3(a). The radius Dn is defined as

Dn =
1

Nn

∑
q∈Cn

min
p∈Cf

‖�xq − �xp‖ (8)

where �xk is the measurement pattern of training instance k, Cn

and Cf denote the nominal and faulty classes, respectively, ‖ · ‖
is the Euclidian norm, and Nn is the number of nominal patterns
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in the training set. Faulty training patterns p are successively
paired with all nominal training patterns q, and if they lie
within distance Dn from the nominal training patterns, i.e., if
the inequality

‖ �xq − �xp ‖< Dn (9)

holds, then they are temporarily excluded from the training
set, as shown in Fig. 3(b). After the faulty training patterns
have been cleared out of the overlapping areas, the ontogenic
neural network described in detail in Section V is employed to
allocate the nominal guard band, which is shown in Fig. 3(b).
The dual procedure, shown in Fig. 3(c) and (d), is followed to
allocate the faulty guard band using a distance Df , which is
defined similarly to Dn in (8). The guard-banded zone is the
area enclosed between the two guard bands, which is gray-
shaded in Fig. 3(e).

V. ONTOGENIC NEURAL NETWORK

The guard bands are, in essence, decision boundaries for
testing new devices. In Section V-A, we refer to previous work
on this topic, pointing out the limitations that motivate our
choice of the ontogenic neural network. Next, in Section V-B,
we present the topology of the ontogenic neural network.
In Section V-C, we discuss its training algorithm, and in
Section V-D, we show a heuristic inductive principle to achieve
optimal generalization.

A. Decision Boundaries for Testing Devices

In the past, decision boundaries have been allocated us-
ing Fisher’s linear discriminants [2], logistic discrimination
analysis [4], linear-perceptron networks [3], [5], feedforward
neural networks with sigmoidal hidden units [6], [7], and
polynomial kernel transformations [8].

In [2]–[5], the problem is decomposed into M two-class
separation problems that are solved individually, where M is
the number of single-ended device specifications. In particular,
as shown in Fig. 4(a), for each single-ended specification µ,
a hyperplane bµ is allocated in the measurement space such
that the maximum possible separation between the nominal and
faulty instances in the training set (with respect to specification
µ) is obtained. In essence, each hyperplane bµ creates two re-
gions An(µ) and Af(µ): Instances that fall into An(µ) (Af(µ))
are classified as nominal (faulty) with respect to specification
µ. Note that this approach assumes single convex decision
regions, which, as discussed in [8], is not always the case. The
overall acceptance region An is then approximated by the union⋃M

µ=1 An(µ), which is bounded by the hyperplane segments.
However, the decision boundaries are, in general, nonlinear
[for example, in Fig. 4(a), the optimal decision boundary is an
ellipsoid], and thus, a crude approximation with hyperplanes
results in an error. Furthermore, there is an additional error
factor resulting from individually optimizing the location of
each of the M decision boundaries. In particular, each decision
boundary is allocated such that it minimizes misclassification
throughout the entire distribution of measurement patterns.

Fig. 4. Projection of instances of a state variable filter with six single-ended
specifications (M = 6) on a 2-D measurement space x3 − x4. (a) Piecewise
linear approximation of the decision boundary. (b) Individual allocation of
decision boundaries induces error.

Thus, it also tries to minimize misclassification in areas that
are distant from the acceptance region, which is interpreted as
mapping the measurement patterns into the proper faulty class.
This, however, is unnecessary, and in addition, it affects the
positioning of the segments of the hyperplanes around which
the unique nominal class is separated from the 2M − 1 faulty
classes. To view this, consider Fig. 4(b), where Fig. 4(a) is
redrawn showing the boundary of the acceptance region and
the measurement patterns distributed across boundaries b5 and
b6 only. It can be seen that there exist boundaries b′5 and b′6
which would yield a better classification with regard to all
specifications. Yet, b5 and b6 are chosen in place of b′5 and b′6
because, with respect to individual specifications, they provide
a better classification throughout the measurement space.

In [8], polynomial hypersurfaces are allocated in the mea-
surement space instead of hyperplanes, but the error resulting
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from the individual allocation is still not addressed. In [6]
and [7], a feedforward neural network is used that can po-
tentially draw decision boundaries of arbitrary order without
the need to decompose the problem. However, the network
topology (i.e., the number of hidden units) that generalizes
well on new device instances is not known a priori and can
only be identified empirically by a trial-and-error procedure that
requires significant computational effort.

As opposed to [6] and [7], the ontogenic neural network
that we chose to use is constructed successively, in a way that
enables it to adaptively acquire the necessary connectivity that
produces a decision boundary of appropriate order.

B. Topology

The neural network is trained using data from a set of
device instances, which is denoted by St. The performance
parameters of each device k ∈ St are measured explicitly in
order to associate it with a status bit tk, where tk = +1 if k
is nominal, i.e., k ∈ Cn, and tk = −1 if k is faulty, i.e., k ∈ Cf .
Each instance k ∈ St is also associated with a d-dimensional
measurement pattern �xk ∈ Rd. The training set (�x1, t1),
(�x2, t2), . . . , (�x|St|, t|St|) is used to optimize the adaptive pa-
rameters of the neural network. The classification error on the
training set is defined as

ESt =
1

|St|
∑
k∈St

hEC
(
�xk

)
(10)

where hEC is the error counting function: hEC(�xk) = 1 if the
pattern �xk is misclassified, and hEC(�xk) = 0 otherwise.

As explained in Section V-A, since the order of the decision
boundary is not known a priori, assuming a fixed network
topology limits the range of feasible boundaries. Instead, the
proposed neural network learns the boundary constructively,
starting with the input layer and dynamically adding layers
(ontogenicity) until it matches the intrinsic complexity of the
problem at hand. A comprehensive discussion on constructive
algorithms for neural networks can be found in [30].

In particular, the proposed neural network is constructed
using the 1-pyramid algorithm [31] that successively places
layers of single neurons above the existing ones. The first
neuron y1 receives inputs from the d measurements. Each suc-
cessive neuron yi receives inputs from the d measurements and
from each neuron below itself. In order for the algorithm to han-
dle the real-valued measurements, each neuron above the first
layer also receives an extra attribute that is the projection of the
d-dimensional measurement vector onto a parabolic surface

xd+1 =
d∑

i=1

x2
i . (11)

Each newly added neuron takes over the role of the output
neuron, and the network growth continues until a satisfactory
solution for the learning problem is found. The complete archi-
tecture of the network is shown in Fig. 5.

The neuron model used herein is an �-input threshold logic
unit, also known as perceptron [28], that computes the thresh-

Fig. 5. Topology of the ontogenic neural network.

old function of the weighted sum of its inputs �vi ∈ R� :
yi(�vi) = −1 for �wT

i �vi < 0 and yi(�vi) = +1 for �wT
i �vi ≥ 0.

�wT
i = [wi0 , wi1 , . . . , wi�

] is the adaptive weight vector, and
the weight wi0 is referred to as the bias. Here, �v1 = �x, �wT

1 =
[w10 , w11 , . . . , w1d

] and �vi = (�x, xd+1, yi−1, . . . , y1), �wT
i =

[wi0 , . . . , wid+1 , wi,yi−1 , . . . , wi,y1 ] for i > 1. Since �vi is a
function of �x, in the following, we use yi(�xk) = yi(�vk

i (�xk))
to denote the output of the neural network at layer i when
the measurement pattern �xk is applied at its inputs. Now, let
yi(�xk) = +1 and yi(�xk) = −1 refer to pass and fail decisions,
respectively, for instance k. Then, we want to select weights
such that �wT

i �vk
i < 0 for all �xk ∈ Cf and �wT

i �vk
i ≥ 0 for all

�xk ∈ Cn.
The perceptron has a simple geometrical representation. It

divides linearly its input space by a hyperplane, which is
composed by the set of solutions to equation �wT

i �vi = 0, such
that its output yi is +1 on one side of the hyperplane and
−1 on the other side. Because of the extra attribute xd+1 in
(11) and the input from the preceding neurons, this hyperplane
translates into a nonlinear hypersurface, denoted by fi, when
it is projected in the original d-dimensional space of measure-
ments. Therefore, nonlinear decision boundaries are formed by
training a sequence of linear perceptrons. This property is very
useful since, as we discuss in Section VII, it allows the use of
this network for a fast evaluation of measurement spaces and
selection of subspaces in an optimization framework.
Theorem 1: Let f be the optimal decision boundary at which

ESt = 0. The aforementioned constructive algorithm produces
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a sequence of decision boundaries {fi} that, in the limit,
converges to f , i.e., limi→∞ ‖f − fi‖ = 0.

Proof: For each pattern �xp, define

εp =
1
2
· min

q 	=p

d∑
i=1

(xp
i − xq

i )
2

k = max
p,q

d∑
i=1

(xp
i − xq

i )
2

> εp.

Suppose that pattern �xp is misclassified at layer (i − 1), i.e.,
yi−1(�xp) = −tp. Then, if we select the following weights

wi0 = tp


k + εp −

d∑
j=1

(
xp

j

)2




wij
= 2tpxp

j , j = 1, . . . , d

wid+1 = − tp

wi,yi−1 = k

wi,yj
= 0, j = i − 2, i − 3, . . . , 1

the net input of the ith neuron is

�wT
i �vp

i = wi0 +
d+1∑
j=1

wij
xp

j +
i−1∑
j=1

wi,yj
yj(�xp)

= tp


k + εp −

d∑
j=1

(
xp

j

)2


 +

d∑
j=1

2tp
(
xp

j

)2

− tp
d∑

j=1

(
xp

j

)2 + kyi−1(�xp)

= tpεp.

Since εp > 0, the pattern �xp is correctly classified by the new
layer i. Consider now any pattern �xq 	= �xp that is correctly
classified at layer (i − 1), i.e., yi−1(�xq) = tq. Then

�wT
i �vq

i =wi0 +
d+1∑
j=1

wij
xq

j +
i−1∑
j=1

wi,yj
yj(�xq)

= tp


k + εp −

d∑
j=1

(
xp

j

)2


 +

d∑
j=1

2tpxp
jx

q
j

− tp
d∑

j=1

(
xq

j

)2 + kyi−1(�xq)

= tp (k + εp − ε′) + ktq

= tq
(

tp

tq
k′ + k

)

where ε′ =
∑d

i=1(x
p
i − xq

i )
2 > εp, and k′ = k + εp − ε′.

Since 0 < k′ < k, the pattern �xp continues to be classified
correctly after the addition of layer i. Therefore, there exist

weights that will reduce ESt whenever a new layer is added
to the network. Since the number of training patterns is
finite, eventual convergence to ESt = 0 is guaranteed. In
the following section, we discuss a training algorithm that
generates such weights. �

C. Training a Layer

The distributions of nominal and faulty training measurement
patterns are separable at layer i if the following condition holds:

(
�wT

i �vk
i

)
tk > 0 ∀k. (12)

In order to reduce ESt at layer i, (12) suggests that we select
a weight vector �wi that minimizes the following error function,
which is known as perceptron criterion:

Eperc(�wi) = −
∑

k∈St:yi(�xk) 	=tk

(
�wT

i �vk
i

)
tk. (13)

Here, the summation is over all patterns in the training set,
which are misclassified by the current weight vector �wi. The
error function is the sum of a number of positive terms and is
equal to zero if all patterns are correctly classified. The search
in the space of weights is performed by applying the thermal
perceptron learning rule [32]

w
(τ+1)
ij

= w
(τ)
ij

+
α

2
�vk

j

(
tk − yi(�xk)

)
e

−|�wT
i

�vk
i |

T (14)

where α > 0. This corresponds to a simple learning procedure:
We cycle through all patterns in the training set and test each
pattern, in turn, using the current set of weight values. If the
pattern �xk is correctly classified, then we proceed to the next;
otherwise, we add α�vk

j e−|�wT
i �vk

i |/T to the current weight vector

if �xk ∈ Cn, or we subtract α�vk
j e−|�wT

i �vk
i |/T if �xk ∈ Cf . This

procedure successively reduces the error in (13) [28].
The exponential tail in (14) controls the correction of weights

based on the location of the misclassified pattern �xk with
respect to the decision boundary. |�wT

i �vk
i | is a measure of this

distance. In turn, the temperature T controls how strongly
the changes are attenuated for large values of |�wT

i �vk
i |. As an

intuition, one can imagine a zone surrounding the decision
boundary. The boundary moves only if an erroneously classified
pattern falls within this zone. The temperature is annealed from
an initial value To to zero, causing a gradual reduction of
the extent of the sensitive zone. In the limit of T → 0, the
zone disappears altogether, and the perceptron is stable, i.e., its
training has been completed. Best results are obtained when α
is reduced at the same time as T is (see [32] for the rationale
supporting this approach).

The thermal learning rule outperforms other known
perceptron-based learning algorithms [33], provided that the
temperature is chosen appropriately. In particular, T should
be of the same order of magnitude as the range of values of
�wT

i �vk
i . We followed the suggestion in [34]. T decreases from

To (initially 1) to zero during 500 cycles through the training
set. Since �wT

i �vk
i might vary considerably for different device
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instances, we calculate the average value of |�wT
i �vk

i | over the
set of device instances 〈|�wT

i �vk
i |〉k over each cycle. At the end

of each cycle, To is set to To = (2To + 2〈|�wT
i �vk

i |〉k)/3. The
temperature T is then set to γTo, where γ (initially 1) decreases
linearly with each cycle to reach zero after 500 cycles. α is set
to 0.1γ.

D. Training the Network

The network-training procedure corresponds to an iterative
reduction of ESt . However, as training progresses and new
layers are added, there comes a point where the network starts
to overfit the training data. This can be observed by examining
the classification error on an independent set of devices, which
at first keeps decreasing and then starts increasing. The ability
of the network to correctly classify previously unseen device
instances, other than those included in St, is called generaliza-
tion. In order to find the effective complexity of the network,
such that it achieves the best possible generalization, we follow
an early stopping inductive principle. More specifically, during
training, the generalization at each layer is monitored on a sec-
ond independent set of device instances (holdout set) denoted
by Sh, and after training is complete, the network is pruned
down to the layer that scores the best generalization. At this
layer, an unbiased estimate of the generalization is computed
on a third independent set of devices (test set) denoted by Ste.
Since, in our case, the decision boundary is used as a guard
band, the generalization is measured on the device instances
belonging to the class that is being guarded. For the nominal
guard band, the generalization error is estimated as

P̂ n
Ste

=
1

|Ste|
∑

k∈Ste
k∈Cn

hEC(�xk)

=
1

|Ste|
∑

k∈Ste
k∈Cn

(
1 − yeff(�xk)

2

)
(15)

where yeff denotes the output of the layer that has scored the
best generalization on Sh during training. The set of devices
in Ste, whose measurement pattern falls in the nominal region,
can be expressed as

Sn
te =

{
k ∈ Ste : yeff

(
�xk

)
= 1

}
. (16)

By analogy, the generalization error for the faulty guard band is
given by

P̂ f
Ste

=
1

|Ste|
∑

k∈Ste
k∈Cf

hEC(�xk)

=
1

|Ste|
∑

k∈Ste
k∈Cf

(
1 + yeff(�xk)

2

)
(17)

and the set of devices in Ste, whose measurement pattern falls
in the faulty region, is

Sf
te =

{
k ∈ Ste : yeff(�xk) = −1

}
. (18)

VI. NEURAL SYSTEM

The neural system in Fig. 2 comprises a committee of two
ontogenic neural networks that allocate the nominal and faulty
guard bands. It requires O(L2 + L · d) computations to exam-
ine the relative position of a measurement pattern with respect
to the guard bands, where L is the number of perceptrons in
the ontogenic neural networks, and d is the dimensionality of
the input measurement pattern. The process time of the neural
system is a very small fraction of the total test time T1 of
the first tier. Estimates of Nr and εr are computed on Ste. In
particular, Nr is equal to the percentage of devices in Ste whose
measurement pattern falls in the guard-banded zone

Nr =

∣∣Sf
te

⋂
Sn

te

∣∣
|Ste|

(19)

and εr is equal to the sum of the generalization errors of the two
guard bands

εr = P̂ f
Ste

+ P̂ n
Ste

. (20)

Evidently, given a measurement space, the aforementioned
tradeoff between εr and Nr can be explored by using distances
λfDf and λnDn to clear the overlapping areas and by varying
λf and λn around one. As we increase λf or λn, Nr increases,
and εr decreases. In particular, for every measurement space,
there exist λf and λn such that εr = 0. More tradeoff points
can be collected by repeating this procedure for various mea-
surement spaces. Note that the neural system is unbiased, i.e.,
εr > 0 corresponds to both test escapes and yield loss. If test-
escape elimination is of higher importance, a larger λf can be
used such that the faulty guard band is pushed deeper into the
nominal region. In this case, the tradeoff is obtained by only
varying λn.

VII. MEASUREMENT-SPACE EXTRACTION

The effectiveness of the two-tier test scheme is measured by
three parameters, namely, the test cost of the first tier (C1 · T1),
the test error of the first tier (εr), and the percentage of devices
that go through the second tier (Nr). These three parameters,
in turn, depend on the choice of the measurement pattern.

In order to guarantee a low test time T1, the measure-
ment pattern should be low dimensional and should be ex-
tracted by switching the device to a minimum number of test
configurations, preferably only one. In order to guarantee a
low test cost per second C1, the measurement pattern should
be extracted using a low-cost assortment of test equipment.
To satisfy this objective for multigigahertz RF devices, it is
necessary to avoid the use of expensive RF testers and to
interface the methodology to the existing mixed-signal test
equipment [35]. For example, in [10] and [19], the authors
apply the concept of modulation and demodulation to translate
a baseband test stimulus to the RF spectrum and to convert the
response back to a baseband signature. In [12], it is proposed to
undersample the RF response using a noise reference and, then,
to obtain the Fourier harmonics in the spectrum. In [13] and
[16], the authors embed sensors (e.g., peak and rms detectors,
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differential-topology sensors, and recursive sensors) into the
RF signal paths to extract dc or low-frequency signals. The
dc and low-frequency signals can also be extracted by adding
design-for-testability structures on-chip (e.g., loopback paths,
offset cancellation digital-to-analog converters implemented
at each low-frequency block output, and additional internal
probes) [20]. A test configuration for time-division multiple-
access RF power amplifiers is proposed in [17], where the
transient-current response to a slow ascending ramp signal is
captured. A test configuration for RF transceivers is proposed in
[18], where the transmitted signal is looped back to the receiver.
The measurement space is extracted from the spectrum at the
output of the receive mixer. In [36], it is proposed to observe the
quiescent current signature when the power supply is ramped in
discrete steps.

Achieving low Nr requires that the measurement space pro-
vides adequate discrimination between the nominal and faulty
distributions such that the ambivalent areas constitute only a
small fraction of it. In contrast, εr depends only on the para-
meters λf and λn and the dimensionality of the measurement
space. In particular, we only need to circumvent the curse of
dimensionality by keeping the ratio of |St| to the dimensionality
of the measurement space high.

Given a test configuration, we initially extract dI measure-
ments, where dI is large in order to increase the probability of
extracting useful measurements. Then, we search in the space of
candidate measurements to select a subspace of dimensionality
d < dI that best meets our objective on the tradeoff curve
εr − Nr. In particular, we can pursue the minimization of
Nr under the constraint εr ≤ δ, δ ∈ [0, ε′r), where εr = ε′r for
Nr = 0. Note that since the training set has a finite size, εr
and Nr can take discrete values k/|St|, where k ∈ N, k ≤ |St|.
The points on the optimal tradeoff curve are largely known as
Pareto-optimal solutions.

Recent comparative studies [37] show that GAs are the most
suitable for large-scale measurement selection problems [38].
GAs start with a base population of chromosomes and generate
successive populations through an intrinsically parallel search
process that mimics the mechanics of natural selection and
genetics [39]. In the search for subsets of measurements, a
subset is encoded in a chromosome as a d-element bit string,
with the ith bit denoting the presence or the absence of the
ith measurement. GAs evolve by the juxtaposition of schemata
(bit templates), resulting in rapid optimization of the target
fitness function. Instead of running a GA many times by using
a fitness function that emphasizes one particular Pareto-optimal
solution for each time, we use a multiobjective GA, called the
NSGA-II [40], in order to find multiple Pareto-optimal so-
lutions in one single simulation run. The NSGA-II uses bi-
nary tournament selection, crossover, and mutation operators
to generate offspring populations. It also includes elitism and
a parameterless diversity-preservation mechanism to ensure a
good spread of the Pareto-optimal solutions.

VIII. EXPERIMENTAL RESULTS

The proposed method is evaluated on a fifth-order elliptic
switched-capacitor filter, which is shown in Fig. 6, using syn-

Fig. 6. Ladder realization of the fifth-order elliptic switched-capacitor filter
[41].

thetic data from simulation analysis and an off-the-shelf RF
device using real data. The studied RF device is a monolithic
integrated UHF receiver front end that contains a low-noise
amplifier (LNA) and a balanced mixer. The course of each
experiment is as follows.

1) We start with a representative set of N device instances.
Each instance k, k = 1, . . . , N , undergoes full specifi-
cation testing in order to associate it with an accurate
nominal or faulty label tk.

2) We select a test configuration, a test stimulus, and an
initial set of dI measurements.

3) We obtain the dI measurements on all instances of N .
4) The dI measurements are normalized in order to avert

skewing of the distance between two measurement pat-
terns in the computation of Df and Dn. Moreover, in
practice, normalization speeds up the training phase of
the neural system. The normalized measurements are
gathered in dI-dimensional vectors �xk, k = 1, . . . , N .

5) The N device instances are divided into training, holdout,
and test sets.

6) The NSGA-II algorithm is run to identify the Pareto-
optimal subspaces of the dI-dimensional measurement
space. The parent population of measurement subspaces
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Fig. 7. Test configuration for the switched-capacitor filter of Fig. 6.

at each generation is 200, and the algorithm terminates
after 100 generations. The crossover and mutation proba-
bilities are set to 0.9 and 1/dI, respectively. Each mea-
surement subspace is evaluated by training the neural
system in order to estimate εr and Nr. The parameters
λf and λn are set to one.

7) After the NSGA-II converges, for every Pareto-optimal
measurement subspace, we retrain the neural system us-
ing different values of λf and λn. We examine all combi-
nations as λf and λn vary from 0.25 to 1.5 at a 0.25 step.
Thus, for every Pareto-optimal measurement subspace,
we obtain an additional set of 36 points (εr and Nr),
which may improve the Pareto-optimal front.

8) We plot the tradeoff curve εr − Nr that connects the
points of the Pareto-optimal front.

The costs Ch and C∗(Nr) in (5) depend on a large number
of factors and may vary widely across the industry. In order to
provide estimates of the average test cost per device, we adopt
a simplified model

C = C1 · T1 + Nr · Cs · (T e
s + Th) (21)

which can be deduced from the general model of (5) by setting
Ch = C∗(Nr) = 0. Note that the aforementioned simplified
model is not necessarily optimistic since C∗(Nr) ≤ 0, and thus,
Ch + C∗(Nr) could attain a negative value for low Nr. On
the contrary, the simplified model is pessimistic if the devices
do not need to be transferred to another tester to undergo
specification testing, in which case Ch = 0.

Next, we describe each of the experiments in detail.

A. Switched-Capacitor Filter

We generated N = 2000 instances of the switched-capacitor
filter by Monte Carlo analysis, letting various design
parameters follow a normal distribution, centered at their nom-
inal values with a 3% standard deviation. The design para-
meters considered include the switched-capacitor values and
the geometry, oxide thickness, threshold voltage, body-effect
coefficient, and junction capacitances of the transistors in the
op-amps. Catastrophic shorts and opens in the MOS switches
are excluded since they generate outlier points in the faulty
distribution and, thus, do not affect the positioning of the guard
bands. N/2 instances are assigned to the training set, whereas
N/4 instances are assigned to each of the holdout and test sets.
The performance parameters considered include the ripples in

Fig. 8. Power spectrum of the unfiltered LFSR bit sequence output [42].

the passband and stopband, gain errors, group delay, phase
response, and total harmonic distortion.

As a test stimulus, we use white noise limited up to a
frequency multiple of the bandwidth of the switched-capacitor
filter [24]. Intuitively, this is a promising stimulus since it
contains infinite tones that can generate persistently exciting
response waveforms. The band-limited white noise can be
digitally synthesized by passing the pseudorandom bit sequence
output of a linear feedback shift register (LFSR) through a
low-pass filter (LPF) [42]. The filtered bit pattern is applied
to the switched-capacitor filter through a driving buffer. The
dI measurements are obtained by digitizing its response at dI

equidistant points. The complete test configuration is shown
in Fig. 7.

The parameters of the test configuration, namely, the clock
frequency of the LFSR fclk, the length of the LFSR m, and the
cutoff frequency of the LPF, can be defined by examining the
power spectrum of the unfiltered LFSR output, which is shown
in Fig. 8. It can be seen that the envelope of the spectrum is
proportional to the square of (sin x)/x. The spectrum is flat
within ±0.1 dB up to 12% of fclk and drops rapidly beyond
its −3-dB point of 0.44fclk. Thus, low-pass filtering with a
high-frequency cutoff of 5%–10% of fclk will convert the
LFSR output to a band-limited white-noise voltage. Since a
sharp cutoff characteristic is not required, simple RC filter-
ing suffices. According to the aforementioned discussion, fclk

must be chosen such that 0.1fclk ≥ ν · BW, where BW is the
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Fig. 9. Tradeoff curve between the test error and the percentage of retested
devices for the switched-capacitor filter.

bandwidth of the switched-capacitor filter, and ν is a positive
integer. The passband of the switched-capacitor filter is in the
range of 0–1 kHz; thus, we choose to clock the LFSR at fclk =
100 kHz. Now, let tr be the time resolution between consecutive
measurements, and let to be the settling time. In order to avoid
repeating measurements, m must be chosen such that the period
of the LFSR TLFSR = (2m − 1) · Tclk (assuming that the LFSR
generates a maximal-length pseudorandom sequence) satisfies
TLFSR ≥ to + tr · dI. We extracted dI = 30 measurements with
a conservative resolution tr = 0.3 ms. The settling time is
approximately to = 0.5 ms. Thus, it is sufficient to use an m =
10-bit LFSR, which will have a period of TLFSR = 10.23 ms.
The characteristic polynomial of the 10-bit maximal-length
LFSR that we used is z10 + z7 + 1.

The results are shown in Fig. 9, which shows a scatter plot
of feasible tradeoff points (εr and Nr). The elapsed CPU time
to generate this scatter plot is about 129 h on a Pentium-IV
2-GHz PC. The circle points correspond to the measurement
subspaces that were visited during the course of the NSGA-II.
The diamond-filled points are produced by reallocating the
guard bands in the identified Pareto-optimal measurement sub-
spaces using different values for the parameters λf and λn. The
Pareto-optimal measurement subspaces have dimensionalities
that range between d = 10 and d = 13. The continuous line
runs along the Pareto-optimal front. It can be seen that the test
error is 4% when all devices go only through the first tier, it
decreases to 2.4% when Nr = 8.6%, it drops further to 1%
when Nr = 15.2%, and it reaches zero when Nr = 21%. At
this point, for the devices that do not fall within the guard-
banded zone, the decision of the first tier is equally accurate
to the specification testing. With regard to the average test cost
per device, assuming C1 = Cs (i.e., the tests in both tiers are
performed on the same tester) and a handling time of 0.25 s
in the first tier, and given the representative electrical testing
times of T e

1 = 10 ms and T e
s = 0.5 s, an estimate can be

calculated from (21) with Th = 0 as C = ((10 + 250) + 0.21 ·
500/(500 + 250))Cs · Ts = 0.49Cs · Ts.

B. UHF Receiver Front End

The data for the UHF receiver front end were provided by
our industrial collaborators (i.e., the first three steps in the
beginning of this section, where we describe the course of
each experiment, were not performed by us). The experiment,
which was conducted to generate these data, was originally
designed to craft an optimal alternate test stimulus with regard
to the ATE constraints, the test time, and the performance-
parameter prediction accuracy using MARS as the underlying
learning method [19]. Thus, it should be noted that the initial
set of dI measurements is not specifically extracted for use in
conjunction with the neural system described in this paper. In
fact, the test error of the first tier without introducing guard
bands (e.g., using a single test hypersurface) is 2.36%. In this
section, we show that test-error moderation is feasible at the
expense of a test-cost increase compared with the low cost
reported in [19]. In the following paragraph, for the purpose
of completeness, we provide a summary of the experiment. A
more detailed description can be found in [19].

The data were obtained on a set of N = 541 devices that
were selected among 25 different lots. Every lot contained
25 devices, apart from one which contained only 16. The data
sheet consists of 30 specifications at 850/1800 MHz. For the
sake of simplicity, only the 850-MHz band was considered,
which reduced the set of performance parameters to 13. This
includes the gain, the input third-order intercept point, and
the noise figure for the LNA, the mixer and their cascade
connection, the input standing wave ratio for the LNA and the
mixer, and the output standing wave ratio and reverse isolation
for the LNA. A total of seven configurations are required to
explicitly measure these performance parameters. All 541 de-
vices passed the specification testing successfully. The selected
single test configuration, which is shown in Fig. 10 [10], was
implemented on a load board and interfaced with a commercial
mixed-signal tester. The tester supplied a baseband signal xt(t),
which consisted of seven tones around 138 MHz with 1-MHz
step, ranging from −12 to −19.5 dBm in amplitude. The center
frequency of this baseband signal was upconverted to f1 =
850 MHz with an external mixer. The modulated signal was
then used as a test input stimulus for the LNA. The response
of the LNA was downconverted to f1 − f2 = 50 MHz with the
mixer in the device and passed through the LPF. The output of
the LPF is given by

xs(t) = A · xt(t) · cos (2π (f1 − f2) · t + φ) (22)

where A is the gain of the LNA, and φ is the phase difference
between the two mixers. The effect of φ is removed by taking
the fast Fourier transform (FFT) of xs(t) and by considering the
magnitude of the resulting FFT spectrum as the new signature.
The FFT is computed on 213 samples of xs(t), which were
obtained at a rate of ∆ = 1.3427 ns.

Fig. 11 shows the FFT transform of xs(t) for a randomly
selected device. For every harmonic, we calculated the average
amplitude across all 541 devices. Then, we set a noise level,
and we only considered the tones whose average value is
above this level. This resulted in a set of dI = 28 tones. For
the purpose of evaluating our method, we consistently shrunk
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Fig. 10. Test configuration for the UHF receiver front end.

Fig. 11. FFT of the LPF output for a randomly selected device.

Fig. 12. Tradeoff curve between the test error and the percentage of retested
devices for the UHF receiver front end.

the specification limits in order to render some devices faulty.
This resulted in 96 devices being labeled as faulty. Out of the
541 devices, we assign 250 to the training set (including 80%
of the faulty devices), 164 to the holdout set, and 127 to the
test set.

The scatter plot in Fig. 12 shows feasible tradeoff points
(εr and Nr). The elapsed CPU time to generate this scatter plot
is about 19 h on a Pentium-IV 2-GHz PC. Similar to the previ-

ous example, the circle points correspond to the measurement
subspaces that were visited during the course of the NSGA-II,
whereas the diamond-filled points are produced by reallocating
the guard bands in the identified Pareto-optimal measurement
subspaces using different values for the parameters λf and λn.
The Pareto-optimal measurement subspaces have dimension-
alities that range between d = 4 and d = 7. The continuous
line runs along the Pareto-optimal front. As can be observed,
the test error is 2.36% when all devices go only through the
first tier, it decreases to 1.57% when Nr = 5.51%, it drops
further to 0.79% when Nr = 10.24%, and finally, it reaches
zero when Nr = 28.35%. At this point, for the devices that
do not fall within the guard-banded zone, the decision of the
first tier is equally accurate to the specification testing. The first
tier achieves a 36% reduction in test time compared with the
specification testing, whereas the mixed-signal tester and the lo-
cal oscillators to drive the mixers cost approximately 48% less
than a commercial RF tester with an adequate functionality to
perform the required specification tests [19]. Therefore, without
considering the tester depreciation costs, operation costs, etc., it
is estimated that C1 · T1 = 0.52 · 0.64Cs · Ts = 0.3328Cs · Ts.
An estimate of the average test cost per device can be calculated
from (21) as C = (0.3328 + 0.2835)Cs · Ts = 0.62Cs · Ts.

IX. CONCLUSION

The use of guard bands in machine-learning-based testing
of analog/RF devices enables the exploration of the tradeoff
between the test accuracy and the test cost. As demonstrated
in this paper, efficient allocation of guard bands in carefully
selected measurement subspaces allows the majority of devices
to be tested through low-cost yet equivalently accurate test cri-
teria to standard specification testing. Additionally, it pinpoints
the small fraction of devices that are suspect to misclassification
and should be retested through the specification testing in order
to ensure the accuracy of the test decision across the entire
device population. Results obtained on a switch-capacitor filter
and a UHF receiver front end show that the proposed test
method maintains the accuracy of specification testing while
reducing its cost by 51% and 38%, respectively.
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