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Abstract—Yield estimation is an indispensable piece of
information at the onset of high-volume production of a device,
as it can inform timely process and design refinements in
order to achieve high yield, rapid ramp-up, and fast time-to-
market. To date, yield estimation is generally performed through
simulation-based methods. However, such methods are not only
very time-consuming for certain circuit classes, but also limited
by the accuracy of the statistical models provided in the process
design Kkits (PDKSs). In contrast, herein we introduce yield esti-
mation solutions which rely exclusively on silicon measurements
and we apply them toward predicting yield during: 1) production
migration from one fabrication facility to another and 2) tran-
sition from one design generation to the next. These solutions
are applicable to any circuit, regardless of PDK accuracy and
transistor-level simulation complexity, and range from rather
straightforward to more sophisticated ones, capable of leveraging
additional sources of silicon data. Effectiveness of the proposed
yield forecasting methods is evaluated using actual high-volume
production data from two 65-nm RF transceiver devices.

Index Terms—Integrated circuit yield, production engineering,
statistical analysis, yield estimation.

I. INTRODUCTION

HE INHERENT variation of the semiconductor manufac-
T turing process is a fundamental obstacle toward achieving
high yield, especially for contemporary mixed-signal system-
on-chip designs, wherein digital, analog, and RF circuits are
integrated together in advanced technology nodes. Indeed,
understanding the complex interaction between design and
manufacturing, and accurately estimating the expected yield
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prior to high-volume manufacturing (HVM) of a device in light
of such variation, constitutes a challenging yet highly desirable
task toward production and yield ramp-up. To this end, a large
number of methods have been proposed in the past to estimate
and optimize yield of a device [1], [2]. The vast majority of
these methods concern yield estimation prior to fabrication
and are based on simulation. Therefore, besides being very
time-consuming and, often, impractical for large and complex
circuits, they have a limited view of process statistics, as their
grounding to silicon is established only through the variation
models reflected in the process design kit (PDK).

In contrast, in this paper we focus on yield estimation in two
specific scenarios wherein much more data reflecting process
statistics is available.

1) Fab-to-Fab Production Migration: Demand fluctuations
and other financial, geographical or political reasons
often cause a production to be migrated from one fabri-
cation plant to another, wherein a device may have never
been fabricated before [3], [4]. Forecasting how well a
device will yield in the target plant is extremely valuable
for production planning and yield ramp-up purposes.

2) Transition to New Design Generation: In order to remain
competitive, offer new features, and deal with produc-
tion quality issues, designs are, sometimes, subjected
to respins where minor modifications and tweaks are
introduced to enhance performance and robustness [5].
Estimating how well the new device generation will
yield when it replaces the prior one in HVM production
is, again, an indispensable piece of information.

In principle, these two yield estimation problems may
be solved by relying on existing simulation-based methods.
However, in both scenarios, a large volume of relevant sili-
con data, such as measurements on devices produced in the
source fab, or measurements from the prior generation of
a device, is already available. Therefore, this paper seeks
to develop yield forecasting solutions which rely solely on
such silicon measurements; thereby these solutions are not
susceptible to PDK accuracy limitations and are applica-
ble regardless of size, complexity and simulation time of a
design.

The type of silicon measurements that the proposed meth-
ods are based on are the typical e-fest and probe-test data that
is obtained and logged as part of a production. E-tests are elec-
trical measurements performed on simple structures known as
process control monitors (PCMs), which are typically placed
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Fig. 1. Yield prediction during fab-to-fab product migration.

in the scribe lines of the wafer. Probe-tests, on the other hand,
are the measurements performed through standard functional
or structural tests on every die at wafer level.

In the fab-to-fab production migration scenario, we consider
a device currently being produced in HVM in a source fab A,
whose production will be migrated to a target fab B of the
same technology node. In order to predict how well the device
will yield in fab B, we experiment with various methods which
make use of one or more of the following data sources.

1) E-test and probe-test data from HVM production of the

device in source fab A.

2) E-test data from HVM production of a prior device
fabricated recently in the same technology node in fab B.

3) Limited e-test and probe-test data from production of
the device in target fab B, originating from a very small
number of characterization wafers, which are typically
produced prior to ramping-up HVM production.

In particular, we examine four different methods, namely
model migration, predictor calibration, early learning, and
Bayesian model fusion (BMF). As illustrated in Fig. 1, the
model migration and predictor calibration methods make use
of data sources 1) and 2), the early learning method makes
use of data sources 2) and 3), while the BMF method makes
use of all three data sources 1)-3).

In the transition to a new generation scenario, we consider a
device N, which stems from minor modifications to a previous
generation device P, and which is to be produced in HVM in
the same fab and technology node as its predecessor. In order
to predict how well the device N will yield, we experiment
with various methods which make use of one or more of the
following data sources.

1) E-test and probe-test data from HVM production of

device P.

2) Limited e-test and probe-test data from device N, orig-
inating from the few characterization wafers which
are typically produced prior to ramping-up HVM
production.
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Fig. 2. Yield prediction across design generations.

In particular, we consider four different methods, namely aver-
aging, early learning, naive mixing of data, and BMF. As
shown in Fig. 2, the averaging method uses only probe-tests
from 2), while all other methods make use of e-test and
probe-test data from both 1) and 2).

All aforementioned methods, except for the averaging
method in the scenario of yield estimation across design gen-
erations, establish a model which predicts wafer yield (i.e.,
the fraction of devices on a wafer which pass all their specifi-
cations) or parametric yield (i.e., the fraction of devices on a
wafer which pass a given specification) from the e-test profile
of the wafer. The underlying conjecture is that there exists suf-
ficient correlation between e-tests and device performances, as
they are subject to the same process variations experienced by
the wafer. Therefore, variation of device performances and, by
extension, wafer or parametric yield, can be predicted suffi-
ciently well through the e-test measurements of a wafer. Such
correlations are very intricate and, most often, it is impossible
to analyze and explain why they are in force. For this reason,
they are extracted using machine learning.

It is important to stress that the proposed methods can
expose yield loss whenever its root-cause is also reflected
by the e-tests. Yield loss can be due to random defects
(e.g., particle contamination) or process variations, which can
be further classified into systematic inter-die variations (e.g.,
lithography-related gate-length variation) and random within-
die variations (e.g., random dopant fluctuation) [6]. Evidently,
random defects affecting a device do not necessarily affect
simultaneously the PCMs. To detect such defects, one could
rely, for example, on IDDQ measurements or on dedicated
on-chip, compact, non-intrusive temperature sensors [7], [8];
yet it is unlikely that such defect-oriented tests can cover the
entire design. Thus, similarly to the simulation-based meth-
ods, the proposed methods do not concern yield loss due
to random defects. On the other hand, there exist numerous
PCMs that provide e-tests which can capture effectively both
inter-die and within-die variations [9]-[11]. Multiple copies
of such PCMs are typically dispersed across a wafer, in order
to reflect the spatial aspects of process variation, and, col-
lectively, offer valuable information so that process engineers
may monitor and adjust the fabrication process. E-test data
contain various types of measurements reflecting physical,
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electrical, and mismatch characteristics of simple layout com-
ponents (i.e., transistors, resistors, capacitors, etc.) and basic
circuits (i.e., ring oscillators, current mirrors, etc.). Thus, as is
the case with the simulation-based methods, the focus of the
proposed methods is to expose the yield loss component that
is due to process variations. Finally, existence of correlation
between e-tests and yield should be verified on a case-by-
case basis before the methods can be applied. This can be
done based on high-volume silicon data from the source fab
or based on a previous generation device.

The remainder of this paper is organized as follows.
In Section II, we briefly review state-of-the-art simulation-
based yield estimation methods. In Section III, we discuss
a regression-based approach for predicting yield based on the
e-test profile of a wafer. In Section IV, we briefly present
the method used herein for learning regression functions. In
Section V, we discuss a feature selection method based on a
genetic algorithm (GA), which helps in reducing the dimen-
sionality of the problem and improving the overall accuracy
of the learned regression models. In Sections VI and VII, we
present the proposed yield forecasting methods for the fab-to-
fab production migration scenario and the transition to a new
design generation scenario, respectively. Experimental results
using industrial data are presented in Section VIII and the
conclusions are drawn in Section IX.

II. SIMULATION-BASED YIELD
PREDICTION METHODS

In this section, we provide a brief overview of well-known
simulation-based techniques for yield estimation.

A. Monte Carlo

Monte Carlo (MC) simulation [12], [13] has been the most
popular technique for yield estimation. In the MC method, a
large number of random circuit samples are generated based
on expected process variations defined in the PDK; thereafter,
these circuit samples are simulated to estimate yield based on
relative frequencies. Simplicity and generality are the advan-
tages of the MC method. However, it is a time-consuming
procedure which makes it prohibitive for large and complex
circuits, as well as for circuits with long simulation times.
Even for circuits with reasonable simulation times, MC ends
up being too slow or inaccurate, especially when yield is very
high. Furthermore, its accuracy is often limited due to insuf-
ficient process variation modeling in the PDK. Therefore, the
MC method is not always practical for yield estimation.

B. Monte Carlo With Speed Enhancement

Several methods can be used to speed up MC, including
Latin hypercube sampling (LHS) [14], quasi-MC (QMC) [15],
and importance sampling [16], [17]. Compared to MC, which
is purely random and requires many samples to cover the
design space, LHS and QMC produce quasi-random sequences
of samples that cover the design space much faster, thus allow-
ing expedited and more accurate estimation of yield. However,
LHS and QMC may still not produce enough samples at
the tails of the design distribution where yield loss events
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typically occur. By focusing precisely on these distribution
tails, importance sampling can produce better yield esti-
mates with smaller variance. However, importance sampling
requires definition of an optimal sampling distribution which,
in general, is very challenging.

C. Statistical Blockade

Statistical blockade is a method that also offers signifi-
cant speedup, as compared to the classical MC simulation,
by focusing the simulation effort on the tails of the design
distribution [18]. Unlike importance sampling, however, it
only relies on the PDK and does not impose any a priori
assumptions on the form of process parameter statistics. The
underlying observation is that sampling a circuit instance using
the PDK is not time-consuming. What is time-consuming
is performing an actual electrical simulation of the circuit
instance. Statistical blockade is, in essence, a MC method,
wherein simulation is blocked for circuit instances that are
unlikely to exhibit performances far from the nominal design
point and, thereby, are unlikely to lie at the tails of the design
distribution. This decision of whether to block a simulation or
not is taken based on a classifier which is trained in the space
of process parameters. In the end, the simulated “extreme” cir-
cuit instances can be used to estimate yield probabilistically
based on extreme value theory [18]-[20]. In [21], a recursive
strategy is proposed to further accelerate the simulation effort.

D. Response Surface and Symbolic Performance Modeling

Another popular method for yield estimation is based on
performance modeling [22]-[25]. The underlying idea is to
approximate the mappings between circuit performances and
process parameters. These mappings can, then, replace elec-
trical simulations. In particular, the process parameter space is
sampled, with each sample corresponding to a circuit instance.
Then, the mappings are used to predict the performances of
these circuit instances instead of directly simulating them.

E. Behavioral Modeling

For circuits such as data converters, phase locked loops,
complete RF transceivers, etc., a single transistor-level simu-
lation may take hours or days to complete. In this case, none of
the above methods is practical since they require simulating at
least hundreds of circuit samples at the transistor level. For cir-
cuits with long simulation times, yield estimation is typically
carried out by first developing a behavioral model that captures
effectively the circuit functionality and then applying any of
the above methods by considering the behavioral-level descrip-
tion of the circuit instead of the transistor-level or layout-level
description [26], [27]. A behavioral model is constructed by
decomposing the circuit into independent subcircuits, creating
a separate behavioral model for each subcircuit to reflect its
functionality, and then linking these behavioral models and
manipulating the data flow so as to compute the circuit per-
formances. The key is to capture the correlation amongst the
behavioral parameters that correspond to subcircuit perfor-
mances, such that this correlation draws upon the correlation
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that exists amongst the low-level process parameters, as these
are expressed in the PDK.

III. YIELD/E-TEST CORRELATION

Before attempting to use e-tests as a yield predictor when
migrating production across fabs and when transitioning to
new design generations, we first discuss the use of e-tests as
a yield predictor for a specific device fabricated in a specific
fab. Given the nature of e-tests, whose role is to reflect process
variations that lead to yield loss and to drive yield learning,
our conjecture is that they are correlated with and can serve
as an accurate predictor of parametric yield and wafer yield.
Such correlations are intricate, and do not have known closed-
form mathematical expressions. Therefore, we will learn how
to approximate them by training regression functions.

Let us consider a device that is currently in production.
Assume that we have at hand the e-test measurements from
w wafers that contain this device and the probe-test measure-
ments from all n devices contained in each of these wafers.
Let ET! = [ET!, ...,ET;] denote the [-dimensional e-test
measurement pattern of the ith wafer, where ET} denotes
the kth e-test measurement in the ith wafer. Let PTY
[PTl'l’ , ...,PTZ]T denote the d-dimensional probe-test mea-
surement pattern obtained on the jth device contained in the ith
wafer, where PTZ denotes the kth probe-test measurement on
the jth device in the ith wafer. Let also PT' = [PT'! . .. PT™"]
denote the d x n matrix of probe-test measurements on the ith
wafer.

By knowing the specification limits for the kth probe-test
measurement, we can compute the parametric yield of the kth
probe-test measurement for the ith wafer, denoted by y};, as
the percentage of devices in the ith wafer that comply with
these limits. Let yi = "1, el y;] denote the d-dimensional
parametric yield vector of the probe-test measurements for
the ith wafer. y' is directly computed from PT’ in conjunction
with the specifications of the probe-test measurements. Let
us also consider the wafer yield for the ith wafer, denoted
by Y, which is defined as the percentage of die on a wafer
that comply with the specification limits for all probe-tests. In
summary, the information available on this device includes

wafer’ = [ET',y", Y], i=1,...,w (1)

The training data in (1) is used to learn the regression func-
tions which predict the parametric yield of the kth probe-test
measurement or the wafer yield for the ith wafer from its e-test
measurement pattern

Y ~ fi(ET) 2
Y' ~ f(ET'). 3)

Once the regression functions are learned and their gener-
alization accuracy is validated, we can readily use them to
estimate the parametric yield y' and the wafer yield Yi for
future wafers, i.e., i > w, based solely on their e-test pro-
file. We will show that these estimates approximate accurately
the ground truth values y’ and Y, respectively. Accordingly,
significant cost savings can be obtained when computing para-
metric or wafer yield, since we only need to obtain the e-test
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measurements rather than all probe-test measurements for all
devices on a wafer.

IV. REGRESSION MODELS

Several methods exist in the literature for multivariate
regression, including multivariate adaptive regression splines
(MARS), least-angle regression splines, projection pursuit
regression, feed-forward neural networks, and support vec-
tor machines [28], [29]. In this paper, we use MARS [29],
which has also been successfully used in several other test
cost reduction methods in the past [30], [31].

MARS is a non-parametric regression method which is
capable of modeling complex non-linear relationships and
considers interactions between variables during model con-
struction. MARS builds the regression using basis functions as
predictors in place of the original input variables. Generally,
it fits the data to the following model:

M
fX) =ao+ ) an - Bu(X) )

m=1

where ag is the intercept, a,, denotes the slope parameter, and
B,,(X) represents the mth basis function which may include the
interaction effect between the original input variables X. The
basis function transformation enables MARS to blank out cer-
tain regions of data and focus on specific sub-regions. When
the number of predictors is very high and disproportional to the
size of the training set, this capability is used to select a subset
of predictors to improve the quality of the regression model.
MARS constructs the regression in two phases. In the forward
phase, MARS starts with an empty model and enhances it by
adding basis functions to overfit the data. Then, in the back-
ward phase, MARS removes basis functions associated with
the smallest increase in generalized cross-validation error. We
build MARS models using e-tests as input variables and yield
vectors as the dependent output variables. We use piecewise-
cubic basis functions, the maximum number of which is set
to half of the number of input variables.

V. MODEL IMPROVEMENT THROUGH
FEATURE SELECTION

While typically many e-tests are performed, not all of them
may be necessary for learning the regression models that esti-
mate yield. In fact, for many of e-tests, there may exist no
physical underlying reason why they should be correlated
with some probe-test outcomes. Therefore, including them in
the model will not only offer no additional value but may
even deteriorate its quality due to the curse of dimensionality.
Indeed, learning a model in a low-dimensional space improves
its robustness.

Selecting a subset of e-tests that best correlates to
probe-tests and, thereby, to parametric and wafer yield values,
is essentially a feature selection problem. Since the number
of possible subsets of a set of n features (i.e., e-tests) is
2" — 1, exhaustive search is not feasible even for a moder-
ate number of features. In general, as explained in a review
presented in [32], feature selection methods are categorized
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into greedy and heuristic. In the context of semiconductor
testing, solutions from both categories have been employed
for test compaction [33], [34] and machine learning-based
test [35].

In this paper, we employ a heuristic-based technique to
select a subset of e-test parameters. More specifically, we use
a multi-objective GA, called NSGA-II [36]. GAs are evolu-
tionary algorithms attempting to emulate the biological natural
selection. The GA starts with an initial random population of
solutions (i.e., feature subsets). Mating and mutation opera-
tions are repeatedly applied to the current population in order
to generate a new population which, hopefully, contains bet-
ter solutions. In each iteration, the fitness of every instance of
the population is evaluated using two objective functions and
the best solutions are retained. These two objective functions
reflect our goals of employing the smallest possible number of
features while achieving the highest possible prediction qual-
ity. Evidently, these can be competing objectives, hence the
NSGA-II algorithm explores the trade-off space.

Fig. 3 depicts an overview of our GA-based feature selec-
tion method. A bit-string specifies the corresponding e-test
subset that will be included in the correlation model (i.e., “1”
indicates inclusion, whereas “0” indicates exclusion). The fit-
ness of an e-test subset is assessed by constructing the MARS
model using a training dataset and, then, evaluating its predic-
tion accuracy on an independent validation dataset. Fitness,
in this case, is the prediction error on the validation dataset,
computed as the average difference between true yield val-
ues and predicted values by the correlation model. Yield, in
this context, could be either the parametric yield for a specific
probe-test or the overall wafer yield. We point out that differ-
ent optimal e-test subsets may be selected for each probe-test.
The algorithm stops when there is no significant improvement
in the fitness values of a population over a window of the last
five generations. We also note that, in each iteration of the
GA, the same settings are used in the MARS models.

VI. YIELD PREDICTION DURING
PRODUCTION MIGRATION

Let us now consider a device which is currently being fabri-
cated in HVM in fab A and whose production is planned to be
migrated to fab B. Our goal is to build a model that predicts
the HVM parametric yield of each probe-test and of the over-
all wafer yield in fab B. To this end, different methods will be
discussed, exploring a trade-off between simplicity, required
input data, and accuracy. Without loss of generality, the for-
mulation considers only parametric yield; overall wafer yield
is dealt with in a similar fashion. Each method may make use
of one or more input data sources among the ones listed below.

1) E-test and probe-test measurements from w,y wafers

fabricated in fab A, containing the device whose pro-
duction is being migrated. Following similar notation
as in Section III, the available information from fab A
includes:

i=1,...,wa. (5

2) E-test and probe-test measurements from the first wp
wafers (wp < wy) fabricated in fab B, containing the

wafer} = [ET,y}, ¥}],
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device whose production is being migrated. In short,

information from fab B includes

wafery = [ETp, y5, Y5],  i=1,...,wp (6)

3) E-test from a large number, wy, of wafers fabricated

in the same technology node in fab B, containing a

prior device, different than the one whose production

is being migrated from fabs A to B. The only assump-

tion for this prior device is that, since it is fabricated in

the same technology, its wafers contain the same PCM

structures and, thereby, the same e-tests, as the wafers of

the device being migrated. We denote the e-test profile

of the ith fabricated wafer of this prior device as ET'},
i=1,...,wo.

A. Model Migration

A straightforward approach for predicting yield in fab B is
model migration. In this method, a model is first trained in fab
A to express parametric yield of a wafer as a function of its
e-test profile, yl’;\’ e fA’k(ETi\). Then, the trained regression
function is applied directly to the e-test profile of wafers pro-
duced in fab B containing the prior device, in order to predict
HVM parametric yield as

w0

2 1 i
VB = ZfA,k(ET”B)- (M
i=1

Model migration success relies on two assumptions.

1) E-tests in the source fab A and target fab B must come
from the same distribution.

2) If a wafer from fab A and a wafer from fab B have the
same parametric yield, then they must also have sim-
ilar e-test profiles, i.e., ps (V4 |ET)) = pg(/3|ETy) =
ET, ~ ET},.

As these assumptions may not necessarily hold true in a
semiconductor manufacturing context, the accuracy of model
migration is expected to be limited.
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B. Predictor Calibration

Another approach, which does not rely on any of the
two aforementioned assumptions, is predictor calibration. The
distribution of each e-test (i.e., predictor) in fab B is cali-
brated based on the dlStrlbuthl’l of the same e-test in fab A,
ET Bj = h; (ET Bj, ETA /) where ETAJ = [ETA ETWA]
and ET’BJ = [ET’BJ, ..., ET 0] represent the proﬁle of the
jth e-test in fabs A and B, respectlvely A simple way of
achieving this would be mean calibration, which subtracts the
mean shift A(u;)

ET'p; = ET'5; — A)) 8)
A(y) = 1(ET'5 ) — n(ETay). 9)

However, in order to achieve better precision, other param-
eters of the distribution, such as variance, skewness and
kurtosis, also need to be calibrated. To accomplish this, we
employ a two-step procedure. First, using the cumulative dis-
tribution function (CDF) of the jth e-test in fab B, Fpj, we
find the cumulative probability associated with each sample,
x = Fp;(ET' ]) Then, using the inverse CDF of the jth e-

test in fab A, F jowe determine the e-test value associated

with cumulative probablhty x ETB i=Fa Jj (x) We employ
the kernel density estimation [37] to estimate the CDF of each
e-test.

This procedure is applied to all instances of the e-test profile
of fab B (i.e., for i = 1, ..., wp), and to all e-tests for each
instance (i.e., forj=1,...,10).

In order to utilize predictor calibration in yield prediction
during production migration, a regression function is trained
to express parametric yield in fab A as a function of the e-test
profile, i.e., yi‘,k ~ fA,k(ETi‘). Then, the trained regression
model is applied to the calibrated e-test profile of wafers pro-
duced in fab B containing the prior device, in order to predict
HVM parametric yield as

1 wo .
Spi=— 3 fuk(ET5).
"o ’

Since predictor calibration does not make any of the two
assumptions stated earlier, it is expected to outperform model
migration. This method is very successful in mapping the dis-
tribution of fab B into that of fab A and is capable of predicting
yield without requiring probe-test measurements from fab B.

(10)

C. Early Learning

Model migration and predictor calibration were developed
in the context of yield prognosis when migrating a device from
fabs A to B, while assuming that no probe-tests are available
for this device from fab B. We now consider the scenario
where we have access to probe-tests from a small number wp
of early silicon wafers from fab B, containing this device. This
enables us to train a regression model to express parametric
yield as a function of the e-test profile, relying only on the
information from fab B, i.e., yf& P fg,k(ETg). Subsequently,
this model can be applied to the available e-test profile from
the prior device produced in fab B, in order to predict HVM
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parametric yield as

(1)

=— ZfB k(ET )

i=1

D. Bayesian Model Fusion

The accuracy of the early learning method may be limited
because the regression model is trained using limited, possibly
not representative, data from a few initial wafers in fab B.
Another more elaborate technique is BMF, which intelligently
fuses the limited data from fab B with the rich readily available
data from fab A, in order to enhance the prediction accuracy of
the early learning method. BMF is a very powerful technique
which has been used successfully for model improvement in
various contexts [38]-[43].

The training data in (5) allow us to learn an accurate
regression function for predicting parametric yield of the kth
probe-test in fab A

M .
= Z A km bk,m(ETfL‘).

m=1

o~ fax(ETY) (12)

We have relied on a general expression of a regression func-
tion based on M basis functions, where by ,, is the mth basis
function for the kth probe-test and a4 i, corresponds to the
coefficient of the mth basis function for the kth probe-test,
m =1,..., M. This general expression can accommodate any
regression approach mentioned in Section IV.

For small wp, given the limited training data in (6), our
objective is to learn an accurate regression function for fab B

M .
=Y agim-bin(ETE)  (13)

m=1

v ~ f31(ETh)

where ap i m is the coefficient of the mth basis function for
the kth probe-test corresponding to fab B.

The conventional learning procedure is to use a fraction
of the data in (6) for training and the rest for assessing the
generalization ability of the regression function on previously
unseen wafers. However, since we are interested in learning
the regression function based on the very first few wafers, the
data in (6) is not representative enough to learn a regression
function that accurately predicts the parametric yield of future
wafers. The aim of the BMF technique is to learn the regres-
sion function in (13) by leveraging information from the data
in (5), which was produced in fab A.

The BMF learning procedure consists of solving for the
coefficients apy = l[api.1,....apkm] that maximize the
posterior distribution pdf(ap i|waferp), that is

max pdf(ap ;| wafers) (14)
agk
where waferg = [Waferll;, .. WaferBB ]. In this way, we max-
imize the “agreement” of the selected coefficients with the
limited observed data from fab B.

By applying Bayes’ theorem, we can write

pdf(aB,k|waferB) X pdf(aB,k) . pdf(wafer3|a3’k). (15)
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Thus, the problem boils down to

max pdf(ag.x) - pdf(wafers|ap ). (16)

ag

Next, we will develop expressions for the prior distribution

pdf(ap k) and the likelihood function pdf(waferglap i).
Assuming that the coefficients ap , are independent, we

can write

M
pdf(azi) = [ [ pdf(as.im)- (17)
m=1

We define the prior distribution pdf(ap ,) by involving
the prior knowledge from fab A. Specifically, pdf(ap ) is
assumed to follow a Gaussian distribution with mean aa i
and standard deviation A|aa i ml:

pdf(ap k.m)

(aB,k,m - aA,k,m)2
2)»2ai,k,m '

1
= ——-exp| —
«/2nk|aA,k,m| p|:
(18)

This approach accounts for the fact that ap ,, is expected
to be similar to a4k, and deviate from it according to the
absolute magnitude of aa i -

The likelihood function pdf(waferplap ) is expressed in
terms of the data in (6). Specifically, since the data from each
wafer is independent, we can write

wg
pdf(waferplag ) = ]_[ pdf(waferf|ag ). (19)
i=1
Furthermore
pdf(waferg|a3’k) = pdf(si) (20)

where & is the prediction error introduced by the regression
for the ith wafer in fab B

&' =g —f3.x(ETp). @
This error is a random variable that is assumed to fol-

low a zero-mean Gaussian distribution with some standard
deviation oy:

at(e) = —= ) 22)
e') = -exp| — .
P N 210y P 2002
Therefore, combining (13) and (20)—(22), we can write
pdf(waferplap ) = !
B ) vV 27TO’0
1 M ’
X exp _F : |:y%’k - Z ap.km bk,m(ET;g):| . (23)
0 m=1

By combining (17)-(19) and (23), we obtain an expression
of pdf(ap i) -pdf(waferp|ap i). By taking the natural logarithm
of this expression, the maximization problem in (16), after
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eliminating constant terms, becomes

00\ 2 M (aB,k,m_aA,k,m)2

@Bk afz\ k,m

m=1
2

wgB M
- Z |:y59,k - Z AaB.k,m - bk,m(ET;;):| . (24)
i=1 m=1

The optimal values of op and A are determined by k-fold
cross-validation [28], [29].

Finally, the HVM parametric yield of each k probe-test is
computed as

. 1 &, ;
VBE = — ET';). 25
Sii= oo D foa(ET) (25)

i=1

VII. YIELD PREDICTION ACROSS
DESIGN GENERATIONS

Consider a device N, which is the new generation of a previ-
ously designed device P, introducing slight modifications and
improvements, and let us assume that device N is planned to
be produced in HVM in the same technology node and fabri-
cation facility where device P was produced. Finally, suppose
that for device P we have access to the e-test and probe-test
data from wp wafers. Using similar notation as in Section III,
information from device P includes

wafery = [ETp, yb, Yp].

i=1,... (26)

Let us also assume that we have at hand the e-test mea-
surements from the first w, wafers which contain device N as
well as the probe-tests from all devices contained in each of
these wafers. Therefore, information from device N includes

i=1,... Q7

Given the above information, we discuss below four solutions
to the problem of yield prediction across design generations.
Without loss of generality, we will focus on estimating wafer
yield, accounting for the fact that devices N and P may not
necessarily have the exact same probe-tests.

, Wp.

waferl, = [ET}vy}\, Y]’V] W

A. Averaging

A simple and straightforward approach is to compute the
average yield of the w,, early wafers and use it as an estimation
of HVM wafer yield of device N

(28)

B. Early Learning

Another approach is to use the data in (27) as a training
set and learn a regression model to express wafer yield as a
function of the e-tests for device N

Y~ fy(ETY). (29)

The HVM wafer yield of device N can, then, be predicted by
employing the e-test profile of device P

A 1 WP ;
=- ; fn(ET}). (30)
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C. Naive Mixing of Data

A third approach is to naively mix data in (26) and (27),
use the combined data as a training set, and learn a regression
model to express wafer yield as a function of the e-tests

Y~ fpy (ETY).
The HVM wafer yield of device N can, then, be predicted as

3D

=— prN (ET})

i=1

(32)

D. Bayesian Model Fusion

Finally, similar to Section VI-D, we can intelligently com-
bine the information from the prior generation device P with
the new generation device N using BMF. In particular, for
devices P and N we can learn regression models

ZaPm

Yp ~ fp(ET}) = m(ETp) (33)

and

"’fN ETN

> b

m=1

(ET}) (34)

respectively. These regression models are based on M basis
functions, where b,, is the mth basis function, and ap
and ay , correspond to the coefficient of the mth basis
function for devices P and N, respectively. The coefficients

p = lap1,...,apu] of regression model fp can be learned
accurately based on the rich dataset in (26). The coefficients
ay = lan.1, ..., anm] of regression model f;\, are learned by
maximizing the posterior distribution

max pdf(ay|wafery) 35)
N
where pdf(ay|wafery) o pdf(ay)pdf(wafery|ay), pdf(ay) is
the prior distribution, pdf(wafery|ay) is the likelihood func-
tion, and wafery = [wafer}v, el wafer,vf]”]. Similar steps as in
Section VI-D can be applied to refine the regression functions
for the new-generation device N.

The HVM wafer yield of device N can now be predicted as

S, 1 < / i
N = W_P Z:fN(ETP) (36)

VIII. EXPERIMENTAL RESULTS
A. Case Study and Datasets

In order to experimentally evaluate the various yield
prediction methods during fab-to-fab production migration and
during transition to a new design generation, we use actual
HVM production datasets from two consecutive design gen-
erations of a Texas Instruments 65-nm RF transceiver.! We
will refer to these two design generations as devices P and N,
respectively, emphasizing that device N is the new-generation
of device P with slight enhancements. Our datasets originate

IDetails regarding the devices may not be released due to a binding NDA.
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Fig. 4. Datasets from fabs A and B.

from two geographically dispersed fabs, which we will refer
to as fabs A and B. Device P is produced only in fab B, while
device N is produced in both fabs. The dataset for device N
from both fabs and the dataset for device P from fab B will be
used for yield prediction during fab-to-fab production migra-
tion. The dataset of device N from fab B and the dataset from
device P from fab B will be used for yield prediction across
design generations.

As illustrated in Fig. 4, the dataset for device N from fab A
includes [ = 54 e-tests and d = 200 probe-tests from a total
of wg = 500 wafers. Each wafer has five e-test measurement
sites and approximately 1500 dies per wafer. The dataset for
device N from fab B includes the same e-tests and probe-tests
from a total of Wp = 1600 wafers, with the only difference
being that e-tests are obtained on nine instead of five e-test
measurement sites. These two datasets were obtained from the
two fabs at approximately the same time period. The dataset
for device P from fab B includes [ = 54 e-tests (i.e., the same
as for device N) and dp = 160 probe-tests (i.e., fewer and
different than those for device N) from a total of wp = 700
wafers. Each wafer has nine e-test sites and approximately
1500 dies per wafer.

Since several e-test measurement sites are available across
each wafer (i.e., five e-test measurement sites across wafers
produced in fab A and nine e-test measurement sites across
wafers produced in fab B), we use as its e-test signature the
means and standard deviations of the 54 e-tests, as computed
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across all the available e-test measurements sites. Thus, in all
cases, the e-test signature of a wafer has a total of 108 features.

Probe-tests include both structural tests (i.e., open/short cir-

cuit, IDDQ, input voltage threshold, etc.) and functional tests
(i.e., bit error rate, error vector magnitude, common-mode
rejection ratio, etc.). E-test measurements include gate-oxide
quality, leakage current, threshold voltage, effective channel
length, etc. The specification limits for the probe-tests are also
available, hence for each of the two fabs we can compute the
parametric yield of each probe-test on every wafer, as well as
the overall yield of each wafer.

Using these datasets, we seek to the following.

1) Quantify the accuracy of predicting parametric yield
of probe-tests and overall wafer yield from the e-test
signature of the wafer.

2) Demonstrate that this prediction accuracy is improved
when employing dimensionality reduction through a
GA-based feature selection algorithm.

3) Quantify the accuracy of the discussed methods for
predicting yield during fab-to-fab production migration.

4) Quantify the accuracy of the discussed methods for
predicting yield across design generations.

B. Predicting Yield From the E-Test Signature
of the Wafer

In order to quantify the accuracy of predicting parametric
yield of probe-tests based solely on e-tests collected on the
wafer, we use the entire datasets of device N from both fabs
A and B to perform two independent experiments, one for
each fab. The regression models are trained using MARS and
we use 5-fold cross-validation to report robust prediction error
values. Specifically, for a given fab, the dataset is divided into
5 folds, where fourfolds are used for training and the remain-
ing fold is used for validation. The procedure is repeated such
that all folds are left out once as a validation set and, in the end,
we report the average prediction error across the five iterations.

We use the following expression for calculating the error in
predicting the parametric yield of the kth probe test:

wosi i
8k = 100 - l Z u
e Yk

(37

where w is the number of wafers in the validation set, while &;;
and y; are the predicted and the actual parametric yield values
of the kth probe-test on the ith wafer, respectively.

Fig. 5(a) and (b) present the parametric yield prediction
results for the datasets of device N from fabs A and B, respec-
tively. In this experiment, we consider all 108 e-test features.
In each histogram, the horizontal axis is the prediction error,
while the vertical axis shows the percentage of probe-tests that
are predicted within a given error range. For example, the first
bar of Fig. 5(a) shows the percentage of probe-tests for which
the parametric yield prediction error is below 2.75%, with the
corresponding value being 5%. As may be observed for both
fabs, the parametric yield of the majority of probe-tests can be
predicted using e-tests with an error of less than 3%, corrob-
orating that parametric yield can be predicted very accurately
from the e-tests of a wafer.
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Fig. 5.  Average parametric yield prediction error for fabs A and B.
In (a) and (b) all e-test features are used while in (¢) and (d) a subset of
e-tests are selected by GA prior to building regression models.

Fig. 5(c) and (d) present the same results as in
Fig. 5(a) and (b), but this time using only the subset of e-test
features that are selected by the GA-based feature selection
method of Section V. Feature selection is performed individu-
ally for each probe-test, thus each probe-test has its own subset
of e-tests to build a regression model from. Fig. 5(c) and (d)
show that, for both fabs, most of the weight of the histograms
is further toward the left side, i.e., toward smaller prediction
errors, as compared to the histograms of Fig. 5(a) and (b).
These results corroborate that, by reducing the dimensionality
of the e-test signature, feature selection improves significantly
the quality of predictions. We note that the MARS algorithm
does have its own internal feature selection method, which
picks a subset of the most relevant e-tests; nevertheless, per-
forming an a priori feature selection using a GA appears to
be improving further the quality of the prediction models.

Next, we examine the use of e-tests for predicting wafer
yield. As before, the regression models are trained using
MARS, we employ 5-fold cross-validation to report robust
prediction errors values, and we use a similar expression for
evaluating the prediction error of the overall wafer yield

1 &Y - Y
§=100-—y ——
~)

i=1

(38)

where w is the number of wafers in the validation set, while
Y and Y' are the predicted and the actual wafer yield val-
ues of the ith wafer, respectively. Table I presents the wafer
yield prediction error for both fabs, first when training regres-
sion models using all e-test features, and then when training
regression models using only the subset of e-tests chosen by
the GA-based feature selection method. As may be observed,
the prediction error for both fabs is very low and confirms that
e-tests of a wafer carry sufficient information regarding quality
of the fabricated silicon, thus, they can be successfully used for
wafer yield prediction. Similar to parametric yield prediction,
incorporating the feature selection method to reduce the cardi-
nality of the e-test signature results in lower prediction error.
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TABLE I
WAFER YIELD PREDICTION ERROR

Parameter All e-tests  Subset of e-tests  improvement (Ae)
Fab A (device N) 6.12% 5.41% 12%
Fab B (device N) 4.9% 4.05% 17%

In order to quantitatively demonstrate this improvement, we
use the metric Ae, defined as

All e-tests error - Subset of e-tests error

Ae = x 100].

(39)

All e-tests error

Using this metric, the GA-based feature selection method
reduces the wafer yield prediction error by 12% and 17% for
fabs A and B, respectively.

Since GA-based feature selection improves the quality of
the regression models, as demonstrated in Fig. 5 and Table I,
for the rest of experiments all regression models are trained
with the subset of e-tests selected by this method.

C. Yield Prediction During Migration From Fabs A to B

In order to quantify yield prediction accuracy during fab-
to-fab production migration using the methods discussed in
Section VI, we performed the following experiment using fab
A as the source fab and fab B as the target fab. The model
migration and predictor calibration methods assume access to
both e-tests and probe-tests of device N in fab A, as well as
to the e-tests of device P in fab B. In other words, device P is
used as the prior device in these methods. The BMF and early
learning methods assume, in addition, access to both e-tests
and probe-tests for device N in fab B from a small number of
wp early engineering wafers, where wp << Wp. We vary wp in
the range [10, 50], in order to study the influence of the size
of this training set on BMF and early learning.

Since wp is small, the results for the BMF and early learning
methods may vary with respect to the subset of wp out of Wp
wafers that is being used. For this reason, we use bootstrap-
ping to report robust prediction errors, smoothen them, and
assist with the interpretation of the overall results. In total, we
perform 10 bootstrap iterations and, in each iteration, we sam-
ple wp wafers uniformly at random from the Wp wafers and
we perform 5-fold cross-validation. The reported prediction
errors are averaged over these 50 iterations. In each iteration,
we use the following expressions for evaluating the prediction
error of the HVM parametric yield of the kth probe-test and
the HVM wafer yield:

):’B,k - )_’B,k‘
S =100 - ———— (40)
YB.k
Yo — ?B(
5=100.— 1 (41)
Yp

where f}B’k and yp  are the predicted and actual HVM para-
metric yield values of the kth probe-test, respectively, while Y3
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Fig. 6.  Yield prediction error during production migration. Results for
(a) randomly selected probe-test and (b) overall wafer yield.

and Yp are the predicted and actual HVM wafer yield values
in fab B, respectively.

The accuracy of the yield prediction methods of Section VI
is demonstrated in Fig. 6(a) and (b), for one randomly-chosen
probe-test and for the overall wafer yield, respectively. These
plots show the prediction error as a function of the training
set size wp. The model migration and predictor calibration
methods do not utilize any information from fab B for training
purposes. They only rely on the e-tests of the prior device P
in fab B. Therefore, the corresponding curves for these two
methods are flat and independent of wp.

As may be seen in Fig. 6, model migration shows the
worst performance, which is expected since it naively uses
the model that is learned on data from fab A for predict-
ing yield in fab B. Early learning strongly depends on the
size of the training set. The prediction error is small for large
wp and increases exponentially as the training size becomes
smaller. This is expected, since the information available for
training is weakened and our ability to extrapolate the regres-
sion toward the tails of the distribution deteriorates, resulting
in large prediction error on the validation set. Predictor cali-
bration outperforms model migration and, in the case of small
wp, it also outperforms early learning, despite the fact that it
does not use any information from fab B.

BMF outperforms all other methods regardless of the size of
training set wp. It shows a remarkably stable behavior, main-
taining nearly constant prediction error even when the training
set size is very small. This implies that, by incorporating prior
knowledge from fab A, BMF is capable of generating accurate
prediction models for fab B based only on a few early wafers
from fab B. Thus, BMF can be used to quickly estimate yield
from a few engineering wafers or from the first few wafers in
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Fig. 7. Yield prediction error across all 200 probe measurements during fabs A to B production migration with wp = 30. (a) Model migration. (b) Predictor

calibration. (c) Early learning. (d) BMF. (e) Lower bound (wp = Wp).

HVM, without having to wait until a large volume of data is
collected. This result, showing that the BMF method reduces
the burden of collecting large datasets for yield estimation, is
consistent with the outcome of other studies that employ the
BMF method in different contexts [38]-[43].

Finally, in Fig. 7, we compare the cumulative results for all
200 probe-tests, in the scenario where production is migrated
from fabs A to B and wp = 30. Individual histograms are
provided for each method. For comparison purposes, we also
include a “lower bound” result where we apply the early
learning method by employing all available Wp wafers. This
corresponds to having sufficient statistics for the distribution
of e-tests and probe-tests in the target fab, hence the quality
of prediction depends only on the correlation between e-tests
and probe-tests and the ability of the regression functions to
capture it. In these histograms, each bar shows the percent-
age of probe-tests that have a yield prediction error within a
specific range. As may be seen, the histogram of the BMF
method has most of its weight on the left side, i.e., toward
smaller prediction errors, as compared to the histograms of the
other three methods. The yield prediction results for the BMF
method are also closer to the lower bound results. Therefore,
the BMF method provides the best option for predicting para-
metric yield, provided that a few early characterization wafers
are available. If such wafers are not readily available, then
between the two applicable methods, i.e., model migration and
predictor calibration, the latter provides the best parametric
yield prediction results.

D. Yield Prediction Across Design Generations

In order to quantify yield prediction accuracy across design
generations using the methods discussed in Section VII, we
performed the following experiment using the datasets of
devices N and P from fab B. The averaging method assumes
access only to w, = wp <« Wp early characterization wafers

12
BMF —&— Early learning

== Averaging

Naive mixing

Wafer yield prediction error (%)

10 15 20 25 30 35 40 a5 50
Number of available wafers from next-generation device N (wg)

Fig. 8. Error in predicting device N yield from early wafers.

of the next-generation device N; in our case, we used wafers
from the first two lots in our dataset. In addition, the rest of the
methods assume access to the entire dataset of the previous-
generation device P. We perform 10 bootstrap iterations and,
in each iteration, we sample wp wafers uniformly at random
from the available Wp wafers and we perform 5-fold cross-
validation. The reported prediction errors are averaged over
these 50 iterations. We repeat the experiment by varying wg
in the range [10, 50]. We use the following expression for
evaluating prediction error of the HVM overall wafer yield of
device N:

Ty - |
6§ =100 ——=——
N

(42)

where Yy and Yy are the predicted and actual HVM wafer
yield values for device N, respectively.

Fig. 8 shows the yield prediction error as a function of the
number of available wafers wp in the training set. As may be
seen, BMF again outperforms the other methods, regardless
of the training set size. It shows a remarkably stable behav-
ior, maintaining steady HVM yield prediction error even when
the training set size is as small as 10 wafers. This shows
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Fig. 9.  Wafer yield prediction error of device N with wg = 20. (a) BME.
(b) Early learning.

that, by statistically fusing prior knowledge from the previous-
generation device P, BMF is capable of providing a very
accurate HVM yield prediction model for the new-generation
device N, based on only a few early characterization wafers.
Therefore, BMF can be used for fast and precise forecasting of
HVM wafer yield, without having to wait until a large volume
of data is collected. The second best method is the averaging
method. Its stable behavior implies that the wafer yield in the
first two lots that are included each time in the training set
is very similar. Averaging is outperformed by BMEF, since the
wafers in the first two lots are not necessarily representative
of HVM statistics. Success of early learning depends strongly
on the size of the training set. The prediction error is low for
large wp and exponentially increases as wp becomes smaller.
This is anticipated, since the information content of the train-
ing set is weakened, becoming biased and nonrepresentative
of HVM, and the regression model is unable to extrapolate
toward the tails of the distribution, resulting in large predic-
tion error. The accuracy of naive mixing improves slightly as
the number of training samples from device N increases. The
fact that the accuracy of this method is inferior implies that
the datasets from devices P and N do not exhibit strong sim-
ilarity and/or that the rich dataset from device P overshadows
the limited dataset from device N.

To gain better insight, we consider wp = 20 and we illus-
trate, in Fig. 9, the distribution of wafer level prediction error
for all wafers in the validation set for the BMF and early
learning methods. The prediction error is expressed as

-
6 =100 ————

i
N

(43)

where f’}v and Y]’;, are the predicted and actual wafer yield
values for the ith wafer, respectively. In each histogram, the
horizontal axis represents the prediction error range and the
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vertical axis represents the percentage of the wafers in the val-
idation set whose wafer yield is predicted within a given error
range. As may be seen, for the BMF method the histogram is
skewed to the left, showing that the wafer yield of the major-
ity of the wafers is predicted accurately, whereas for the early
learning method the histogram is skewed to the right, showing
that the wafer yield of about half of the wafers is predicted
with error greater than 12%.

IX. CONCLUSION

We introduced and compared several methods for yield
prediction during fab-to-fab production migration and dur-
ing transition to a new design generation. In these two yield
prediction scenarios, plenty of silicon data is already at our
disposal, therefore making the use of simulation-based meth-
ods, which may be time-consuming and of limited accuracy,
unnecessary. The proposed methods span a range of sophis-
tication levels and make use of increasingly rich datasets,
including HVM silicon data from the source fab or the
previous-generation device, as well as silicon data from a
few early characterization wafers from the target fab or the
new-generation device, respectively. All methods, except for
the simplest ones, capitalize on the existence of correlation
between the e-test profile of a wafer and its yield. Effectiveness
of the proposed methods was evaluated using large datasets
obtained from two different fabs which produced two gen-
erations of a Texas Instruments 65-nm RF transceiver device.
Among the options discussed, the most advanced BMF method
which intelligently combines data from the source and tar-
get fab or from the previous-generation and next-generation
devices, outperforms all other more straightforward methods
and offers a highly accurate yield prediction solution dur-
ing production migration and design generation transition,
respectively.

ACKNOWLEDGMENT

The authors would like to thank Texas Instruments Inc. for
providing the data on which this study was performed.

REFERENCES

[1] B. Liu, F. V. Fernandez, and G. G. E. Gielen, “Efficient and accurate sta-
tistical analog yield optimization and variation-aware circuit sizing based
on computational intelligence techniques,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 30, no. 6, pp. 793-805, Jun. 2011.

[2] F. Gong, Y. Shi, H. Yu, and L. He, “Variability-aware parametric yield
estimation for analog/mixed-signal circuits: Concepts, algorithms, and
challenges,” IEEE Des. Test., vol. 31, no. 4, pp. 6-15, Aug. 2014.

[3] A. Ahmadi et al.,, “Yield prognosis for fab-to-fab product migration,”
in Proc. IEEE VLSI Test Symp., Napa, CA, USA, 2015, pp. 1-6.

[4] A. Ahmadi er al., “Yield forecasting in fab-to-fab production migra-
tion based on Bayesian model fusion,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, Austin, TX, USA, 2015, pp. 9-14.

[51 A. Ahmadi er al., “Harnessing fabrication process signature for
predicting yield across designs,” in Proc. IEEE Int. Symp. Circuits Syst.,
Montreal, QC, Canada, 2016, pp. 898-901.

[6] S. S. Sapatnekar, “Overcoming variations in nanometer-scale technolo-
gies,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 1, no. 1,
pp- 5-18, Mar. 2011.

[7]1 L. Abdallah, H.-G. Stratigopoulos, S. Mir, and J. Altet, “Defect-oriented
non-intrusive RF test using on-chip temperature sensors,” in Proc. IEEE
VLSI Test Symp., Berkeley, CA, USA, 2013, pp. 1-6.



2132

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 12, DECEMBER 2017

P. Ttuero, M. Lépez-Vallejo, and C. Lépez-Barrio, “A 0.0016 mm?2
0.64 nj leakage-based CMOS temperature sensor,” Sensors, vol. 13,
no. 9, pp. 12648-12662, 2013.

B. Razavi, “CMOS technology characterization for analog and RF
design,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 268-276,
Mar. 1999.

M. Bhushan, A. Gattiker, M. B. Ketchen, and K. K. Das, “Ring oscil-
lators for CMOS process tuning and variability control,” IEEE Trans.
Semicond. Manuf., vol. 19, no. 1, pp. 10-18, Feb. 2006.

L.-T. Pang and B. Nikolic, “Measurements and analysis of process vari-
ability in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 5,
pp. 1655-1663, May 2009.

J. F. Swidzinski and K. Chang, “Nonlinear statistical modeling and yield
estimation technique for use in Monte Carlo simulations [microwave
devices and ICs],” IEEE Trans. Microw. Theory Techn., vol. 48, no. 12,
pp. 2316-2324, Dec. 2000.

A. Dharchoudhury and S.-M. Kang, “Worst-case analysis and opti-
mization of VLSI circuit performances,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 14, no. 4, pp. 481-492,
Apr. 1995.

M. Stein, “Large sample properties of simulations using Latin hypercube
sampling,” Technometrics, vol. 29, no. 2, pp. 143-151, 1987.

A. Singhee and R. A. Rutenbar, “From finance to flip flops: A study
of fast quasi-Monte Carlo methods from computational finance applied
to statistical circuit analysis,” in Proc. IEEE Int. Symp. Qual. Electron.
Design, San Jose, CA, USA, 2007, pp. 685-692.

R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. IEEE/ACM Design Autom. Conf., San Francisco,
CA, USA, 2006, pp. 69-72.

T. S. Doorn, E. J. W. Ter Maten, J. A. Croon, A. D. Bucchianico, and
0. Wittich, “Importance sampling Monte Carlo simulations for accurate
estimation of SRAM vyield,” in Proc. IEEE Solid-State Circuits Conf.,
Edinburgh, U.K., 2008, pp. 230-233.

A. Singhee and R. A. Rutenbar, “Statistical blockade: Very fast statistical
simulation and modeling of rare circuit events and its application to
memory design,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 28, no. 8, pp. 1176-1189, Aug. 2009.

N. E. Evmorfopoulos, G. I. Stamoulis, and J. N. Avaritsiotis, “A
Monte Carlo approach for maximum power estimation based on extreme
value theory,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 21, no. 4, pp. 415-432, Apr. 2002.

H.-G. Stratigopoulos, P. Faubet, Y. Courant, and F. Mohamed,
“Multidimensional analog test metrics estimation using extreme value
theory and statistical blockade,” in Proc. IEEE/ACM Design Autom.
Conf., Austin, TX, USA, 2013, pp. 1-7.

A. Singhee, J. Wang, B. H. Calhoun, and R. A. Rutenbar, “Recursive
statistical blockade: An enhanced technique for rare event simulation
with application to SRAM circuit design,” in Proc. IEEE Int. Conf.
VLSI Design, Hyderabad, India, 2008, pp. 131-136.

X. Li, J. Le, P. Gopalakrishnan, and L. T. Pileggi, “Asymptotic proba-
bility extraction for nonnormal performance distributions,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1, pp. 16-37,
Jan. 2007.

H. Liu, A. Singhee, R. A. Rutenbar, and L. R. Carley, “Remembrance
of circuits past: Macromodeling by data mining in large analog design
spaces,” in Proc. IEEE/ACM Design Autom. Conf., New Orleans, LA,
USA, 2002, pp. 437-442.

X. Li, Y. Zhan, and L. T. Pileggi, “Quadratic statistical MAX approxi-
mation for parametric yield estimation of analog/RF integrated circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 5,
pp. 831-843, May 2008.

L. Milor and A. Sangiovanni-Vincentelli, “Computing parametric yield
accurately and efficiently,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design, Santa Clara, CA, USA, 1990, pp. 116-119.

C. M. Kurker, J. J. Paulos, R. S. Gyurcsik, and J.-C. Lu,
“Hierarchical yield estimation of large analog integrated cir-
cuits,” IEEE J. Solid-State Circuits, vol. 28, no. 3, pp. 203-209,
Mar. 1993.

H.-G. Stratigopoulos et al., “Evaluation of low-cost mixed-signal test
techniques for circuits with long simulation times,” in Proc. IEEE Int.
Test Conf., Anaheim, CA, USA, 2015, pp. 1-7.

V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory,
and Methods. New York, NY, USA: Wiley, 2007.

J. H. Friedman, “Multivariate adaptive regression splines,” Ann. Stat.,
vol. 19, no. 1, pp. 1-67, 1991.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

P. N. Variyam, S. Cherubal, and A. Chatterjee, “Prediction of ana-
log performance parameters using fast transient testing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 3, pp. 349-361,
Mar. 2002.

N. Kupp, M. Slamani, and Y. Makris, “Correlating inline data with final
test outcomes in analog/RF devices,” in Proc. IEEE Design Autom. Test
Europe Conf., Grenoble, France, 2011, pp. 1-6.

I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
H.-G. Stratigopoulos, P. Drineas, M. Slamani, and Y. Makris, “RF spec-
ification test compaction using learning machines,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 18, no. 6, pp. 998-1002, Jun. 2010.
S. Biswas, P. Li, R. D. Blanton, and L. T. Pileggi, “Specification test
compaction for analog circuits and MEMS,” in Proc. IEEE Design
Autom. Test Europe Conf., Munich, Germany, 2005, pp. 164—169.
H.-G. D. Stratigopoulos and Y. Makris, “Nonlinear decision boundaries
for testing analog circuits,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 24, no. 11, pp. 1760-1773, Nov. 2005.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182-197, Apr. 2002.

B. W. Silverman, Density Estimation for Statistics and Data Analysis,
vol. 26. London, U.K.: CRC Press, 1986.

X. Li, W. Zhang, F. Wang, S. Sun, and C. Gu, “Efficient parametric yield
estimation of analog/mixed-signal circuits via Bayesian model fusion,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 2012, pp. 627-634.

F. Wang, W. Zhang, S. Sun, X. Li, and C. Gu, “Bayesian model fusion:
Large-scale performance modeling of analog and mixed-signal circuits
by reusing early-stage data,” in Proc. IEEE/ACM Design Autom. Conf.,
Austin, TX, USA, 2013, pp. 1-6.

C. Gu, E. Chiprout, and X. Li, “Efficient moment estimation with
extremely small sample size via Bayesian inference for analog/mixed-
signal validation,” in Proc. IEEE/ACM Design Autom. Conf., Austin,
TX, USA, 2013, pp. 1-7.

S. Sun et al., “Indirect performance sensing for on-chip analog self-
healing via Bayesian model fusion,” in Proc. IEEE Custom Integr.
Circuits Conf., San Jose, CA, USA, 2013, pp. 1-4.

J. Liaperdos et al., “Fast deployment of alternate analog test using
Bayesian model fusion,” in Proc. IEEE Design Autom. Test Europe
Conf., Grenoble, France, 2015, pp. 1030-1035.

C. Fang et al., “Efficient bit error rate estimation for high-speed link
by Bayesian model fusion,” in Proc. IEEE Design Autom. Test Europe
Conf., Grenoble, France, 2015, pp. 1024-1029.

Ali Ahmadi (S’11) received the B.S. degree in com-
puter engineering from the University of Isfahan,
Isfahan, Iran, in 2006, and the M.S. degree in com-
puter engineering from the University of Tehran,
Tehran, Iran, in 2009. He is currently pursuing
the Ph.D. degree in electrical engineering with
the University of Texas at Dallas, Richardson,
TX, USA.

His current research interests include applications
of machine learning and data mining in semicon-
ductor manufacturing for test cost reduction, yield

improvement, and defect modeling.
Mr. Ahmadi was a recipient of the Best Paper Award from the 2015 IEEE
VLSI Test Symposium.



AHMADI et al.: YIELD FORECASTING ACROSS SEMICONDUCTOR FABRICATION PLANTS AND DESIGN GENERATIONS

Haralampos-G.  Stratigopoulos  (S’02-M’07)
received the Diploma degree in electrical and
computer engineering from the National Technical
University of Athens, Athens, Greece, in 2001,
and the Ph.D. in electrical engineering from Yale
University, New Haven, CT, USA, in 2006.

He was a Researcher with the French National
Center for Scientific Research (CNRS) at TIMA
Laboratory, Grenoble, France, from 2007 to 2015.
He is currently a Researcher with the CNRS at
LIP6 Laboratory, Paris, France. His current research
interests include design-for-test and built-in test for analog, mixed-signal, RF
circuits and systems, computer-aided design, and machine learning.

Dr. Stratigopoulos was a recipient of the Best Paper Award in the 2009,
2012, and 2015 IEEE European Test Symposium (ETS). He was the General
Chair of the 2015 IEEE International Mixed-Signal Testing Workshop,
and the Program Chair of the 2017 IEEE ETS. He has served on the
Technical Program Committees of Design, Automation, and Test in Europe
Conference, the IEEE International Conference on Computer-Aided Design,
the IEEE VLSI Test Symposium, the IEEE ETS, the IEEE International Test
Conference, and several others international conferences. He is an Associate
Editor of Springer Journal of Electronic Testing: Theory and Applications,
the IEEE Design and Test Magazine, and the IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Ke Huang (S’10-M’12) received the B.S. and M.S.
degrees in electrical engineering from Joseph Fourier
University (Grenoble I University), Grenoble,
France, in 2006 and 2008, respectively, and the
Ph.D. degree in electrical engineering from the
University of Grenoble, Grenoble, in 2011.

He was a Post-Doctoral Research Associate with
the University of Texas at Dallas, Richardson, TX,
USA, from 2012 to 2014. In 2014, he joined the
Department of Electrical and Computer Engineering,
San Diego State University, San Diego, CA, USA,
where he is currently an Assistant Professor. His current research interests
include very-large-scale integration (VLSI) testing and security, computer-
aided design of integrated circuits, and intelligent vehicles.

Prof. Huang was a recipient of the Ph.D. Fellowship from the French
Ministry of National Education from 2008 to 2011, and the Best Paper Award
from the 2013 Design Automation and Test in Europe Conference and the
2015 IEEE VLSI Test Symposium.

Amit Nahar received the M.S. degree in electri-
cal and computer engineering from Portland State
University, Portland, OR, USA, in 2005.

He joined Texas Instruments Inc., Dallas, TX,
USA, in 2005, where he is currently a Test Manager,
researching on defining, architecting, and develop-
ing methodologies for adaptive test and volume test,
and manufacturing and design data analytics. He
has published over 18 papers and holds three U.S.
patents.

Bob Orr (M’08) received the B.Sc. degree in elec-
trical engineering from the Rose-Hulman Institute of
Technology, Terre Haute, IN, USA, in 1980.

He is currently an Engineering Manager with the
Test Technology and Product Engineering Group,
Texas Instruments Inc., Dallas, TX, USA, defining
standards, methods, and tools to support data acqui-
sition and integration infrastructure requirements for
TI manufacturing and business group engineers,
including advanced statistical applications for pro-
duction test. Roles at TI have included Factory and
Business Product and Test engineering for standard, custom very large-scale
integration, and custom memory products.

2133

Michael Pas (M’05) received the Ph.D. degree in
physical chemistry from Texas A&M University,
College Station, TX, USA, in 1989.

He was a Post-Doctoral Research Fellow with
the Center for Numerical Intensive Computing, IBM
Kingston, Kingston, NY, USA, in 1991. He joined
Texas Instruments Inc., Dallas, TX, USA, in 1991,
where he has held a variety of engineering and
management positions. He has published over 35
papers in Materials Research Society, Engineering
and Computer Science, and IEEE journals. He holds
19 U.S. patents.

John M. Carulli, Jr, (SM’12) received the
M.S.E.E. degree from the University of Vermont,
Burlington, VT, USA, in 1990.

He leads the Test organization at GlobalFoundries
Fab8, Malta, NY, USA, researching on leading edge
CMOS technologies. He was with Texas Instruments
Inc., Dallas, TX, USA, for 21 years, where he was a
Distinguished Member of the Technical Staff. While
in the Analog Engineering Operations organization,
he led test and design data mining methods tar-
geted at test cost reduction. While in the Silicon
Technology Development organization, he was the Manager of the Product
Reliability Group, responsible for product and design reliability activities for
new technology development. He holds seven U.S. patents and has over 50
publications in the areas of reliability, test, and process development.

Mr. Carulli was a co-recipient of two Best Paper Awards and two Best
Paper Nominations researching in close collaboration with university partners.
He serves on the Organizing or Program Committees of several confer-
ences, including the International Test Conference, VLSI Test Symposium,
and European Test Symposium.

0 Yiorgos Makris (SM’08) received the Diploma
Tl degree from the University of Patras, Patras, Greece,
in 1995, and the M.S. and Ph.D. degrees from the
University of California at San Diego, La Jolla, CA,
USA, in 1998 and 2001, respectively, all in com-
puter engineering.

After spending a decade on the faculty of
Yale University, New Haven, CT, USA, he joined
University of Texas at Dallas, Richardson, TX,
USA, where he is currently a Professor of Electrical
Engineering, leading the Trusted and Reliable
Architectures Research Laboratory. His current research interests include
applications of machine learning and statistical analysis in the development of
trusted and reliable integrated circuits and systems, with particular emphasis
in the analog/RF domain.

Prof. Makris was a recipient of the 2006 Sheffield Distinguished Teaching
Award, and the Best Paper Awards from the 2013 Design Automation
and Test in Europe Conference and the 2015 VLSI Test Symposium.
He serves as an Associate Editor of the IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY and the IEEE DESIGN AND
TEST OF COMPUTERS Periodical. He has also served as a Guest Editor for
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, and
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


