IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007 785

Concurrent Error Detection Methods for
Asynchronous Burst-Mode Machines

Sobeeh Almukhaizim, Student Member, IEEE, and Yiorgos Makris, Member, IEEE

Abstract—Asynchronous controllers exhibit various characteristics that limit the effectiveness and applicability of the Concurrent Error
Detection (CED) methods developed for their synchronous counterparts. Asynchronous Burst-Mode Machines (ABMMs), for example,
do not have a global clock to synchronize the ABMM with the additional circuitry that is typically used by synchronous CED methods
(for example, duplication). Therefore, performing effective CED in ABMMs requires a synchronization method that will appropriately
enable the checker (for example, comparator) in order to avoid false alarms. Also, ABMMs contain redundant logic, which guarantees
the hazard-free operation required for correct interaction between the circuit and its environment. Redundant logic, however, allows
some single event transients to manifest themselves only as hazards but not as logic discrepancies. Therefore, performing effective
CED in ABMMs requires the ability to detect hazards with which synchronous CED methods are not concerned. In this work, we first
devise hardware solutions for performing checking synchronization and hazard detection. We then demonstrate how these solutions
enable the development of three complete CED methods for ABMMs. The first method (Duplication-based CED) is an adaptation of the
well-known duplication method within the context of ABMMs. The second method (Transition-Triggered CED) is a variation of

duplication wherein the implementation cost is reduced by allowing hazards in the duplicate circuit. In contrast to these two methods,
which are nonintrusive, the third method (Berger code-based CED) is intrusive since it requires reencoding of the ABMM with check
symbols based on the Berger code. Although this intrusiveness may slightly impact performance, Berger code-based CED incurs the

lowest area overhead among the three methods, as indicated through experimental results.

Index Terms—Concurrent error detection, asynchronous burst-mode machines, error-detecting codes, Berger code.

1 INTRODUCTION

THE numerous advantages promised by asynchronous
circuits have recently sparked renewed interest in the
development of CAD methods and tools to automate their
realization. As these methods mature, the size and complex-
ity of the circuits that they support increase significantly,
necessitating similar efforts in order to verify and test their
functionality before deployment. At the same time, due to
their low power consumption and electromagnetic noise
emission, asynchronous circuits are also gaining a strong
foothold in mission-critical applications such as avionics
and communications. As a result, Concurrent Error Detec-
tion (CED) methods, that is, methods that monitor their
operation in the field in order to detect and report potential
malfunctions occurring due to single event transients, are
becoming of increasing importance.

In this paper, we address the problem of CED in
Asynchronous Burst-Mode Machines (ABMMs). Although
a wide variety of CED methods have been developed for
synchronous controllers [1], [2], [3], [4], their asynchronous
counterparts are intrinsically different [5], limiting the
applicability of these methods. Consider, for example, the

o S. Almukhaizim is with the Department of Electrical Engineering, Yale
University, New Haven, CT 06520-8285.
E-mail: sobeeh.almukhaizim@yale.edu.

o Y. Makris is with the Departments of Electrical Engineering and Computer
Science, Yale University, New Haven, CT 06520-8285.
E-mail: yiorgos.makris@yale.edu.

Manuscript received 24 Mar. 2006; revised 24 Sept. 2006; accepted 10 Nov.
2006; published online 13 Feb. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0115-0306.
Digital Object Identifier no. 10.1109/TC.2007.1025.

0018-9340/07/$25.00 © 2007 IEEE

traditional duplication method in synchronous circuits,
wherein a duplicate of the circuit is added and a
comparator continuously checks the two results for con-
sistency. When a similar approach is attempted for CED in
ABMMs, its use and effectiveness are jeopardized in two
ways. First, the lack of a global clock allows a circuit and its
duplicate to produce results autonomously and at their own
pace. Consequently, the outputs of these circuits are not
continuously equal. Therefore, in order to avoid false
alarms occurring from their continuous comparison during
CED, a checking synchronization method is required. Second,
single event transients in redundant logic, which is used to
ensure the hazard-free operation of an ABMM, may cause
only hazards but no functional discrepancy. Such hazards
will go undetected by CED methods that only check the
functionality of the circuit. However, ABMM responses
have to be not only correct but also hazard-free. Otherwise,
a hazard may be misinterpreted by the environment as a
logic value change, resulting in erroneous interaction with
the circuit and, by extension, erroneous system-level results.
Therefore, to ensure that CED methods will detect errors in
the interaction between the ABMM and its environment, a
hazard detection method is also required.

Our aim is to enable the development of CED methods
for ABMMs by devising solutions to the two aforemen-
tioned problems. In order to address the checking synchro-
nization problem, we propose a method that utilizes control
information inherent in the operation of ABMMs. More
specifically, our method uses a Transition Prediction Function
(TPF), which is derived from the functionality of the
ABMM, to indicate the completion of computation. In order
to address the hazard detection problem, we propose the

Published by the IEEE Computer Society

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

786

addition of specialized circuitry that detects errors causing
only hazards but no functional discrepancy at the outputs
of the circuit. By using the checking synchronization
method and the Hazard Detection Circuit (HDC), we
develop three CED methods, all of which guarantee
detection of all functional errors and hazards in ABMMs.
The first one is the Duplication-based CED method, which is
an adaptation of the duplication method frequently used in
synchronous circuits. The second one is the Transition-
Triggered CED method, which is a variation of duplication
wherein the area overhead is reduced by allowing hazards
in the duplicate circuit and eliminating the corresponding
redundant logic. The third one is the Berger code-based CED
method, which encodes the outputs of the controller with a
check symbol based on the Berger code. Although encoding
the outputs of an ABMM by using the Berger code is
straightforward, the key challenge is to ensure that the state
encoding adheres to the conditions required to realize an
ABMM implementation of the circuit and its Berger code
generator. To this end, we develop a state encoding method
which guarantees the existence of an inverter-free ABMM
implementation of the original circuit,' as well as an ABMM
implementation of the corresponding Berger code genera-
tor. Both Duplication-based CED and Transition-Triggered
CED are nonintrusive, that is, they only add hardware in
parallel to the original circuit, which is left intact, and, thus,
the performance is preserved. In contrast, Berger code-
based CED is intrusive since it requires state reencoding. As
a result, performance is slightly affected, yet the area
overhead is smaller, as corroborated experimentally.

The rest of this paper is organized as follows: In Section 2,
we review related work in CED for asynchronous circuits.
In Section 3, we briefly describe the class of ABMMs. In
Section 4, we discuss the challenges of applying synchro-
nous CED methods to ABMMs and present the proposed
solutions. Then, in Sections 5, 6, and 7, we describe the
Duplication-based CED, Transition-Triggered CED, and
Berger code-based CED methods for ABMMs, respectively.
Finally, in Section 8, we assess experimentally the area and
performance overhead of the presented methods and
discuss their effectiveness.

2 REeLATED WORK

Several CED methods for asynchronous circuits have been
previously proposed in the literature, none of which,
however, is applicable to ABMMs. In [5], the authors
investigate the applicability of Duplication-based CED to
asynchronous circuits and show that comparison synchro-
nization can be performed using a modified comparator
that exploits the local synchronization protocols that exist in
many asynchronous circuits. A time window is utilized
within which the original circuit and its duplicate should
both arrive at the same state. The use of a time window,
however, results in the masking of some performance-
related faults. Thus, a dedicated hardware monitor is also
required in order to detect these malfunctions.

1. Berger code-based CED methods require circuit implementations
wherein inverters are only allowed on the primary inputs.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

In [6], a CED method for Quasi Delay-Insensitive (QDI)
circuits is proposed based on unordered codes. A code is
unordered if no code word u is contained in another code
word v (that is, u C v), where v C v if v has a 1 in every bit
position where u has a 1. Examples of unordered codes are
the one-hot encoding and the dual-rail code, which is
typically used to encode the inputs and outputs of QDI
circuits. Since the inputs and outputs of a QDI circuit are
encoded using unordered codes, which naturally leads to
an inverter-free realization of these circuits, any single fault
in the circuit will produce a noncode word at the output.
Moreover, a spacer (00...0) appears at the output of the
QDI circuit between working phases and is used by a
Completion-Detection (CD) circuit to indicate the validity of
the results. Several CD implementations have been pro-
posed in the literature. In [7], the feasibility of designing
VLSI decoders to implement the CD test on asynchronous
buses is investigated. In [8], the authors present an activity-
monitoring CD method which detects completion if no
transitions are observed in the circuit within a period of
time and a transition-monitoring CD method which
guarantees the detection of all glitches in the completion
logic. Finally, an efficient and systematic method to perform
CD by using multioutput threshold logic is presented in [9];
an in-depth discussion of various CD strategies can be
found in [10].

CED methods have also been proposed for asynchronous
circuits through the use of the Differential Cascode Voltage
Switch (DCVS) logic [11], [12], which is used to generate
handshaking signals between interacting asynchronous
modules. In [11], the authors utilize the handshaking
signals of the DCVS logic to design a self-checking majority
voter. The self-checking majority voter is implemented
using a dual voter with self-checking capabilities: The
handshaking signals are used to assert the self-checking
signals of the voter if the monitored data is not comple-
mentary. In [12], a CED method is presented for the class of
self-timed VLSI pipelines implemented using DCVS logic.
A checker, composed of a tree of dual-rail comparators,
compares the signal pairs from the DCVS logic of the
pipeline stages to detect errors. In [13], a mixed-signal
approach to perform CED for self-timed circuits is
proposed. The authors argue that logical faults in these
circuits might be undetectable at the primary outputs. Thus,
performing CED by using logic (voltage) monitoring would
not be effective for all possible faults. A study on the
feasibility of performing CED for these circuits by using a
Built-In Current Sensor (BICS) is therefore presented.

More recently, a CED method for asynchronous inter-
faces in globally asynchronous locally synchronous circuits
is described in [14]. A checker design is proposed to
monitor the handshake control signals at the asynchronous
interface of these circuits. If a fault is present, then the
system halts and a timeout circuit is used to detect and
indicate it. The concurrency of the CED method in [14] was
improved in [15]: Whenever the checker detects an error in
the handshake control signals exchanged between circuits
interacting through their asynchronous interface, D flip-
flops are used to latch the error information and report it
immediately.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES 787

Inputs: a, b, c, d

0100 [0101] 0110 0111

States 0000 0001 0010 0011 1000 1001 1010 1011 1100 1101 1110 1111
S() SO,OO = = - = So,01 80,00 32,00 = S1,00 = N =
S, Sqoo] - - - - $1,10 | S1,11 - - 51,00
s, . % - . - ” S5,00 | S0,00 | S»00 | 5500 -

Outputs: x, w

Fig. 1. Example of a symbolic state transition table for defining an ABMM.

Although the above methods sufficiently address the
problem of CED in the classes of asynchronous circuits that
they were developed for, there are two factors that limit
their applicability in ABMMs. First, all of these methods
assume the existence of explicit completion signals and
utilize them in order to synchronize correctness checking.
ABMMs, however, operate without completion signals and,
therefore, these CED methods cannot be applied. Second,
these methods assume that all errors of interest will result in
a functional discrepancy. However, ABMMs contain re-
dundant logic wherein transient errors may result only in
hazards but no functional discrepancy at the output. Such
hazards jeopardize the correct communication of the circuit
with its environment and therefore should also be detected.
These two limitations motivate the need for development of
CED methods specific to ABMMs and pinpoint the
contributions of this work.

3 ASYNCHRONOUS BURST-MODE MACHINES

ABMMs are widely used for designing asynchronous
controllers [16], [17], [18], [19] since they promise improved
characteristics as compared to their synchronous counter-
parts. For example, the performance of a burst-mode
implementation of an instruction decoder has been reported
as three times better than the performance of a highly tuned
synchronous version [20]. Moreover, their low power
consumption makes them highly useful in portable applica-
tions [21]. In this section, we briefly introduce their
fundamentals, we outline the synthesis process for realizing
an ABMM implementation from a given Finite-State
Machine (FSM) description, and we give an example.

3.1 Fundamentals

ABMMs constitute a class of Huffman circuits [22] that is
widely used for designing asynchronous controllers [16],
[17], [18], [19]. Huffman circuits consist of a set of
combinational functions, computing the next state and
output of the circuit, and a set of feedback lines, storing the
state of the circuit. No clock and no state registers are used
in these circuits; however, delay elements are often added
to eliminate essential hazards® [23]. Given the absence of a
clock, communication protocols are needed to ensure correct
interaction between an asynchronous circuit and its
environment. These protocols define the properties of the
stimuli that the environment is allowed to provide to the
circuit, as well as the properties of the responses that the

2. Essential hazards arise when a state change completes before the input
change is fully processed. To prevent this early state change from
propagating through the combinational logic, delay may be added to the
feedback.

circuit will generate. Based on these protocols, various
classes of asynchronous circuits are defined.

The key aspect of the protocol used in ABMMs, as
indicated by their name, is that the interaction between the
circuit and its environment happens in bursts. An input burst
is defined as a set of bit changes in one or more inputs of the
circuit, which are allowed to occur in any order and without
any constraint in their relative time of arrival. Once an input
burst is complete, and only then, the circuit responds to the
environment through a hazard-free state and output
change. We emphasize the protocol requirement for
hazard-free state and output changes. Since no clock is
used, synchronization between the circuit and its environ-
ment is based on the fact that any change in the state or
output of the circuit signifies completion of an evaluation
cycle. Therefore, all hazards should be eliminated to ensure
correct interaction of an ABMM with its environment. In
order to implement a circuit that complies with the
aforementioned communication protocol, two features are
added during synthesis. First, in order to make the
functionality of the circuit critical race-free,®> dichotomies
are added to constrain the binary state encoding of the
circuit [24]. Consequently, the resulting state codes ensure
that a transition between two states never reaches a
transient state with a different destination state for the
current input. Second, to make the next state/output
functions hazard-free, redundant implicants are added to
their implementation [25].

ABMMs have been extensively studied and are particu-
larly popular in the asynchronous community, partly due to
the availability of MINIMALIST [16], [17], [18], [19], which
is a comprehensive burst-mode logic synthesis and optimi-
zation package. MINIMALIST produces a hazard-free
ABMM implementation as long as the following two
constraints are satisfied: First, input bursts at any given
state should be nonempty and should unambiguously
decide the next state; hence, no input burst should be a
subset of another input burst. This constraint is called the
maximal set property. Second, every state should be entered
using a unique input burst. This constraint is called the
unique entry point. If the specifications of a controller satisfy
the above constraints, then an ABMM implementation is
guaranteed to exist and MINIMALIST produces the mini-
mal-cost hazard-free logic implementation.

3.2 Example

An ABMM is described using a state transition table such as
the one shown in Fig. 1. The rows in the table correspond to
the current symbolic state, the columns correspond to the

3. A critical race hazard exists if two state variables change value and
the machine’s next state depends on the order of arrival of these changes
[22], [23].

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

788
a
Di===De b

b, — W
= O
Tl =

- G, % Y,

> G,) %),

Fig. 2. ABMM implementation of the example.

inputs, and the entry indicates the next state and the
outputs. For example, suppose that the circuit is in state .S.
Then, an input burst of 1010 will cause a transition to
state Sy and will generate an output of 00. Let us now
assume that the next input burst is 1001 (that is, input c is
lowered and input d is raised) and that ¢ is lowered first
and, then, d is raised (that is, 1010 — 1000 — 1001). The
circuit responds only after the input burst is complete, so,
between the time that c is lowered and the time that d is
raised, the next state and output bits do not change. Once
the input burst is complete, the circuit makes a transition to
state Sy and computes the output, which, in this case,
happens to remain the same, that is, 00.

We note that, depending on the encoding of the states, a
critical race may occur during this transition. For example,
if the states are encoded as Sy = 00, S; =01, and S, = 11,
then the transition from S5 to Sy may go through a transient
state of 01, which is the state encoding of 5. In combination
with the current input burst of 1001, this will produce a next
state of 57 and an output of 10, both of which are incorrect.
Thus, this state encoding would be invalid and is avoided
through the use of dichotomies [24].

A dash in a table entry signifies that the corresponding
combination of current state and input is not permitted by
the communication protocol between the circuit and the
environment. For example, if the circuit is in state .S;, then
an input burst of 0010 is not allowed to occur. The synthesis
process of MINIMALIST starts by performing state mini-
mization on the symbolic state transition table constrained
such that the reduced state transition table has a hazard-free
logic implementation [19]. In the example in Fig. 1, the state
transition table is already minimal. Next, dichotomies are
added to ensure a critical race-free state encoding. Solving
the dichotomies results in the state encoding S = 00,
S1 =01, and S, =10 for the example circuit and the
symbolic states are replaced by their binary values. The
last step is to generate a minimal-cost hazard-free imple-
mentation of the circuit [18]. Fig. 2 shows the resulting
ABMM implementation of the example, which includes
some logic redundancy to ensure hazard-free operation.

4 CED IN ABMMs: CHALLENGES AND SOLUTIONS

The general structure of a CED method for synchronous
circuits is illustrated in Fig. 3. CED is typically based on an
invariant property of the circuit, which is generated through

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Property
Checker
ORIGINAL Outputs Clock
CIRCUIT >
Error
Inputs Flip-Flop
INVARIANT | Invariant
PROPERTY | Property
GENERATOR

Fig. 3. General structure of synchronous CED methods.

additional hardware. Examples of such invariant properties
include the output of the circuit itself (duplication), the
parity of the output [2], [26], the encoding of the output by
using Error-Detecting Codes (EDCs) [27], [28], and the
value of internal gates [29], [30]. A property checker
determines whether the invariant property of the output
produced by the monitored circuit matches the one
generated by the property generator. An error signal
indicates a mismatch between the circuit and the invariant
property generator and a flip-flop latches the error signal at
the end of the clock cycle. Since the checker is crucial to the
correct operation of CED methods, self-checking checkers
are commonly used [31], [32], [33].

ABMMs pose two additional challenges over and above
their synchronous counterparts for effective CED. The first
challenge arises from the fact that the ABMM and the
invariant property generator operate asynchronously and
there is no clock to indicate when their combined output
should be checked. Therefore, in order to avoid false
alarms, a checking synchronization method is required. The
second challenge arises from the fact that, functionally,
redundant hardware is included in ABMMs in order to
ensure their hazard-free operation. As a result, there exist
errors that will only cause hazards but no functional
discrepancy at the state or output bits. Therefore, additional
provisions for performing error-induced hazard detection are
required. In this section, we elaborate on these two
challenges and propose solutions to enable CED in ABMMs.

4.1 Checking Synchronization

The lack of a synchronizing clock introduces uncertainty as
to when to check the responses of the ABMM and the
invariant property generator. Therefore, commonly used
synchronous CED methods such as Duplication-based CED
cannot be directly applied on ABMMs without enforcing
that the outputs be checked only when both have finished
computation; otherwise, false alarms may occur. Process
variations, input skew, and the sheer fact that the two
circuits are separate entities are a few of the reasons why
two identical circuits may operate with different delays.
Therefore, in order to avoid false alarms, a checking
synchronization method is required.

In error-free operation, the output of the invariant
property checker constitutes a valid check as long as the
outputs of the ABMM and the invariant property generator
are not making a transition. Based on the definition of

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES 789
States 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
s, [Sod - - - - - - T %7 [Sof | Sof - S - - -
Sl So, 1 o - - o - o - Sq,1 S4,1 - ol Si,1 - -
s,[_- - - - 1 s.0 - 51 | S50 - - -
s, = - - - = So - S50 - - :
s, - - - 1 5.0 | Sol - - - - -

Fig. 4. Symbolic state transition table for the TPF.

ABMMs, these outputs are steady during an input burst
and only change after the input burst is complete. Thus, any
transition during the input burst can be safely attributed to
an error and can be detected by activating the invariant
property checker throughout this period. When the input
burst is complete, however, the ABMM and the invariant
property generator operate asynchronously. Thus, during
the period between the end of an input burst and the
beginning of the next, the invariant property checker is
deactivated. Once the new input burst starts, the checker is
reactivated to detect any errors in the previous output burst.

In order to deactivate the checker in between input
bursts, we use a TPF, which signifies the end of an input
burst. Since the TPF controls the checker, its implementa-
tion must be hazard-free to ensure that no false positives or
false negatives occur. Therefore, the TPF is implemented as
an ABMM. The TPF is defined for every specified entry in
the state transition table of the ABMM and obtains a logic
value of “1” when the current input burst and state
combination result in a state transition and/or a change at
an output and a logic value of “0” otherwise. For all input
bursts that are composed of k bit changes, where k£ > 1, the
above definition implies that the TPF is lowered when the
first bit changes and then raised again when the input burst
is complete. Hence, such an input burst results in multiple
output bursts, which violates the maximal set property and
the unique entry point constraints of ABMMs. In order to
satisfy these constraints, input bursts with & bit changes are
decomposed into k input bursts with a single bit change.
Each of these k input bursts lowers the TPF and makes a
state transition into a dummy state. Then, an input burst
with the remaining £ —1 bit changes is added to every
dummy state in order to raise the output and make a
transition to the next state to which the original input burst
would lead. Therefore, the modified input bursts will
unambiguously decide the next state and output and,
hence, the maximal set property is satisfied. Moreover,
every state in the specification of the TPF can be entered
using a unique input burst and, hence, the unique entry-
point constraint is also satisfied. Since both constraints are
satisfied, a hazard-free ABMM implementation of the TPF is
guaranteed to exist.

Example. Consider the controller described in Fig. 1, which
has the TPF, shown in Fig. 4. All of the input bursts defined
for states Sy and S; have a single bit change and resultin a
state transition and/or a change in the output. Therefore,
all the defined entries in the state transition table of the TPF
for Sy and S; have an output of “1.” S;, on the other hand,
has an input burst with two bit changes. Hence, this input
burstis replaced with two inputbursts, each of which has a
single bit change. The input bursts that are added to S
lower the output and lead to a state transition to two

dummy states: S; and S,. In each of these two states, an
input burst consisting of the remaining bit changes from
the original input burst is added. The input burst in S3 and
the input burst in S; will both raise the output and make a
transition to state S.

4.2 Detection of Error-Induced Hazards

Logic redundancy in ABMMs prevents hazards from
occurring during error-free operation, as required by the
communication protocol between an ABMM and its
environment. As a result, some errors may cause only
hazards but no functional discrepancy, so they cannot be
detected by checking an invariant property of the output.
Therefore, in order to monitor the correct interaction of the
circuit and its environment, a hazard detection method is
also required.

Example. Assume that the current state in the circuit in
Fig. 2 is S; and the input changes from 1100 to 1000.
Then, the next state should become S; and output X
should obtain a logic “1” value, as indicated in Fig. 1.
However, if an error inducing a logic value of “0” at the
output of gate G4 occurs, then a hazard will appear at
output X. This is illustrated in the timing diagram in
Fig. 5, wherein dotted lines represent the logic values in
the absence of this error. In this example, the change of
input b affects the next state function Y; before the
change in gate ('3 reaches Y;. During that time, Y] is at
the logic value of “1” due to gate G4. Hence, an error in
gate G, will generate a hazard at Y;. Subsequently, the
hazard at Y; will propagate to the output of gate Gj,
which, in turn, will result in a hazard at output X of the
circuit. Thus, an error at gate G4 will cause a hazard at
Y1, G3, and output X but no functional discrepancy at
any state or output signals.

Y,=b+G+G,;+G, X=G+G,

Fig. 5. Timing diagram illustrating a hazard.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

790

Change in Inputs

1 ! 1¥ (Delayed) F luDelayeu;

|n [|1¥ IHDe\ayed) [Ii(DeIayedi

Fig. 6. Hazard detection circuit.

The number of errors that cause only hazards at the
output of an ABMM can be quite substantial, exceeding
30 percent in many circuits. In order to detect error-induced
hazards, a mechanism to monitor and indicate the occur-
rence of multiple transitions at any output of the ABMM is
required. This can be performed using the HDC illustrated
in Fig. 6. This circuit monitors the ABMM by using a
separate feedback loop for each output. A feedback loop
latches a logic “1” value whenever a transition is detected
on the corresponding output. We remind that the outputs of
an ABMM are expected to change only after the input burst
is complete, at which point they make hazard-free transi-
tions. Thus, if a second transition is detected on the same
output before a new input burst occurs, then the hazard
signal is asserted. As soon as a new input burst occurs,
however, the latched transitions must be reset. For this
purpose, the change detection circuit (CDC) in Fig. 7 is used
to generate a short reset pulse after each input change,
which forces the feedback loops to latch a logic “0” value
every time an input changes, thus clearing the latched
transitions.

The operation of the HDC is illustrated using the PSpice
timing diagram in Fig. 8. We simulate the functionality of
the HDC when a hazard appears at one of its inputs, which
amounts to observing a hazard at the corresponding
monitored output of the ABMM. In this example, the input
makes its first transition at time 1ns and the feedback loop
detects the transition and latches a logic “1” value in the
feedback signal. Then, a second transition is detected at
time 2ns and the hazard signal is asserted shortly after.
Finally, the timing diagram also illustrates the behavior of
the circuit when a new input is applied at time 4ns, which
resets the transition latched in the feedback loop.

1(Delayed) I1 (Delayed)

Change,

Change

In(Delayed)

Change,

Fig. 7. Change detection circuit.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

6.0V

Transition 2nd Hazard Signal New Reset
is Latched \ Transition is Asserted input h Feedback Loop
5.0V \» ;’\b—v- <r—
st 7 (
4.0V /
Transition ‘
3.0v / %
2.0V j \
! \
1.0V 1}
\
) — Wi e L S |
V(change) * V(input) v V(Feedback) V(Hazard)
-1.0V T T T T T
0s 1.0ns 2.0ns 3.0ns 4.0ns 5.0ns
Time

Fig. 8. Timing diagram illustrating the operation of the HDC.

In order to latch a transition in the feedback loop, the
width of the hazard must be larger than the delay of the
AND and OR gates used in the feedback loop. This width
depends on the delays of gates internal to the circuit. In case
that it is not adequately large, the design in Fig. 6 can be
modified to detect hazards with smaller widths by appro-
priate transistor sizing of the gates used in the feedback
loop. Finally, we note that the HDC does not have to
monitor the state lines. A hazard on a state line will always
result in either a functional error or a hazard at the output
lines. Thus, monitoring the output lines suffices for
detecting all error-induced hazards in the circuit.

5 DupLICcATION-BASED CED

The Duplication-based CED method is illustrated in Fig. 9.
In order to perform Duplication-based CED for ABMMs, a
replica of the ABMM is used as an invariant property
generator and a comparator checks the results of the two
circuits to identify any error-induced functional discrepan-
cies. Then, the ABMM implementation of the TPF is added
to enable/disable the comparator based on the checking
synchronization method described in Section 4.1. Subse-
quently, the HDC, including the CDC, is added to indicate
the occurrence of errors that only cause hazards but no
functional discrepancy in the original circuit. Since the
duplicate circuit does not interact with the environment,
hazard detection in the duplicate circuit is not required.

Change
Detection Circuit

Hazard
y Detection Circuit
> Transition
Prediction Function
o
Outputs| o
Inputs N Original M
Circuit P
A
.]|
Outputs‘ T
> Duplicate 0
Circuit R

Fig. 9. Duplication-based CED.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES 791
States 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S, So,00 - - - - - - - Sp,01 So,00 S,,00 - S4,00 - - -
S, So,00 - - - - - - - S4,10 Sy, 11 - - S4,00
s, - - - - - - - - -~ | 5000 | 5200 | -— -

Fig. 10. Symbolic state transition table for the optimized duplicate.

Finally, a few glue-logic gates (G-G3) are used to generate
the error output. The error signal is asserted in the
following scenarios: 1) The comparator detects a mismatch
between the outputs of the original and the duplicate circuit
after a new input burst is applied, in which case G;
indicates an error, 2) the comparator detects a mismatch
between the outputs of the original and the duplicate circuit
during an input burst, in which case G, indicates an error,
or 3) a hazard is detected at the outputs of the original
circuit by the HDC, in which case G indicates an error. The
above error detection scenarios collectively provide com-
plete detection ability for all functional errors and hazards
in the circuit.

6 TRANSITION-TRIGGERED CED

In an effort to reduce the area overhead of the duplicate
circuit used in Duplication-based CED, we propose in this
section a Transition-Triggered CED method, which is
illustrated in Fig. 11. Our method starts with the observa-
tion that hazards in the duplicate circuit do not affect the
communication protocol between the original circuit and
the environment. Therefore, the redundant logic used to
make the original circuit hazard-free is not necessary in the
duplicate circuit as long as the CED operation is not
compromised. By allowing hazards to occur in the duplicate
circuit, its logic implementation can be optimized, which
results in reducing its area cost. Hazards on the feedback
lines of the optimized duplicate, however, jeopardize the
operation of the asynchronous circuit since a hazard may be
misinterpreted by the circuit as a change in state. To avoid
this problem, multiplexers are utilized on the state lines of
the optimized duplicate circuit to select between the current
state and the next state. The multiplexers are controlled
using the TPF and the CDC to select the next state only
when the input burst is complete.

> Hazard
| Detection Circuit
. Change
""| Detection Circuit Change
> Detection Circuit
Transition
Prediction Function
Outputs c
Inputs Original o
Circuit M Error
P G1
————1 .
R
— Outputs | 5 q G,
Optimized T
> Duplicate o
R
Next L
State

Fig. 11. Transition-triggered CED.

Interestingly, the TPF can be used in conjunction with
the CDC to further reduce the cost of CED. The TPF
indicates when changes should occur at the next state and/or
output signals, whereas the CDC in Fig. 7, when added to
the output lines, indicates when such changes actually occur
at the outputs of the circuit. Hence, an error in the original
circuit would result in a mismatch between these two
signals during input bursts and will be detected using G.
Therefore, the result of the comparator becomes necessary
for G only after an input burst is complete and, thus, the
functionality of the optimized duplicate can be considered
as “don’t care” for incomplete input bursts, allowing
further logic optimization. The state transition table of the
optimized duplicate for the example in Fig. 1 is illustrated
in Fig. 10. In contrast to the table in Fig. 1, only entries with
a change in the next state and/or output lines are defined
for the duplicate circuit; the rest are “don’t cares.”

Transition-Triggered CED indicates an error in the
following scenarios: 1) The output of the original ABMM
changes and the TPF indicates no expected change at the
output, in which case G indicates an error, 2) the comparator
detects a mismatch between the outputs of the original and
the duplicate circuit after a new input burst is applied, in
which case (G5 indicates an error, or 3) a hazard is detected at
the outputs of the original circuit by the HDC. Similarly to
Duplication-based CED, the above error detection scenarios,
collectively, provide complete detection ability for all func-
tional errors and hazards in the circuit.

The design of the optimized duplicate, the TPF, and the
state multiplexers is similar to asynchronous design styles
with local clocking [34], [35]. The proposed Transition-
Triggered implementation is mostly similar to the work of
Nowick and Dill [36], [37] on the design of ABMMs using a
local clock. The method proposed in [36] and [37] is for the
design of a standalone asynchronous machine that interacts
with the environment and, thus, is hazard-free. In contrast,
the proposed method is used in the CED circuitry and,
hence, hazards in the duplicate circuit are allowed as long as
these hazards do not interfere with the detection of errors.

7 BERGER CoDE-BAsep CED

In this section, we first briefly review the Berger encoding.
Then, we discuss the fwo key components necessary to design
a Berger-encoded ABMM: 1) an inverter-free implementa-
tion of the original ABMM and 2) an ABMM implementa-
tion of the Berger code generator. Finally, we present the
complete Berger code-based CED method for ABMMs.

7.1 Berger Encoding

In the Berger code [27], which is an optimal systematic All-
Unidirectional Error-Detecting (AUED) code, the r informa-
tion bits are encoded using k check bits to form an n-bit
code word, where n = r + k. The k-bit check symbol is the

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

792

complement of the binary representation of the number of
1s in the information bits and, hence, k = [log(r + 1)]. In a
Berger-encoded circuit, single errors lead to a noncode
word as long as they result in transitions in either the 0 — 1
or the 1 — 0 direction at the output but not both. The
authors in [28] show how this constraint can be enforced by
redesigning a circuit such that inverters only appear at the
inputs. Thus, all single errors will only cause unidirectional
effects at the r outputs. A Berger code generator is then
added to produce the k-bit check symbol. The r-bit output
of the inverter-free circuit, combined with the k-bit check
symbol of the Berger code generator, forms a Berger-
encoded word, the validity of which is checked using a
Berger code checker [31], [38].

In contrast to the circuits targeted in [28], ABMMs
impose additional constraints to realize a hazard-free
implementation and, therefore, new solutions tailored to
their particularities are required. In Sections 7.2 and 7.3, we
demonstrate how we can obtain 1) an inverter-free ABMM
implementation from a symbolic state transition table and
2) an ABMM implementation of the corresponding Berger
code generator.

7.2 Inverter-Free ABMM Implementation

The method in [28] generates an inverter-free implementa-
tion of an FSM by pushing the inverters of the combina-
tional logic to the inputs and by utilizing the inverted state
bits that are inherently available in the flip-flops of the state
register. In ABMMSs, however, this is not possible since the
state is stored in the combinational feedback and no state
register exists. To solve this problem, we propose to
reencode the states of the ABMM such that states are
uniquely distinguished without the need for inverted state
bits. We stress, however, that not all possible state
encodings can be used. As mentioned in Section 3.1, certain
constraints must be satisfied to guarantee the existence of a
hazard-free ABMM implementation.

MINIMALIST uses dichotomies [24] to represent the
constraints that must be satisfied by the state codes for an
ABMM implementation to exist. A dichotomy such as
(Groupy; Group,) specifies two groups of states that must be
distinguished from each other and a solution assigns a logic
value z to a bit in the state encoding of all the states in one
group, say, Group;, while assigning 7 to the same bit in all
of the states in the other group, Group,. MINIMALIST
encodes the states such that all of the dichotomies are
solved and, at the same time, the implementation cost of the
resulting ABMM is minimized. In the final encoding, a state
is distinguished from incompatible states through either a
positive identifier (that is, a bit that is assigned a logic “1” to
solve the dichotomy) or a negative identifier (that is, a bit
that is assigned a logic “0” to solve the dichotomy). The
latter results in inverters on the corresponding state lines. In
order to eliminate these inverters, we add to the dichoto-
mies generated by MINIMALIST three additional sets of
dichotomies and modify the state encoding procedure such
that only positive identifiers are used to solve all of these
dichotomies. We next describe the three sets of additional
dichotomies by using as an example the symbolic state
transition table in Fig. 1. MINIMALIST requires that the
state encoding satisfy the dichotomy (S)S5s;51) to ensure

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

TABLE 1
Dichotomies Used to Generate the State Encoding of an
Inverter-Free ABMM Implementation

Dichotomies
Original Ist Set | 2nd Set 3rd Set
(5052;51) | (S03So0) | (S23S0) | (SoS13S0)
(So3S1) | (S2381) | (S0S1381)
(S05S2) | (S2382) | (S0S1;S2)
(S1;S0) (S0S2;80)
(S1;81) (S052;51)
(S13S2) (S0S2;S2)
(S1S03S0)
(5180581)
(S1S03S2)
(S2503S0)
(S280381)
(S2S03S2)

that no critical race exists for the state transition from Ss to
Sy. States Sy and S; have multiple single-bit-change input
bursts, whereas state S; has a single input burst with
multiple bit changes. The dichotomy (S5)S5;51) represents
the original set of dichotomies, as illustrated in Table 1.

The first set of additional dichotomies ensures that the
output function identifies the current state in states that
have multiple input bursts, without the need for detecting
inverted state bits. Thus, for each state that has multiple
input bursts and every other possible state, the first set of
additional dichotomies contains a state that has multiple
input bursts on the left side of the dichotomies and one of
the remaining states on the right side of the dichotomies.
For example, the first set for the example in Fig. 1 is
summarized under the second column in Table 1. The states
with multiple input bursts Sy and S; appear on the left side
of the dichotomies, whereas one of the other states is placed
on the right side.

The second set of additional dichotomies ensures the
hazard-free operation of the output function during an input
burst in states that have an input burst with multiple bit
changes, without the need for detecting inverted state bits.
Thus, for each state that has an input burst with multiple bit
changes and for every other possible state, the second set of
additional dichotomies contains a state with multiple bit
changes on the left side of the dichotomies and one of the
remaining states on the right side of the dichotomies. This is
illustrated under the third column in Table 1. For example,
since Sy has a single input burst with multiple input changes,
Sy appears on the left side of the dichotomies, whereas one of
the other states is on the right side.

The final set of additional dichotomies ensures that the
positive identifiers used to identify a state are not contained
in the state encoding of any possible transient state that may
appear during state transitions; otherwise, the logic detect-
ing the state might be activated during the state transition
and would result in a hazard and/or incorrect results. Thus,
for every state transition and state pair, the third set of
additional dichotomies contains a state transition on the left
side of the dichotomies and a state on the right side of the
dichotomies. For example, four state transitions exist in the
state transition table in Fig. 1 for the three different states,
which results in 12 state and state-transition pairs. For each
such pair, a dichotomy is added to the third set of

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES 793

additional dichotomies, as illustrated under the fourth
column in Table 1.

Finally, all invalid and redundant dichotomies are
deleted from the set of dichotomies. A dichotomy is invalid
if a state appears on both sides of the dichotomy and a
dichotomy is redundant if the states on the left and right
sides of the dichotomy are a subset of the states on the left
and right sides of another larger dichotomy in the three sets.
A state encoding that solves the larger dichotomy would
also solve the redundant dichotomy. For example, the
dichotomy (Sp;S1) in Table 1 is redundant since any state
encoding that satisfies (5).S3;.51) would also solve (Sp;S).
All of the invalid and redundant dichotomies are shown in
boldface in Table 1.

In order to generate a state encoding that satisfies all of
the above initial dichotomies, we follow the framework of
DICHOT [24] to derive an encoding with the minimum
number of bits. DICHOT computes the state encoding by
finding a set of prime encoding-dichotomies* with the
minimum cardinality that covers all of the initial dichoto-
mies, which is the classical unate covering problem. In
order to find a state encoding that provides an inverter-free
ABMM implementation, we modify the covering problem
such that a prime encoding-dichotomy covers a dichotomy
only if the resulting bit assignment solves the dichotomy by
using a positive identifier. For example, the state encoding
Sp =0011, S; =0110, and S, = 1001 solves all of the
dichotomies in Table 1 by using a positive identifier. The
new state encoding is provided to MINIMALIST, which
yields the inverter-free ABMM implementation. Finally, the
state encoding procedure is repeated for all prime encod-
ing-dichotomy sets with the minimum cardinality that
covers the initial dichotomies and the implementation with
the lowest area cost is selected. For the example in Fig. 1, the
inverter-free ABMM implementation shown in Fig. 12 is
generated.

7.3 ABMM Implementation of the Berger Code
Generator

Implementing the Berger code generator as an ABMM
requires that its symbolic state transition table satisfy the
two conditions mentioned in Section 3.1, namely, the
maximal set property and the unique entry point. In order
to build the symbolic state transition table for the Berger
code generator, we start from the symbolic state transition
table of the original ABMM. Specifically, for every defined
input burst in the state transition table of the ABMM, we
substitute the output burst with the corresponding check
symbol, that is, the complement of the binary representation
of the number of 1s in the output burst. Note that the Berger
code generator is defined based on the same input bursts of
the original ABMM and, hence, the maximal set property is
satisfied. Moreover, transitions between states in the
specification of the original ABMM are identical to
transitions between states in the specification of the Berger
code generator and, hence, the unique entry point require-
ment is also satisfied. Therefore, there will always exist an

4. A prime encoding-dichotomy of a given set of dichotomies is one that
is incompatible with all encoding dichotomies not covered by it. It
essentially provides the value of a single bit in the state encoding of all of
the states.

a
s o H———
LL'F; a G, X
=
d L> Esj
@)Gﬁ Yo
)
S)
G

Fig. 12. Inverter-free ABMM implementation.

ABMM implementation of the Berger code generator which
can be synthesized using MINIMALIST. For example, the
Berger code generator for the ABMM defined through the
symbolic state transition table in Fig. 1 is defined through
the symbolic state transition table in Fig. 13, based on which
MINIMALIST generates the implementation in Fig. 14.

7.4 Complete Berger Code-Based CED Method

Based on the above discussion, the complete Berger code-
based CED method for ABMMs is simple to describe and is
illustrated in Fig. 15. First, the inverter-free ABMM and the
Berger code generator are added and a Berger code checker
[31], [38] is used to indicate whether the output of the
ABMM and the output of the Berger code generator form a
code word or not. Then, the ABMM implementation of the
TPF is added to enable/disable the checker. Finally, the
HDC, including the CDC, is added and the same glue-logic
gates (G1-G3) used in the Duplication-based and Transi-
tion-Triggered CED methods are used here as well in order
to generate the error output. Similarly to the Duplication-
based CED, the Berger code-based CED indicates an error in
the computation in the following scenarios: 1) The output of
the original ABMM changes and the TPF indicates no
expected change at the output, in which case G; indicates
an error, 2) the comparator detects a mismatch between the
outputs of the original and the duplicate circuit after a new
input burst is applied, in which case G, indicates an error,
or 3) a hazard is detected at the outputs of the original
circuit by the HDC. The above error detection scenarios
provide complete detection ability for all functional errors
and hazards in the circuit.

8 EXPERIMENTAL RESULTS

We applied the proposed CED methods to a suite of
13 benchmark circuits that have been extensively used by
the asynchronous design community [16], [18], [37], [39],
[40], [41] and include several controllers used in industrial
designs. For example, the rf — control, hp —ir, pl, and p2

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

794 IEEE TRANSACTIONS ON COMPUTERS, VOL.56, NO.6, JUNE 2007
States 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S, So 11 - - - - - . | So10 | So.11 | Said - S : . »
S, So11 - - ; - S,,10 | S,,01 - ; S, i1
s, n : - : - S211 | So11 | Spi1 | Spid -

Fig. 13. Example of the symbolic state transition table of the Berger code generator.

circuits are part of a low-power infrared controller that was
designed at Hewlett-Packard Laboratories as part of the
Stetson project [39], the pe — send —ifc circuit was also
designed at HP Labs and is part of a high-performance
adaptive routing chip used in the Mayfly parallel proces-
sing system [40], and the tangram — mixer, concur — mixer,
and while circuits are from the TANGRAM system project
at Philips Research Laboratories. The circuits are first
synthesized using MINIMALIST to generate an asynchro-
nous implementation in pla [42] format. The TPF specifica-
tion is derived, as discussed in Section 4.1, and is also
synthesized as an ABMM using MINIMALIST. The
optimized duplicate circuit used in Transition-Triggered
CED is produced using espresso [42] based on the specifica-
tion of the original circuit. Finally, the inverter-free
implementation of the original ABMM and the Berger code
generator are obtained, as described in Section 7.

We first present, in Section 8.1, the percentage of errors
that cause only hazards. Then, in Section 8.2, we compare
the overhead of the proposed CED methods. Finally, in
Section 8.3, we comment on the effectiveness and overhead
of the proposed CED methods.

8.1 Error-Induced Hazards

The percentage of errors that cause only hazards in
the benchmark circuits is illustrated in Table 2. In
small benchmark circuits such as concur — mizer and
opt — token — distributer, all errors cause an erroneous
response at the output since the implementation does not
contain any redundant logic and, hence, errors always
result in a functional discrepancy. In more complex circuits
such as pe — send — ifc and pl, more than 30 percent of all
possible errors cause only hazards. As the circuit specifica-
tion becomes more complex, more redundant logic is used
to make the circuit hazard-free and, thus, the percentage of
errors that cause only hazards also increases.

bT—(>—| 9 k,
Lo B \a
g o
L LT
v 179/ Y,
u_|>.— _@T

Fig. 14. ABMM implementation of the Berger code generator.

8.2 Comparison between the CED Methods

The results are analytically presented for the individual
components of the three CED methods in Tables 3, 4, and 5.
In Table 3, we report the details of the circuits that were
used: name, number of inputs (I), number of states (S),
number of state bits (Bits), and number of outputs (O). We
also report the cost of the original circuit and its duplicate,
the TPF, the comparator, the CDC, and the HDC. The last
major heading summarizes the total literal and gate count of
the Duplication-based CED method. The gate count of the
circuits is normalized to the equivalent number of two-
input NAND gates. Similar information is reported for the
Transition-Triggered CED method in Table 4, with the key
differences residing in the cost of the optimized duplicate,
the multiplexers, and the slightly more expensive CDC.
Finally, in Table 5, we report additional information
relevant to the Berger code-based CED method, including
the cost of the resynthesized inverter-free implementation
of the circuit, the code generator, and the Berger checker.
Several observations can be made based on these results.
First, for a few circuits, the cost of the TPF is zero. This is
attributed to the simplicity of the specification of these
controllers, wherein every input burst is composed of a
single input change and, hence, the TPF always indicates a
transition. Second, the cost of the optimized duplicate
circuit used in Transition-Triggered CED is very close to the
cost of the original circuit for small benchmarks. For
example, this is the case for circuits concur — mizer and
hp —ir. In more complex circuits, such as while_concur and
rf — control, the cost of the optimized circuit is almost
50 percent of the cost of the original circuit. As the circuit
specification becomes more complex, the percentage of
redundant logic that can be saved by Transition-Triggered
CED also increases. Third, although the number of state bits
necessary for inverter-free ABMM is often twice the original
number of state bits, which is the worst-case scenario, the
inverter-free ABMM implementation increases the area cost

Change
Detection Circuit

Hazard
"~y Detection Gircuit
Lt Transition
Prediction Function —
Outputs |
> C
Inputs Inverter-Free O 15
Circuit E
|—> —I C
K
Output: E
> Berger Code (k)
Generator _I

Fig. 15. Berger code-based CED.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES

TABLE 2
Percentage of Errors That Cause Only Hazards

Circuit Name % of Errors
concur-mixer 0.0%
martin-g-element 28.0%
opt-token-distributor 0.0%
pe-send-ifc 32.06%
tangram-mixer 15.79%
pl 31.90%
while_concur 23.15%
rf-control 14.76%
hp-ir 5.88%
while 23.61%

p2 26.90%

diffeq 18.45%
barcode 15.22%
Average 18.13%

by an average of only 50 percent over the original ABMM

implementation.
The implementation cost of the three CED methods is

compared in Table 6. Transition-Triggered CED saves an
average of only 3 percent over Duplication-based CED.
Sometimes, it is even more expensive. Berger code-based
CED saves an average of 15 percent over Duplication-based
CED and 11 percent over Transition-Triggered CED. In
some cases such as martin — q — element, the CED over-
head is reduced by 27 percent and 21 percent over
Duplication-based CED and Transition-Triggered CED,
respectively. With the exception of pe — send —ife, for
which the Berger code generator is expensive and Transi-
tion-Triggered CED is less expensive, the conjecture of these
results is that the Berger code-based method incurs the
lowest overhead for performing CED in ABMMs.

795

Duplication-based CED and Transition-Triggered CED
preserve the performance of the ABMM since the original
circuit is left intact and the CED circuitry is added and
operates in parallel with it. Berger code-based CED, however,
requires the use of an inverter-free version of the original
ABMM and thus results in a reencoded and resynthesized
implementation that may operate at a different speed. For
ABMMs, the metric that is typically used to assess perfor-
mance is the output latency, which can be reasonably
approximated by computing the average number of literals
per output [41]. The last column in Table 5 compares the
performance of the inverter-free ABMM to the performance
of the original ABMM. The results indicate that the ABMM in
Berger code-based CED is, on average, less than 5 percent
slower than the original ABMM.

8.3 Discussion

All three CED methods proposed herein provide complete
coverage of all single errors in the monitored circuit,
independent of whether the result is a functional discre-
pancy or only a hazard endangering communication with
the environment. With regard to their effectiveness on
potential errors in the circuitry added solely for CED
purposes, we remind the reader that the objective of CED is
to raise the error indication signal whenever the monitored
circuit is producing incorrect results. With this in mind and
under the single-event assumption, if the error is in the
monitored circuit, then the rest of the CED logic will be
error free and, therefore, the error will be detected.
Otherwise, if the error is anywhere else in the CED logic
(including the TPF, output comparator/checker, HDC, and
so forth), then the results reported at the outputs of the
monitored circuit will be correct. In this case, it is highly
likely, yet not guaranteed, that the error will also be

TABLE 3
Experimental Results for Duplication-Based CED
Circuit Original Dup TPF Comparator CDC HDC Total
Name 1/S(Bits)/O Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates
concur-mixer 3/3(2)13 26 16 26 16 29 17 28 14 15 8 22 12 154 87
martin-q-element 2/2(1)/2 14 9 14 9 1 0 22 9 10 5 14 8 83 44
opt-token-distributor 4/6(3)/4 74 41 74 41 1 0 38 19 20 11 29 16 244 132
pe-send-ifc 5/5(3)/3 110 58 110 58 134 79 28 14 15 8 22 12 427 233
tangram-mixer 3/2(1)2 17 10 17 10 1 0 22 9 10 5 14 8 89 46
pl 13/11(4)/14 | 458 238 458 238 135 76 138 69 70 41 104 59 1371 725
while_concur 4/4(2)/3 41 24 41 24 31 18 28 14 15 8 22 12 186 104
rf-control 6/6(3)/5 75 37 75 37 29 17 48 24 25 14 37 21 297 154
hp-ir 3/2(1)2 13 8 13 8 33 19 22 9 10 5 14 8 113 61
while 4/3(2)/3 27 16 27 16 1 0 28 14 15 8 22 12 128 70
p2 8/13(4)/16 349 192 349 192 1 0 158 79 80 47 119 67 1066 581
diffeq 14/9(4)/20 345 189 345 189 118 66 198 99 100 59 149 84 1263 690
barcode 13/11(4)/17 327 172 327 172 160 85 168 84 85 50 127 72 1202 639
TABLE 4
Experimental Results for Transition-Triggered CED
Circuit Original Opt. D Muxes TPF Comparator CDC HDC Total
Name Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates
concur-mixer 26 16 22 14 4 2 29 17 28 14 18 9 22 12 157 88
martin-g-element 14 9 12 7 2 1 1 0 22 9 13 5 14 8 86 43
opt-token-distributor 74 41 46 22 6 3 1 0 38 19 25 14 29 16 227 119
pe-send-ifc 110 58 48 27 6 3 134 79 28 14 28 15 22 12 383 211
tangram-mixer 17 10 13 8 2 1 1 0 22 9 18 8 14 8 95 48
pl 458 238 185 99 8 4 135 76 138 69 80 50 104 59 1116 599
while_concur 41 24 21 12 4 2 31 18 48 24 23 12 22 12 198 108
rf-control 75 37 34 19 6 3 29 17 48 24 35 20 37 21 272 145
hp-ir 13 8 10 6 2 1 33 19 22 9 18 8 14 8 120 63
while 27 16 13 9 4 2 1 0 28 14 23 12 22 12 126 69
p2 349 192 239 126 8 4 1 0 158 79 57 38 119 67 939 510
diffeq 345 189 282 154 8 4 118 66 198 99 91 60 149 84 1199 660
barcode 327 172 269 137 8 4 160 85 168 84 82 53 127 72 1149 611

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore.

Restrictions apply.

796 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO.6, JUNE 2007
TABLE 5
Experimental Results for Berger Code-Based CED
Circuit Inverter-Free Code Generator TPF Checker [31] CDC HDC Total Performance
Name 1/S(Bits)/O Lit. Gates T Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Lit. Gates Overhead
concur-mixer 33G)3 52 29 T | 22 13 29 17 4 2 15 3 22 12 152 85 7.69%
martin-g-element 212(2)/2 20 11 1 3 1 1 0 3 2 10 5 14 8 59 31 5.56%
opt-token-distributor 4/6(5)/4 106 57 2| 32 18 1 0 5 3 20 11 29 16 201 109 7.81%
pe-send-ifc 5/5(5)/3 153 79 2 | 128 67 134 79 5 3 15 8 22 12 465 252 10.82%
tangram-mixer 3/22)2 24 15 2 [17 10 1 0 4 2 10 5 14 8 78 4 5.88%
pl 13/118)/14 | 615 | 320 | 3 | 200 108 135 76 1 5 70 41 104 59 1143 613 1.76%
while_concur 4/4(4)3 59 33 1 19 11 31 18 4 2 15 8 22 12 158 88 2.08%
rf-control 6/6(6)/5 86 48 1| 24 14 29 17 5 3 25 14 37 21 224 121 4.23%
hp-ir 3/2(2)2 23 14 1 11 5 33 19 3 2 10 5 14 8 102 57 3.85%
while 433)3 49 28 1 5 2 1 0 4 2 15 8 22 12 104 56 3.92%
p2 8/13(8y16 | 458 | 238 | 3 | 140 74 1 0 12 6 80 47 119 67 818 436 1.84%
diffeq 14/98)20 | 419 | 224 | 3 | 211 112 118 66 14 7 100 59 149 84 1019 | 556 0.83%
barcode 1311817 | 449 | 232 | 3 | 181 98 160 85 12 6 85 50 127 72 1022 | 547 1.74%
TABLE 6
Comparison between the Proposed CED Methods (Percentile Cost Reduction)
Circuit Transition-Triggered | Berger code-based Berger code-based
Name vs. Duplication vs. Duplication vs. Transition-Triggered
concur-mixer —1.95% 1.30% 3.19%
martin-q-element —3.62% 28.92% 31.40%
opt-token-distributor 6.97% 17.62% 11.45%
pe-send-ifc 10.31% —8.90% —21.41%
tangram-mixer —6.74% 12.36% 17.90%
pl 18.60% 16.63% —2.42%
while_concur —6.45% 15.05% 20.20%
rf-control 8.42% 27.95% 21.32%
hp-ir —6.20% 9.74% 15.00%
while 1.56% 18.75% 17.46%
p2 11.91% 23.27% 12.89%
diffeq 5.07% 19.32% 15.01%
barcode 4.41% 14.98% 11.05%
Average Reduction 3.25% 15.15% 11.77%

detected. Should one be interested in guaranteeing its
detection, methods akin to the ones employed by the
analogous synchronous CED methods (that is, duplication
or dual-rail encoding of the cone of logic driving the error
signal and addition of a second error indication pin) may be
employed. Although some may consider such detection a
false positive, it is common practice in CED to err on the
side of caution, that is, to report the error even if it is not on
the monitored circuit but on the additional circuit used for
CED. We stress, however, that the most important property
is that the proposed CED methods never produce false
negatives, that is, they never fail to report an error on the
monitored circuit when one exists.

With regard to the area overhead incurred by the
proposed CED methods, at first glance, it appears to be
significantly higher than that of synchronous CED methods
[1]. However, we would like to be cautious in resorting to
such a quantitative comparison since it is rather misleading
due to two reasons. First, the overhead is significantly
inflated for small circuits due to the cost of the proportio-
nately large HDCs that are attached to the output pins. To
demonstrate this point, in Fig. 16, we plot the area overhead
of the proposed CED methods versus the original area cost of
the benchmark circuits. The curves indicate that the
percentile area overhead of the proposed CED methods
reduces as the complexity of the benchmark circuits
increases. Thus, we anticipate the area overhead will be
even lower for larger and more complex ABMMs, eventually
becoming comparable to the overhead of CED methods for
synchronous circuits. Second, and more importantly, the
proposed CED methods offer more robustness than their
synchronous counterparts. Specifically, they examine not

only the functional correctness of the results but also the
correctness of the communication between the circuit and
its environment. Synchronization of such communication
is distributed, as opposed to a centralized clock used in
synchronous circuits, the potential errors on which may
not be detected by synchronous CED methods. Finally,
although instantiating synchronous CED methods may be
easier than their asynchronous counterparts, this is most
likely an artifact of their narrower scope, as well as the
fact that the former are the outcome of several decades of
research, whereas the latter are merely taking their first
serious steps.

9 CONCLUSION

The lack of a global clock and the existence of redundant
logic to ensure hazard-free operation pose new challenges
in performing CED in ABMMs. As demonstrated in this

7x ® Duplication Overhead
6x X Transition-Triggered Overhead
1 B Berger code-based Overhead
5x
k-]
3
£ 4xq
[
8 3x]
2x7
1x]
0.8 1.3 1.8 23

Original Cost (log(# of gates))

Fig. 16. CED overhead versus area cost of the ABMM.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

ALMUKHAIZIM AND MAKRIS: CONCURRENT ERROR DETECTION METHODS FOR ASYNCHRONOUS BURST-MODE MACHINES

work, the checking synchronization problem arising from
the lack of a global clock can be resolved through additional
hardware which exploits information inherent in the
operation of an ABMM. Similarly, hazard detection hard-
ware can be used to detect errors in the redundant logic
which cause only hazards but no functional discrepancy in
the operation of an ABMM. Thus, both the functional
correctness of the circuit and its correct interaction with the
environment can be monitored. The proposed comparison
synchronization and hazard detection methods enable the
adaptation of CED techniques from the synchronous
domain and ensure their effectiveness in ABMMs. Three
such methods, namely, Duplication-based CED, Transition-
Triggered CED, and Berger code-based CED, were devel-
oped and discussed herein. Among them, at the cost of a
minor impact on performance, Berger code-based CED
incurs the lowest area overhead, as indicated by experi-
mental results.

ACKNOWLEDGMENTS

The authors would like to thank their colleague Feng Shi from
Yale University for helpful discussions on the operation of
burst-mode circuits and Professor Steven M. Nowick from
Columbia University for providing MINIMALIST, the burst-
mode logic synthesis package used in this work.

REFERENCES

[1] S. Mitra and E.J. McCluskey, “Which Concurrent Error Detection
Scheme to Choose?” Proc. Int’l Test Conf., pp. 985-994, 2000.

[2] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-Driven
Parity-Tree Selection for Low-Overhead Concurrent Error Detec-
tion in Finite State Machines,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 8, pp. 1547-1554, 2006.

[3] M. Goessel and S. Graf, Error Detection Circuits. McGraw-Hill,
1993.

[4] S. Almukhaizim and Y. Makris, “Fault-Tolerant Design of
Combinational and Sequential Logic Based on a Parity Check
Code,” Proc. 18th IEEE Int’l Symp. Defect and Fault Tolerance in VLSI
Systems (DFT '03), pp. 563-570, 2003.

[5] T. Verdel and Y. Makris, “Duplication-Based Concurrent Error
Detection in Asynchronous Circuits: Shortcomings and Reme-
dies,” Proc. 17th IEEE Int’l Symp. Defect and Fault Tolerance in VLSI
Systems (DFT 02), pp. 345-353, 2002.

[6] S.J.Piestrak and T. Nanya, “Towards Totally Self-Checking Delay-
Insensitive Systems,” Proc. 25th Int’l Symp. Fault-Tolerant Comput-
ing, pp. 228-237, 1995.

[7]1 V. Akella, N.H. Vaidya, and G.R. Redinbo, “Limitations of VLSI
Implementation of Delay-Insensitive Codes,” Proc. 26th Int'l Symp.
Fault-Tolerant Computing, pp. 208-217, 1996.

[8] E. Grass, V. Bartlett, and 1. Kale, “Completion-Detection Techni-
ques for Asynchronous Circuits,” IEICE Trans. Information and
Systems, vol. E80-D, no. 3, pp. 344-350, 1997.

[9] S.J. Piestrak, “Membership Test Logic for Delay-Insensitive

Codes,” Proc. Int’l Symp. Advanced Research in Asynchronous

Circuits and Systems, pp. 194-205, 1998.

V.1 Varshavsky, Self-Timed Control of Concurrent Processes. Kluwer

Academic, 1990.

N. Kanopoulos, D. Pantzartzis, and F.R. Bartram, “Design of Self-

Checking Circuits Using DCVS Logic: A Case Study,” IEEE Trans.

Computers, vol. 41, no. 7, pp. 891-896, July 1992.

D.A. Rennels and H. Kim, “Concurrent Error Detection in Self-

Timed VLSL” Proc. 24th Int’l Symp. Fault-Tolerant Computing,

pp- 96-105, 1994.

B.R. Kishore and T. Nanya, “On Concurrent Error Detection of

Asynchronous Circuits Using Mixed-Signal Approach,” IEICE

Trans. Information and Systems, vol. E80-D, no. 3, pp. 351-362, 1997.

(10]

(1]

(12]

[13]

(14]

(15]

(1o]

(171

(18]

(19]

[20]

[21]

(22]
(23]

(24]

[25]

[20]

[27]

(28]

(29]

[30]

(31]

(32]

(33]

[34]

[35]

(30]

(371

(38]

[39]

797

D. Shang, A. Bystrov, A. Yakovlev, and D. Koppad, “On-Line
Testing of Globally Asynchronous Circuits,” Proc. 11th IEEE Int'l
On-Line Testing Symp. (IOLTS "05), pp. 135-140, 2005.

D. Shang, A. Yakovlev, F. Burns, F. Xia, and A. Bystrov, “Low-
Cost Online Testing of Asynchronous Handshakes,” Proc. Eur-
opean Test Symp., pp. 225-232, 2006.

RM. Fuhrer and SM. Nowick, Sequential Optimization of Asyn-
chronous and Synchronous Finite-State Machines: Algorithms and
Tools. Kluwer Academic, 2001.

S.M. Nowick, “Automatic Synthesis of Burst-Mode Asynchronous
Controllers,” PhD dissertation, Stanford Univ., 1993.

S.M. Nowick and D.L. Dill, “Exact Two-Level Minimization of
Hazard-Free Logic with Multiple-Input Changes,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 8, pp. 986-997, 1995.

R.M. Fuhrer and S.M. Nowick, “OPTIMISTA: State Minimization
of Asynchronous FSMs for Optimum Logic,” Proc. IEEE/ACM Int’l
Conf. Computer-Aided Design (ICCAD ’99), pp. 7-13, 1999.

W.-C. Chou, P.A. Beerel, R. Ginosar, R. Kol, C.J. Myers, S. Rotem,
K. Stevens, and K.Y. Yun, “Average-Case Optimized Technology
Mapping of One-Hot Domino Circuits,” Proc. Int’l Symp. Advanced
Research in Asynchronous Circuits and Systems, pp. 80-91, 1998.

A. Marshall, B. Coates, and P. Siegel, “Designing an Asynchro-
nous Communications Chip,” IEEE Design and Test of Computers,
vol. 11, no. 2, pp. 8-21, 1994.

D.A. Huffman, The Synthesis of Sequential Switching Networks.
Addison-Wesley, 1964.

S.H. Unger, Asynchronous Sequential Switching Circuits. Wiley-
Interscience, 1969.

A. Saldanha, T. Villa, RK. Brayton, and A. Sangiovanni-
Vincentelli, “A Framework for Satisfying Input and Output
Encoding Constraints,” Proc. 28th Design Automation Conf.,
pp. 170-175, 1991.

E.J. McCluskey, “Minimization of Boolean Functions,” Bell System
Technology |., vol. 35, pp. 1417-1444, 1956.

K. De, C. Natarajan, D. Nair, and P. Banerjee, “RSYN: A System
for Automated Synthesis of Reliable Multilevel Circuits,” IEEE
Trans. VLSI, vol. 2, pp. 186-195, 1994.

J.M. Berger, “A Note on Error Detection Codes for Asymmetric
Channels,” Information and Control, vol. 4, pp. 68-73, 1961.

N.K. Jha and S.-J. Wang, “Design and Synthesis of VLSI Circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, no. 6, pp. 878-887, 1993.

V.V. Kumar and J. Lach, “Heterogeneous Redundancy for Fault
and Defect Tolerance with Complexity Independent Area Over-
head,” Proc. 18th IEEE Int’l Symp. Defect and Fault Tolerance in VLSI
Systems (DFT "03), pp. 571-578, 2003.

C. Bolchini, F. Salice, and D. Sciuto, “A Novel Methodology for
Designing TSC Networks Based on the Parity Bit Code,” Proc.
European Design and Test Conf., pp. 440-444, 1997.

X. Kavousianos and D. Nikolos, “Novel Single and Double Output
TSC Berger Code Checkers,” Proc. VLSI Test Symp., pp. 348-353,
1998.

S.W. Burns and N.K. Jha, “A Totally Self-Checking Checker for a
Parallel Unordered Coding Scheme,” IEEE Trans. Computers,
vol. 43, no. 4, pp. 490-495, Apr. 1994.

E.J. McCluskey, “Design Techniques for Testable Embedded Error
Checkers,” Computer, vol. 23, no. 7, pp. 84-88, July 1990.

O. Yenersoy, “Synthesis of Asynchronous Machines Using Mixed-
Operation Mode,” IEEE Trans. Computers, vol. 26, no. 8, pp. 325-
329, Aug. 1979.

J.S. Chiang and D. Radhakrishnan, “Hazard-Free Design of Mixed
Operating Mode Asynchronous Sequential Circuit,” Int'l].
Electronics, vol. 68, no. 1, pp. 23-37, 1990.

S.M. Nowick and D.L. Dill, “Synthesis of Asynchronous State
Machines Using a Local Clock,” Proc. IEEE Int’l Conf. Computer
Design (ICCD '91), pp. 192-197, 1991.

SM. Nowick and D.L. Dill, “Automatic Synthesis of Locally
Clocked Asynchronous State Machines,” Proc. IEEE/ACM Int’l
Conf. Computer-Aided Design (ICCAD ’95), pp. 318-321, 1995.

S.J. Piestrak, “Design of Fast Self-Testing Checkers for a Class of
Berger Codes,” IEEE Trans. Computers, vol. 36, pp. 629-634, 1987.
A. Marshall, B. Coates, and P. Siegel, “The Design of an
Asynchronous Communications Chip,” IEEE Design and Test of
Computers, pp. 8-21, 1994.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

798

(40]

[41]

[42]

K.S. Stevens, S.V. Robison, and A.L. Davis, “The Post Office
Communication Support for Distributed Ensemble Architec-
tures,” Proc. Sixth Int’l Conf. Distributed Computing Systems (ICDCS
'86), pp. 160-166, 1986.

R.M. Fuhrer, SM. Nowick, M. Theobald, N.K. Jha, B. Lin, and L.
Plana, “MINIMALIST: An Environment for the Synthesis,
Verification and Testability of Burst-Mode Asynchronous Ma-
chines,” Technical Report TR CUCS-020-99, Dept. of Computer
Science, Columbia Univ., 1999.

E.M. Sentovich, KJ. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldahna, H. Savoj, P.R. Stephan, RK. Brayton, and A. Sangio-
vanni-Vincentelli, “SIS: A System for Sequential Circuit Synth-
esis,” ERL memo UCB/ERL M92/41, Dept. of Electrical Eng. and
Computer Science, Univ. of California, Berkeley, 1992.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 6, JUNE 2007

Sobeeh Almukhaizim received the diploma in
electrical and computer engineering from Kuwait
University, Kuwait, in 1999, the MS degree in
computer science and engineering from the
University of California, San Diego, in 2001,
and the MS and MPhil degrees in electrical
engineering from Yale University in 2003. He is
currently a PhD candidate in the Department of
Electrical Engineering at Yale University. His
current research interests include VLSI design

and test, fault tolerance, and concurrent error detection. He is a student
member of the IEEE and the IEEE Computer Society.

~
T2

A

Yiorgos Makris received the diploma in com-
puter engineering and informatics from the
University of Patras, Greece, in 1995 and the
MS and PhD degrees in computer science and
engineering from the University of California,
San Diego, in 1997 and 2001, respectively. He is
currently an associate professor of electrical
engineering and computer science at Yale
University, where he leads the Testable and
Reliable Architectures (TRELA) Research

Group. His current research interests include soft-error mitigation in

digital circuits, machine-learning-based testing of analog/radio fre-
quency (RF) circuits, and test and reliability of asynchronous circuits.
He is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Yale University. Downloaded on December 30, 2008 at 20:46 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

