
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3049285, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

On Improving Hotspot Detection Through
Synthetic Pattern-Based Database Enhancement

Gaurav Rajavendra Reddy, Member, IEEE,
Constantinos Xanthopoulos, Member, IEEE,

Yiorgos Makris, Senior Member, IEEE

Abstract—Design hotspots are layout patterns which may cause defects
due to complex design and process interactions. Several machine learning
and pattern matching-based methods have been proposed to identify and
correct them early during design stages. However, almost all of them
suffer from high false-alarm rates, mainly because they are oblivious to
the root causes of hotspots. In this work, we seek to address this limitation
by using a novel database enhancement approach through synthetic
pattern generation based on carefully crafted design of experiments.
We evaluate the effectiveness of the proposed method using industry-
standard tools and designs and demonstrate more than 3X reduction in
classification error in comparison to the state-of-the-art.

I. INTRODUCTION

Photolithography continues to remain at the heart of Integrated
Circuit (IC) fabrication. In the latest nodes, it has become extremely
challenging due to complex design and process interactions. To
mitigate some of the lithography-related issues and ensure reliable
manufacturing, various Resolution Enhancement Techniques (RETs)
such as Optical Proximity Correction (OPC), Multi-patterning, Phase-
shifted masks, etc., are used. Despite employing RETs, certain areas
in the design (layout), which pass Design Rule Checks (DRCs) and
comply with Design For Manufacturability Guidelines (DFMGs),
show abnormal and unexplained variation, causing parametric or
hard defects. Such areas are termed as “Hotspots” (popularly known
as “Lithographic hotspots” or “Design weak-points”). The cause of
hotspots is mostly attributed to their neighborhood (i.e., a set of poly-
gons surrounding the hotspot area) which causes complex interactions
of light during the lithography process. Discovering hotspots in later
stages of fabrication, especially after mask production, may result in
significant financial losses to the foundry. Therefore, there is a great
incentive to identify and correct them early in the design stage itself.

Hotspot detection has been a topic of high interest in the past
decade. Authors of [1] proposed Pattern Matching (PM) techniques,
wherein a new design is compared to a database of previously seen
hotspots and potential hotspot areas are flagged. While these tech-
niques are helpful in quickly analyzing large layouts and identifying
known hotspots, they also cause large numbers of false alarms. To
address this issue, Machine Learning (ML) based methods were
proposed. These methods essentially “learn” (are trained) from a
known database and use the trained model to make predictions
on new patterns. In the past decade, we have witnessed several
variants of ML-based hotspot detection flows, wherein, the usage
of Support Vector Machines (SVMs), Artificial Neural Networks
(ANNs), multiple/meta classifiers [2], imbalance-aware learning [3],
hybrid PM-ML solutions [4], and more recently, deep learning [5]
was proposed. Most of these methods, however, still suffer from high
false-alarm rates when exposed to Hard-To-Classify (HTC) patterns.
This is mainly because these techniques are oblivious to the root
causes of hotspots and ignore the fine nm-level differences between
similar-looking patterns, which play a significant role in making a
pattern a hotspot or a non-hotspot.

In this work, we take a novel approach to improving hotspot
detection by increasing the information-theoretic content of the

G. R. Reddy, C. Xanthopoulos, and Y. Makris are with the Department
of Electrical and Computer Engineering, The University of Texas at Dallas,
Richardson, TX 75080 USA (e-mail: gaurav.reddy@utdallas.edu; constanti-
nos.xanthopoulos@utdallas.edu; yiorgos.makris@utdallas.edu).

training dataset. We call this process “database enhancement” and
it involves synthetic pattern generation and design of experiments.
Combined, these procedures enable a machine learning entity to
effectively learn the “root cause features” of hotspots. They are also
“method agnostic”, as they can be used with any of the previously
proposed hotspot detection methods to improve their performance.

II. PROPOSED METHODOLOGY

The proposed hotspot detection flow is shown in Figure 1. A
set of known hotspots and non-hotspots gathered from prior expe-
rience form the initial database. Design of Experiments (DOEs) is
then performed to increase the information-theoretic content of the
initial database. As a part of these experiments, synthetic variants
(patterns) of known hotspots are generated and subjected to process
simulations (litho/litho-etch) to determine which of the patterns are
hotspots. Synthetic patterns, along with the initial database, form the
enhanced database. Patterns in the enhanced database are converted
into numerical feature vectors. Feature vectors are then subjected to
dimensionality reduction and a machine learning-based classifier is
trained using the dimensionality-reduced feature vectors. The trained
model is then stored to evaluate future incoming designs. When a
foundry receives a new design from its customers, it transforms it
into patterns and feature vectors, and predictions are made using
the trained classifier. Patterns classified as hotspots are subjected to
further investigation, flagged as areas of interest for inline inspections,
and used to drive design changes.

A. Synthetic Pattern Generation and DOEs

For every hotspot in the initial database, multiple synthetic patterns
are generated by changing one or more features at a time. Features
such as corner-to-corner distances, jogs, line-end positions, layer
spacing, layer area, etc., are varied. Figure 2(a) shows one such
hotspot and Figures 2(b-f) show some of its synthetic variants. A
time-efficient method for varying these features relies on perpendic-
ularly moving the edges of one or more polygons in each snippet
by a randomly sampled distance. This approach allows to quickly
generate multiple patterns whose variance can be controlled by two
parameters. The first parameter, p, is the probability of any given
edge to move or remain stationary. By increasing this probability, we
effectively increase the number of polygons and their edges that are
altered in the snippets. The second parameter, d, is associated with a
distribution of distances (Probability Density Function (PDF)), which
is sampled for every polygon edge selected by the first parameter.
The sampled value denotes the distance by which the edge will
be displaced. These distance values follow a normal distribution
centered at 0. In this way, most synthetic patterns are slight variants
of the original pattern, thereby enabling us to learn the root causes
effectively. Parameters p and d can be varied based on Process
Design Kit (PDK)/domain-specific information. For instance, higher p
values can be used in Extreme Ultra-Violet (EUV) lithography-based
processes because of their relaxed design rules in comparison to Deep
Ultra-violet (DUV) lithography [6]. Similarly, the parameter d may
depend on the manufacturing grid size, permitted widths/spaces, etc.
The pattern generation procedure is detailed in Algorithm 1.

As expected, the above-mentioned procedure results in a plethora
of patterns, many of which might not pass the DRC. To ensure that
valid layout topologies are generated and to make this process run-
time efficient, we implemented a minimal DRC engine in Python,
which we execute after every pattern is generated. This check
ensures that most of the generated patterns are valid. However, since
implementing complex design rule checks becomes complicated, all
synthetic patterns which pass this minimal DRC check are also

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:07:12 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3049285, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Known
Non-

Hotspots

Known
Hotspots

Hotspots

Non-
Hotspots

Initial database

Enhanced
database

Training phase

Testing phase

Synthetic
pattern

generation

Lithographic
simulations

Feature
extraction

Classification

Feature
extraction

Incoming
design layout

Fig. 1. The proposed machine learning-based Hotspot detection flow

(c)(a) (b)

(d) (f)(e)

Fig. 2. (a) A hotspot pattern, (b-f) Synthetic patterns generated from pattern
(a). Red markers indicate the subtle differences from pattern (a)

subjected to a full DRC using CalibreDRC. Through this approach,
we can ensure that the vast majority of the generated patterns
are DRC clean and usable. Synthetic patterns are then subjected
to lithographic simulations (or validated through test-silicon-based
experiments [7]) to ascertain the ground truth about them. Synthetic
patterns, along with their litho simulation results, are added into the
initial database in order to create the enhanced database/dataset.

B. Feature Extraction

In this work, we implement a slightly varied version of the
Fragment Transform (FT) [8] method, which we call Fragment
Transform Plus (FTP). It is a sophisticated Feature Extraction (FE)
method, wherein an entire layout is subjected to fragmentation using
OPC tools and transformed into a large set of fragments, as shown
in Figure 3(a). Such an abstraction makes this FE method flip-,
mirror- and rotation-invariant. Post-fragmentation, every fragment is
uniquely identified and analyzed individually to make hotspot/non-
hotspot decisions. To obtain the context of a fragment, a metric called
Radius Of Influence (ROI) is used. The ROI is determined by the
lithography tools and the wavelength of light used for patterning.
As shown in Figure 3(a), if a circle with radius ROI is drawn by
centering on the fragment under consideration, it is assumed that
this circle encloses all the fragments that play a role in causing
a hotspot at its center. The fragment under consideration is called
the primary fragment. Its parallel neighbors on either side, along a
line perpendicular to its surface, are called secondary fragments. The
lateral neighbors of both primary and secondary fragments are called
tertiary fragments. The primary fragment, along with its secondary
and tertiary fragments, together can be regarded as a “pattern”. To
accurately capture the characteristics of a pattern, the following set

def GenerateSyntheticPatterns(KnownHotspot):
Input: A Known Hotspot, Synthetic pattern count, distance PDF,

Edge PDF
Result: Synthetic variants of the Hotspot

1 for i in range(SynPatCount):
2 HotspotPolys = All polygons in the original hotspot pattern
3 for polygon in HotspotPolys:

/* Sample the no. of edges to be varied
*/

4 EdgeCount = Sample from Edge PDF
5 for j in range(EdgeCount):
6 while EdgeAttempts ≤ MaxEdges:

/* Randomly select an edge */
7 edge = GetRandomEdge(polygon)
8 while DistAttempts < FixedCount:
9 dist = Sample from distance PDF

10 polygon = polygon.MoveEdge(edge, dist)
/* Perform checks to avoid

simple DRC errors */
11 MinimalDRC(ModifiedPattern)
12 if MinimalDRC == Pass:
13 go to line 5
14 else:
15 polygon = UnmodifiedPolygon
16 DistAttempts+ = 1
17 try a different dist value (go to line 8)
18 EdgeAttempts+ = 1
19 try a different edge (go to line 6)

/* All polygons with/without updates,
together form the modified pattern */

20 SyntheticPattern = All Polygons (including modifications)
/* Return patterns with variations */

21 return SyntheticPatterns

Algorithm 1: Synthetic pattern generation

of parameters are measured for every fragment within a pattern1:

fragment parameters = [len, ext space,

int space, C corn, AC corn, F0 offset]
(1)

where: len: length of a fragment; ext space: distance to the
externally opposite fragment; int space: distance to the in-
ternally opposite fragment; C corn: corner information (con-
vex/concave/no corner) from the clockwise end of the fragment;
AC corn: corner information from the anti-clockwise end of the
fragment; F0 offset: offset of secondary fragments w.r.t. the loca-
tion of the primary fragment.

The fragment parameters for a secondary fragment of a sample
pattern are depicted in Figure 3(b). To generate the complete feature
vector, the parameters from all fragments within a given ROI are
concatenated together. Given that the same ROI can contain different

1F0 offset is not measured for primary and tertiary fragments.
ext space is not measured for some secondary and tertiary fragments which
are along the periphery of a pattern. Such features are omitted because they are
either redundant or they are unnecessary to accurately capture the information
within a pattern.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:07:12 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3049285, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

ex
t_

sp
ac

e

F1b

F0-2

F0+3
…

F0

F1

F1_in

F0_in

F0-1

F0
-3

F0+1 F0+2F0_in+1

F0
_i

n+
2 F0_in-1

F0_in-2

…

… …

…

……

… …

…

Fx+1

Primary fragment

Secondary fragment

Tertiary Fragment (TF)

Clockwise TF

Fx-1 Anti-clockwise TF

Fragment outside ROI

in
t_

sp
ac

e

len

F0_offset

AC_cornC_corn

-ve
offset

+ve
offset

(a) (b) (c)

Fig. 3. Feature extraction (a) Key components of Fragment Transform Plus (FTP), (b) Fragment parameter measurements corresponding to a secondary
fragment (c) Patterns illustrating the difference between FT and FTP

number of fragments in different instances, similar to [8], the ROI is
abstracted as neighboring fragment depth in order to ensure that all
patterns result in the same number of features/dimensions. Essentially,
a fixed number of perpendicularly opposite fragments, as well as
lateral fragments, are considered as the neighboring fragments of the
primary fragment. The depth value is chosen such that all fragments
within the ROI are included in the pattern.

Differences between FT and FTP: To minimize the information
loss during the FE procedure, as well as the total number of resultant
features, we made the following changes to the original FT method:
(1) A new fragment parameter F0 offset is added: Although
not apparent in [8], the FT method fails to accurately capture the
spatial arrangement of fragments which are located slightly farther
from the primary fragment. For instance, the previously proposed FT
method produces the same feature vector for both patterns shown
in Figure 3(c), even though they are slightly different from each
other. As noted by the authors of [3], even minor nm-level variation
could mean the difference between a pattern becoming a hotspot or
a non-hotspot. Therefore, it is necessary to accurately capture such
differences between patterns while performing FE. To avoid such
transformation loss, we introduce the new fragment parameter called
F0 offset. F0 offset is the offset of the center of a secondary
fragment w.r.t. the center of the primary fragment, along the axis
of orientation of the primary fragment. F0 offset is measured for
all secondary fragments and it can be either positive or negative.
Offset of the secondary fragment in the anticlockwise direction of
the primary fragment is considered as negative, whereas offset in the
clockwise direction is considered positive.
(2) Fragment orientation is omitted: Fragment-based FE meth-
ods are preferred to be mirror-, flip-, and rotation-invariant. Such
orientation-invariance assists in generating smaller training datasets.
The previously proposed FT method, however, includes fragment
orientation as one of its features which makes it orientation-specific.
Therefore, to make FTP truly orientation invariant, we omit the
fragment orientation parameter2.
(3) Both clockwise and anticlockwise corners of a fragment are
considered: As per [8], it is unclear whether the FT method records
information related to both corners of a fragment. In FTP, however,
both clockwise and anticlockwise corner information is considered.

C. Classification

Hotspot detection requires a robust two-class classifier which can
learn a separation boundary between hotspots and non-hotspots with

2Orientation-invariant FE must be used only on metal layers which are
patterned using symmetric illumination shapes in scanner optics. In cases of
asymmetric illumination, the orientation feature must be included as part of
the feature vector.

maximum margin. In this work, a non-linear SVM with a Radial
Basis Function (RBF) kernel is used.

III. EXPERIMENTAL RESULTS

The objective of this work is to show that enhancing the training
dataset using synthetic patterns indeed increases its information-
theoretic content and, in turn, reduces false-alarms. To demonstrate
this, we implemented the ML-based hotspot detection flow shown in
Figure 1. The classifier in this flow is trained with and without an
enhanced dataset and tested against a common testing dataset. In the
rest of the paper, we refer to the classifier trained with an enhanced
dataset as “enhanced classifier” and to the one trained with the non-
enhanced dataset as “non-enhanced classifier”. The non-enhanced
classifier is the State-Of-The-Art (SOTA). The difference between
the prediction results of the two classifiers indicates the effectiveness
of the proposed approach.

A. Experimental Setup

To generate baseline designs for our analysis, we obtained several
Register-Transfer-Level (RTL) codes from OpenCores, synthesized,
placed and routed them using the Nangate Open Cell Library (OCL),
which is based on a 45nm PDK [9]. All layouts were subjected
to full DRC and were found to be DRC clean. The Metal1 (M1)
layer of these layouts was subjected to computation-intensive full-
chip lithographic simulations using the Calibre Litho-Friendly-Design
(LFD) tool-kit and the litho models provided in the PDK. These sim-
ulations ascertained the ground truth by identifying all the hotspots
in the layouts. All layouts were then converted to patterns and
feature vectors using the FTP method described in Section II-B.
To implement FTP, we used Calibre OPCpro for fragmentation and
Calibre Standard Verification Rule Format (SVRF) technology for
feature extraction. An ROI of 500nm was considered. The ROI value
was abstracted as a neighboring fragment depth value of 4. After
filtering out the redundant features, which are inherently created by
the FTP method, the resulting dataset consisted of 519 features.

Non-Enhanced Training Dataset: In reality, to train hotspot de-
tection models, foundries gather patterns from the first few designs
manufactured in a given technology node. This dataset is usually
significantly smaller in comparison to the large number of patterns
which will be tested using the trained models over the lifetime of the
node. To replicate such a scenario, we randomly sample two layouts
and obtain a small dataset containing a total of only 100,000 patterns,
which we use as our non-enhanced training dataset.

Enhanced Training Dataset: The non-enhanced dataset generated
in the previous step contains 1932 hotspots. For every one of these
hotspots, we used our method to generate 500 synthetic variants.
Of them, an average of approximately 484 passed DRC and, among

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:07:12 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3049285, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

TABLE I
TRAINING AND TESTING DATASETS

Layout Size Pattern
Count HT# NHT#

NON-ENHANCED TRAINING DATASET
wb conmax 205 µm × 205 µm 50,000 1,236 48,764
Ethernet 360 µm × 360 µm 50,000 696 49,304
Total Not applicable 100,000 1,932 98,068

ENHANCED TRAINING DATASET
Non-Enhanced
Dataset Not applicable 100,000 1,932 98,068

Synthetic patterns Not applicable 386,136 192,680 193,456
Total Not applicable 486,136 194,612 291,524

TESTING DATASET
SPI 66 µm x 66 µm 326,394 5,768 320,626
TV80 96 µm x 96 µm 789,253 16,736 772,517
AES (Encrypt) 160 µm x 160 µm 1,999,419 47,700 1,951,719
HTC patterns Not applicable 384,736 191,345 193,391
Total Not applicable 3,499,802 261,549 3,238,253

them, about 200 were randomly chosen for training. Litho simulations
were performed on all DRC-clean synthetic patterns in order to obtain
the ground truth (i.e., whether they are hotspots or non-hotspots). The
synthetic patterns along with the patterns in the non-enhanced dataset,
together form the “Enhanced Training Dataset”.

Testing Dataset: To mimic the real-life scenario wherein new
layouts are tested against pre-trained hotspot detection models, we
evaluate the effectiveness of our method using three complete layouts
which were never used during training. All patterns from these three
layouts, together, comprise our testing dataset.

Further details about all the datasets are shown in Table I.
Hard-To-Classify Test Patterns: The authors of [10] have performed

an interesting study, wherein they compare the layout patterns used
during Technology Development (TD) against the patterns found in
product designs. They discovered that, while some patterns in the
product designs were topologically similar to the patterns seen during
TD, the product designs had many more dimensional variations of
those patterns. In a separate study, authors of [3] note that even minor
variations in the widths and spaces between polygons of a pattern
can mean the difference between a pattern becoming a hotspot or
a non-hotspot. If we extend the results of these studies to hotspot
detection, we can envision a scenario wherein a hotspot detection
model is trained using a certain hotspot but tested with many more
variations of that same hotspot, which could be either hotspots or
non-hotspots. Such non-hotspot patterns, which closely resemble the
known hotspot, are the real source of false alarms as they lie in close
proximity to the training hotspots in the hyper-dimensional space and
are truly hard-to-classify.

Upon detailed analysis, we found that the test layouts (i.e., the
designs SPI, TV80 and AES, shown in Table I), do not contain such
HTC patterns within them. Therefore, to mimic a scenario witnessed
by an actual foundry, we further expanded the testing dataset by
adding approximately 200 synthetic patterns – which were never used
during training – for each known hotspot. These act as HTC patterns
in the testing dataset and assist in determining whether the trained
model is truly robust in preventing false alarms. Details about these
patterns are shown in Table I. In the rest of the paper, test patterns
other than the HTC patterns (i.e., patterns from SPI, TV80 and AES
designs), are referred to as Easy-To-Classify (ETC) patterns.

To further demonstrate the importance of including HTC patterns in
the testing dataset and to contrast their distribution against the ETC
patterns, we perform Principal Component Analysis (PCA) on the
training dataset and project both the ETC and the HTC patterns onto
the same space. For the sake of brevity, we plot only 10 randomly

−3
−2

−1
0

1
2

3 −3

−2

−1

0

1

2

3−2

0

2

pca− 1
pca− 2

pc
a
−

3

Train Hotspot
ETC Test Hotspot
ETC Test Non-Hotspot

−3
−2

−1
0

1
2

3 −3

−2

−1

0

1

2

3−2

0

2

pca− 1
pca− 2

pc
a
−

3

Train Hotspot
ETC Test Hotspot
ETC Test Non-Hotspot

Fig. 4. Distribution of ETC test patterns w.r.t. training hotspots

−3
−2

−1
0

1
2

3 −3

−2

−1

0

1

2

3−2

0

2

pca− 1
pca− 2

pc
a
−

3

Train Hotspot
ETC Test Hotspot
ETC Test Non-Hotspot
HTC Test Hotspot
HTC Test Non-Hotspot

−3
−2

−1
0

1
2

3 −3

−2

−1

0

1

2

3−2

0

2

pca− 1
pca− 2

pc
a
−

3

Train Hotspot
ETC Test Hotspot
ETC Test Non-Hotspot
HTC Test Hotspot
HTC Test Non-Hotspot

Fig. 5. Distribution of ETC and HTC test patterns w.r.t. training hotspots

sampled hotspots from the training dataset, their corresponding HTC
test patterns (2000 in total), and the same number of randomly
sampled ETC test patterns. Figure 4 shows the distribution of just the
ETC test patterns w.r.t. to the training hotspots. Figure 5 is similar
to Figure 4 but it also includes the HTC test patterns. By contrasting
the two figures, we observe that HTC test non-hotspots are located in
much closer proximity to the training hotspots, when compared to the
proximity of ETC test non-hotspots to training hotspots. This makes
HTC test non-hotspots more prone to be misclassified as hotspots
and, therefore, their presence in the testing dataset is vital for accurate
evaluation of the effectiveness of hotspot detection methods.

B. Experimental Analysis

We use an SVM with an RBF kernel as a two-class classifier. We
used the grid search method with 3-fold cross validation and swept
through 546 hyper-parameter combinations for both non-enhanced
classifiers (SOTA) and enhanced classifiers (proposed) to choose their
optimal hyper-parameters, as detailed in [11]. They were trained using
their corresponding training datasets shown in Table I, and tested
using the common testing dataset. The formulas for various metrics
used in our analysis are the same as in [12]. The test results for
ETC patterns and HTC patterns are shown in Table II. We observe
that with average hotspot hit rates of about 89% and false positive
rates less than 2%, both the SOTA and the proposed method perform
similarly well on ETC test patterns. In case of HTC patterns, however,
the SOTA shows very high rate of false positives. The proposed
method, on the other hand, reduces false positives by about 69% (%
change from 40.42% to 12.41%) in comparison to the SOTA. We also
obtained the Matthews Correlation Coefficient (MCC) which is an
effective indicator of the quality of two-class classification, especially

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:07:12 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3049285, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

TABLE II
TEST RESULTS FROM NON-ENHANCED AND ENHANCED CLASSIFIERS

Test
Layout

SOTA (Non-enhanced) This work (Enhanced)
HT hit

rate (%)
NHT hit
rate (%)

FP rate
(%)

FN rate
(%)

Total Err.
rate (%) MCC HT hit

rate (%)
NHT hit
rate (%)

FP rate
(%)

FN rate
(%)

Total Err.
rate (%) MCC

TEST RESULTS FOR ETC PATTERNS (WITH DIMENSIONALITY REDUCTION)
SPI 91.71 98.47 1.50 0.15 1.65 0.68 92.27 99.10 0.88 0.14 1.02 0.77
TV80 86.97 97.92 2.04 0.28 2.31 0.63 88.61 98.01 1.95 0.24 2.18 0.65
AES 87.27 98.03 1.92 0.30 2.22 0.66 88.30 98.02 1.93 0.28 2.21 0.67
Average 88.65 98.14 1.82 0.24 2.06 0.66 89.73 98.38 1.59 0.22 1.80 0.70

TEST RESULTS FOR HTC PATTERNS (WITH DIMENSIONALITY REDUCTION)
HTC Patterns 97.78 19.58 40.42 1.10 41.52 0.28 99.27 75.31 12.41 0.36 12.77 0.77

TEST RESULTS FOR ETC PATTERNS (WITHOUT DIMENSIONALITY REDUCTION)
SPI 91.47 98.56 1.41 0.15 1.56 0.69 92.29 99.16 0.82 0.14 0.96 0.78
TV80 86.21 98.04 1.92 0.29 2.21 0.64 88.56 98.10 1.86 0.24 2.10 0.66
AES 86.50 98.15 1.81 0.32 2.13 0.67 88.04 98.11 1.85 0.29 2.13 0.67
Average 88.06 98.25 1.71 0.25 1.97 0.67 89.63 98.46 1.51 0.22 1.73 0.70

TEST RESULTS FOR HTC PATTERNS (WITHOUT DIMENSIONALITY REDUCTION)
HTC Patterns 97.64 20.14 40.14 1.18 41.32 0.28 99.27 75.85 12.14 0.36 12.50 0.77

while handling imbalanced datasets. The MCC value ranges from -1
to +1, indicating the quality of prediction from random to perfect,
respectively. The MCC value for the enhanced classifier is about 0.7
for predictions on ETC patterns and about 0.77 for predictions on
HTC patterns, thereby, confirming its effectiveness.

The first half of the results shown in Table II were obtained using
dimensionality-reduced datasets. Specifically, PCA was used for
dimensionality reduction and only the first 250 principal components
were used for training and testing. To verify whether PCA introduces
any additional error into the analysis, we repeated the experiments
without PCA (i.e., using all 519 features). The results are shown in the
second half of Table II. By comparing the corresponding results with
and without dimensionality reduction, we observe that the difference
across all metrics is less than 0.6%, indicating that dimensionality
reduction does not introduce any significant error into the analysis.
Supplemental experimental analyses can be found in [11].

C. Applicability to Newer Technology Nodes

Owing to their extremely complex fabrication processes, newer
technology nodes – such as 10 nm and 7 nm – introduce a large
number of design constraints. Therefore, for our method to remain
effective in synthetically enriching the information-theoretic content
of hotspot databases in these technologies, we must ensure that, de-
spite these constraints, it continues to generate DRC-clean patterns3.
To this end, we implemented and evaluated it using an industry-
standard, Extreme UltraViolet Lithography (EUV)-based 7nm PDK
[6]. Specifically, we first captured 1000 patterns from a full-chip
design and used them as a proxy for the initial hotspot database. For
every pattern in this dataset, we generated 200 synthetic variants using
the methodology described in Section II-A. We then subjected them
to a full DRC and found that approximately 41.97% were DRC clean.
This result demonstrates that the pattern variations (jogs, widths,
spaces, etc.) which are carefully introduced by our method lead to
legal patterns despite the more complex design constraints. While this
percentage is lower than the 96% DRC pass rate of synthetic patterns
in 45 nm technology, it is not a major impediment because synthetic
pattern generation and the corresponding lithography simulations are

3Based on the results reported herein, we conjecture that, given sufficient
DRC-clean synthetic variants of known hotspots, the ability of SOTA ML-
based hotspot detection methods to learn the root cause is significantly
improved in any technology. Regrettably, due to the lack of publicly available
lithography models, we cannot apply and evaluate our entire flow in these
newer technologies. For the same reason, we can also not evaluate our flow
on the popular ICCAD’12 dataset or its recent derivative ICCAD’19 dataset.

highly parallelizable and, more importantly, one-time procedures.
Therefore, with the understanding that slightly higher computational
resources may be required due the increased complexity of the
fabrication process, the proposed method remains highly applicable
to newer technology nodes.

IV. CONCLUSION

We proposed a novel database enhancement approach for ML-
based hotspot detection and experimentally demonstrated more than
3X reduction in prediction error in comparison to the state-of-the-art.

ACKNOWLEDGMENTS

This research was partially supported by the Semiconductor Re-
search Corporation (SRC) through task 2709.001.

REFERENCES

[1] H. Yao et al., “Efficient process-hotspot detection using range pattern
matching,” in IEEE/ACM International Conference on Computer-aided
Design (ICCAD), 2006, pp. 625–632.

[2] D. Ding et al., “EPIC: Efficient prediction of IC manufacturing hotspots
with a unified meta-classification formulation,” in Asia and South Pacific
Design Automation Conference (ASPDAC), 2012, pp. 263–270.

[3] H. Yang et al., “Imbalance aware lithography hotspot detection: a deep
learning approach,” in SPIE Design-Process-Technology Co-optimization
for Manufacturability, vol. 10148, 2017, p. 1014807.

[4] K. Madkour et al., “Hotspot detection using machine learning,” in IEEE
Int’l Symposium on Quality Electronic Design, 2016, pp. 405–409.

[5] Y. Chen et al., “Semi-supervised hotspot detection with self-paced
multi-task learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2019.

[6] L. T. Clark et al., “ASAP7: A 7-nm finFET predictive process design
kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[7] G. R. Reddy et al., “Pattern matching rule ranking through design of
experiments and silicon validation,” in ASM International Symposium
for Test and Failure Analysis (ISTFA), 2018, pp. 443–448.

[8] D. Ding et al., “High performance lithography hotspot detection with
successively refined pattern identifications and machine learning,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 11, pp. 1621–1634, 2011.

[9] FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK. [Online; accessed
1-Nov-2018].

[10] V. Dai et al., “Optimization of complex high-dimensional layout config-
urations for IC physical designs using graph search, data analytics, and
machine learning,” in SPIE Design-Process-Technology Co-optimization
for Manufacturability, vol. 10148, 2017, p. 1014808.

[11] G. R. Reddy et al., “On improving hotspot detection through synthetic
pattern-based database enhancement,” arXiv, vol. 2007.05879, 2020.

[12] G. R. Reddy et al., “Enhanced hotspot detection through synthetic
pattern generation and design of experiments,” in IEEE VLSI Test
Symposium (VTS), 2018, pp. 1–6.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 22,2021 at 23:07:12 UTC from IEEE Xplore. Restrictions apply.

