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Enhancing Simulation Accuracy through
Advanced Hazard Detection in
Asynchronous Circuits

Feng Shi, Member, IEEE, and Yiorgos Makris, Senior Member, IEEE

Abstract—A fast and accurate simulator with elaborate hazard detection capabilities is vital for asynchronous circuits, not only for the
purpose of design validation through logic simulation, but even more importantly for the purpose of test validation through fault
simulation. Toward this end, we developed SPIN-SIM, a logic and fault simulator built around Eichelberger’s classical hazard detection
method, yet extended in various ways in order to overcome its limitations. More specifically, in order to improve simulation accuracy
and hazard detection, SPIN-SIM 1) employs a 13-valued algebra for which it adapts Eichelberger's method, 2) maintains partial orders
of causal signal transitions through relative time stamps, and 3) unfolds time frames judiciously to distinguish between hazards and
actual transitions. Experimental results demonstrate that, at the cost of a negligible increase in computational time over Eichelberger’s
method, if any at all, SPIN-SIM achieves significantly more accurate logic simulation and, by extension, drastically more efficient fault
simulation. Furthermore, while the proposed method was developed and is presented for the class of Speed-Independent circuits, it is
easily extendible to various other classes of asynchronous circuits.

Index Terms—Logic and fault simulation, asynchronous circuits, testing.
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1 INTRODUCTION

SYNCHRONOUS circuits promise a wide range of advan-

tages, including elimination of clock distribution net-
works and skew problems, low EMI, improved performance,
reduced power consumption, and modularity [1], [2]. Never-
theless, and despite the recent release of several asynchro-
nous products [3], adoption of the asynchronous design style
has been rather limited, mainly because of the lack of EDA
support. Indeed, asynchronous circuits present their own set
of challenges, making the porting of computer-aided design
and test methods from the synchronous domain neither
straightforward nor always possible. Among the various
issues, we focus on the problem of logic and fault simulation.
Due to the lack of a global clock, components in asynchro-
nous circuits operate independently and their interaction is
sensitive to race conditions and hazards, making the use of
existing synchronous circuit simulators insufficient, if at all
possible. To compound the problem, varying assumptions on
the underlying timing models have led to a number of
distinct classes of asynchronous circuits, each of which may
require its own simulation methods.

An accurate and efficient gate-level simulation method for
asynchronous circuits is a crucial component in their design
and test flow. A key attribute of achieving the required
accuracy is the ability to detect hazards. One may argue that
asynchronous circuits are often specified and implemented
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through formal methods that guarantee their hazard-free
operation, thus reducing the need for a hazard-detecting
simulator for the purpose of design validation. However,
such guarantees are only provided for a fault-free circuit. In
the presence of a manufacturing fault, it is possible that the
circuit behavior deviates from its specification in ways that
create hazards. As a result, generating and validating test
vectors cannot be done without the use of a hazard-detecting
simulator. Moreover, test vectors in asynchronous circuits
have to be applied after the circuit has stabilized, and fault
effects have to be observed when the circuit is in a stable
state, conditions that synchronous fault simulators cannot
guarantee.

Corroborating these points, it comes as no surprise that
test technology for asynchronous circuits is still in its
infancy. Indeed, most existing test generation and applica-
tion methods for asynchronous circuits [4], [5], [6] employ
scan-based approaches, which enable the use of synchronous
test tools. Yet the area and performance overhead of these
approaches is significant, and their effectiveness often
limited, since they do not exercise the circuit in its native
asynchronous mode. And while attempts to develop native-
mode automatic test pattern generation (ATPG) methods [7],
[8], [9] for asynchronous circuits have been made, they have
been thwarted by the lack of efficient logic and fault
simulation capabilities.

In this paper, we present SPIN-SIM, a logic and fault
simulation method for asynchronous circuits built around
Eichelberger’s classical hazard detection method [10], which
we extend in order to improve its accuracy. First, in Section 2,
we briefly introduce the various classes of asynchronous
circuits and we pinpoint the difficulties of dealing with
hazards. Then, in Section 3, we discuss the key novelties of
the proposed logic simulation method, which we formally
present in Section 4. Section 5 explains how the proposed
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method handles complex gates, and Section 6 outlines its use
for fault simulation. Experimental results demonstrating the
efficiency of the proposed logic and fault simulation method
are provided in Section 7, and its applicability to other
classes of asynchronous circuits is discussed in Section 8.

2 SIMULATING ASYNCHRONOUS CIRCUITS

One of the key simulation complications arises from the
plethora of different styles of asynchronous circuits, each
of which comes with its own set of timing constraints and
requirements. After briefly describing the most popular
classes, we focus on the particularities of simulating the
class of Speed-Independent circuits. While SPIN-SIM was
initially developed for this class of circuits, we note that its
underlying framework enables its straightforward exten-
sion to other classes, as we discuss in Section 8.

2.1 Classes of Asynchronous Circuits

Asynchronous circuits are classified into several categories
based on their timing assumptions. Delay-Insensitive circuits
[11] operate correctly under arbitrary gate and wire delays,
hence are the most robust. Unfortunately, the class of such
circuits built out of simple gates is rather limited. Quasi-
Delay-Insensitive circuits are delay-insensitive except that
“isochronic forks” are required to build practical circuits
using simple gates and operators. An isochronic fork is a
forked wire where all branches are assumed to have exactly
the same delay. Timed circuits [12] operate correctly under
specific internal and/or environmental timing assump-
tions, such as bounded delays. Speed-Independent circuits
[13] tolerate arbitrary gate delays, but assume negligible
wire delays.

Alternatively, asynchronous circuits are divided into two
main categories according to their design style, namely
Huffman and Muller circuits. Huffman circuits [14] are
designed using a traditional asynchronous state machine
approach. The state is stored in combinational feedback
loops and, thus, may require delay elements along the
feedback path to prevent state changes from occurring too
rapidly. Huffman circuits are typically designed under the
bounded gate and wire delay model. In this model, circuits
are guaranteed to work regardless of gate and wire delays,
as long as a bound on these delays is known. In order to
design correct Huffman circuits, it is also necessary to set
constraints on the behavior of the environment, namely
when inputs are allowed to change. Correctness of Huffman
circuits relies on the assumption of “fundamental operation
mode,” which requires that outputs and state variables
stabilize before either new inputs or changed feedback state
variables arrive. Violation of this assumption may result in
a sequential hazard and, thus, incorrect outputs.

Muller circuits [14] are designed mainly based on state
transition graphs (or Petri Nets) as the specification form.
Under the unbounded gate delay model, these circuits are
guaranteed to work regardless of gate delays, assuming that
wire delays are negligible. Muller circuit design requires
explicit knowledge of the behavior protocol allowed by the
environment. However, no restrictions are imposed on the
order or speed that inputs, outputs, and state signals
change, except that they must comply with this protocol.
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Fig. 1. Asynchronous circuit example.

Muller circuits correspond to Speed-Independent circuits,
and although the two terms are used interchangeably in the
literature, we will only use the latter in the rest of this paper.

2.2 Hazards in Speed-Independent Circuits

Simulation of asynchronous circuits needs to deal with
hazards, races, and oscillations, which synchronous circuit
simulation is not concerned with. Simulation of Speed-
Independent circuits, in particular, presents a set of unique
challenges due to their specific timing model. Similar to
simulators for other types of asynchronous circuits, such as
Fsimac [15] which handles Huffman circuits, a simulator for
Speed-Independent circuits needs to detect hazard condi-
tions. However, the particular timing model of Speed-
Independent circuits calls for a different logic simulation
method than that for Huffman circuits, especially when
handling feedback signals.

As illustrated in Figs. 1 and 2, it is possible that essential
hazards exist in an asynchronous sequential circuit. Fig. 1la
shows the flow table of an asynchronous state machine,
where the circled entries indicate stable states, and Fig. 1b
demonstrates its gate-level implementation. Essential ha-
zards arise when some arrangement of circuit delays allows
a state change to complete before the input change is fully
processed [16]. For example, suppose that the circuit is
initially in state y;y» = 00 with input z = 0. If input «z rises,
the circuit will transition to state y;y» = 10 according to its
flow table through the sequence of signal transitions shown
in Fig. 2a. But if the inverter generating a is slow in
comparison to other gates or delay elements on the feedback
paths, an incorrect result will occur, as shown in Fig. 2b.
Specifically, c will rise, followed by y;, while a remains high.
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Fig. 2. Essential hazard example in circuit of Fig. 1.

The rise of y; through the feedback path triggers the rise of b
and d, since a is still high. Then, y, rises and g falls, which
causes b and c to fall. The rise of y also causes e to rise. If,
now, the inverter generating a finishes evaluation and «
falls, then d will fall, causing y; to fall. But y, remains high
since now e is high. So the final state of the circuit, in this
arrangement of gate delays, is y;y» = 01. Therefore, an
essential hazard exists.

Such hazards are often avoided in Huffman circuits by
inserting enough delay in the feedback lines to ensure that
logic signals stabilize after the input transitions and before
further transitions occur through the internal state variables.
For example, if enough delay is inserted in the feedback paths
in the circuit of Fig. 1b, after « rises, ¢ and y, rise, and « falls;
so, in the end of the first time frame, the state is y;y, = 10.
Then, the circuit stabilizes in this state, which is consistent
with its specification. Simulators for Huffman circuits, such
as Fsimac [15], assume this “fundamental operation mode”
and simulate the circuit in a simple time frame unfolding
manner. Hence, they are not required to detect essential
hazards. Although valid for simulation of Huffman circuits,
this may lead to incorrect results when simulating Speed-
Independent circuits, in which no delay elements are
inserted in the feedback paths and, hence, essential hazards
may exist. Therefore, simulation of Speed-Independent
circuits requires a different approach.

One possible solution is to use the traditional algorithm
developed by Eichelberger [10], which employs ternary

o
o

Fig. 3. Conservativeness of Eichelberger's method.
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TABLE 1
Simulation of the Circuit of Fig. 3
Node | 1stiter | 2nd iter | 3rd iter | 4th iter
a X X X 1
b 1 1 1 1
c’ 0 0 X X
c 0 X X X
d 1 X X X
e 0 X X X
e X X X X

logic simulation for detecting hazards in both combinational
and sequential logic, as well as in asynchronous circuits.
This method uses % to denote an unknown state, which we
typically denote by X. Suppose each feedback line is cut,
with one end denoted as a pseudoprimary input (PPI) and
the other as a pseudoprimary output (PPO). Eichelberger’s
algorithm consists of two procedures: in Procedure A, all
changing state signals are determined by setting changing
primary inputs (PIs) to X and all other PIs and PPIs as
originally specified, and then evaluating the PPOs. If there
are any PPOs equal to X, the corresponding PPIs are
changed to X and the process is repeated until no additional
changes occur in PPOs. Then, Procedure B takes over to
determine which value each state signal stabilizes to. With
the changing Pls equal to their new values and all other PIs
and PPIs equal to their values at the end of Procedure A,
PPOs and primary outputs (POs) are evaluated. If one or
more PPOs change from X to 1 or 0, the corresponding PPI
is changed and the process is repeated until no more
changes occur in PPOs.

However, Eichelberger’s method is too conservative in
many cases. Fig. 3 gives such an example. In this simple
circuit, there are two feedback paths; one is denoted as e
while the other is inside the C-element." In Eichelberger’s
method, these feedback paths are cut into PPIs and PPOs.
Let us denote the PPIs as ¢’ and ¢/, and the PPOs as e and ¢,
respectively. Table 1 lists the signal value on each node in
every iteration of the method. Assume that the circuit state is
e =0and c = 0, input b is high, and the stimulus to input a is
a falling transition. In the first iteration of Procedure A, the
changing input a is set to X, and then the circuit is
evaluated. If there is an unknown value on any of the PPOs,
such as e, the corresponding PP, ¢/, is set to X during the
next iteration. Procedure A ends when no new X’s appear
on the PPOs (third iteration). Then, Procedure B starts, input
a is set to its new value of 1 in the fourth iteration, and the
circuit is evaluated again. Procedure B ends after the fourth
iteration since no X on the PPOs is resolved. Therefore, the
final result indicates that the circuit falls into an undeter-
mined state. This, however, should not be the case. Initially,
b=1,¢=0,d=1,a=1,f=0,and e = 0. After a falls, f and
e rise, so c also rises. Then, d falls and so does e. But ¢ does
not change since b remains at 1. In the end, the output of the
C-element becomes 1, which is fully determined. This
conservativeness is a key problem when using Eichelber-
ger’s method on Speed-Independent circuits.

1. A Muller C-element is a sequential component whose output reflects
the value of its inputs when all inputs match and remains in this state until
all inputs transition to the opposite state.
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TABLE 2
Simulation Using Adapted Eichelberger’'s Method
Node 1st iter 2nd iter 3rd iter
z [0 | 0L | {011
a | (1,1,0) | (1,1,0) | (1,1,0)
b | {0,0,0) | (0,X,X) | (0,X,X)
c | {011 | (01,1 | (0XX)
d <07070> <07X7X> <07X7X>
e | {0,0,0) | (0,0,0) | (0,X,X)
I (0,0,0) | (0,0,0) | (0,X,X)
g (1L,1,1) | (1, X, X) | (1,X,X)
Y1 <07T71> <07X7X> <0/X7X>
Y2 (0,0,0) | (0,X,X) | (0,X,X)
Y| (0,0,0) | (0,X,X) | (0,X,X)
v, | (0,0,0) | (0,0,0) | (0,X,X)
J |1 | a1 | 1,XX)

3 PROPOSED SIMULATION METHOD

SPIN-SIM, the proposed simulator, is developed based on
Eichelberger’s hazard detection method. However, in order
to overcome its conservativeness, SPIN-SIM extends this
method in several ways. First, it employs a 13-valued algebra
to represent signal transitions more accurately and adapts
Eichelberger’s method accordingly. Second, it uses time
stamps to maintain partial orders of causal signal transitions.
Third, it unfolds time frames judiciously, distinguishing
between hazards and actual transitions. The details of these
enhancements are described in the following three sections.

3.1 Eichelberger’s Method with 13-Valued Algebra

Multivalued algebras have been widely used in tasks that
require hazard detection, such as simulation of asynchronous
circuits and test generation for path delay faults [10], [15],
[17], [18], [19], [20], [21]. The 13-valued algebra has been
particularly explored, since it can accurately describe signal
transitions. Moreover, it is compact and it avoids unneces-
sary event proliferation by abstracting the details of multi-
transition waveforms. Another reason for using 13-valued
logic is that it facilitates the expression of functions of
complicated gates, such as C-elements, latches, and complex
domino gates, which are used in asynchronous circuits. The
13-valued waveforms are listed below, adopting the inter-
pretation and notation in [19], wherein the three symbols of a
3-tuple correspond to the initial, intermediate, and final
signal value, respectively:

Constant: (1,1,1), (0,0, 0).
Transition: (0, 71,1), (1, |,0).
Hazard: (0, X,0), (0, X,1), (1, X,0), (1, X,1).
Stabilizing: (X, X,0), (X, X, 1).
Destabilizing: (0, X, X), (1, X, X).
o Undefined: (X, X, X).
The extension of gate functions from 3-valued to 13-valued
logic is not difficult and is detailed in the above references.
Using the 13-valued algebra, we adapt Eichelberger’s
method which is able to detect essential and other hazards in
a sequential circuit, in order to perform simulation of Speed-
Independent circuits. To achieve this, the unknown value X
of the typical 3-valued algebra is replaced by appropriate
values in the 13-valued algebra, which carry more informa-
tion about transition waveforms. As an example, Table 2

Fig. 4. Gate-level schematic of a D-Latch.

illustrates the simulation results for the circuit of Fig. 1 using
the adapted Eichelberger’s method. During every simula-
tion iteration, each of the feedback paths y, y», and g is cut
into two ends. The ends that feed gate inputs are denoted by
¥, Yo, and ¢/, while the other ends are denoted by y;, y2, and
g, respectively. The initial values of the feedback paths are
Y1959 = 000, and the stimulus on input z is (0,1,1). The
simulation results for the first, second, and third simulation
iterations are listed in the second, third, and fourth column,
respectively. The value on ] is replaced by (0, X, X) in the
second iteration since Eichelberger’s method sets an un-
known value, X, on a PPI if the value on the corresponding
PPO is unstable in the previous iteration. As a result, the
values on y; and y, become destabilizing in the following
iterations and the simulation terminates because the values
on the PPOs are consistent with those on the PPIs. Since the
final state of either y; or y, is destabilizing, the essential
hazard described previously is detected by the adapted
Eichelberger’s method. In contrast, simulation algorithms
for Huffman circuits assume sufficient delay on feedback
paths and, thus, they use the final states of the PPOs as the
values of the PPIs for the next time frame. Hence, they are
unable to detect this essential hazard.

While the use of the 13-valued algebra improves hazard
detection, it cannot express the relative order of signal
transitions. In some cases, this may lead to false indication
of hazard conditions. Fig. 4 gives such an example.
Suppose that the initial values of the PIs of the D-Latch
are CLK =1 and D = 1, the values of the internal nodes
are abcdefg = 1100101, and the values of the POs are @ = 1
and QBAR = 0. Also, suppose that CLK falls to 0 and D
does not change, or in 13-valued logic, CLK = (1, ,0)
and D = (1,1,1). Therefore, b=(1,],0), ¢=(0,7,1), and
e=(1,X,1) by gate evaluation, and a glitch on e is
reported. However, the circuit assumes that a and b fall
simultaneously because they are branches of an isochronic
fork. Since the gate delay for c is positive, c¢ rises after a
falls, hence after b falls, so there is no glitch on e. In fact,
e=(1,1,1). In this case, simulation based on 13-valued
algebra leads to a false indication of a hazard. In order to
achieve higher accuracy, the relative order of signal transitions
needs to be considered during gate evaluation.

3.2 Maintaining Relative Transition Order

Since Speed-Independent circuits assume the unbounded
gate delay model [13] (i.e., delay elements are attached only
to gate outputs and the delay magnitude is positive and
finite but unknown), min-max timing analysis based on the
bounded delay model, as in [15] and [19], is not necessary.
As in [15], we mainly assume the pure delay type, ie.,
waveforms are shifted in time but do not change shape.
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However, as shown above, the relative order of causal
signal transitions is necessary in many cases for correct
simulation. In order to keep track of the relative order of
causal signal transitions, SPIN-SIM maintains a time stamp
for every transition. The time stamp is simple and only
includes a signal group ID and a time. The group ID is used
to indicate causal transitions; signal transitions with a
causal relation are assigned the same group ID. The relative
order of the causal transitions is recorded in the time field,
which is incremented as the transition propagates. Hence,
for two transitions with the same group ID, the one with the
smaller time field precedes the other. For instance, if the
input to an inverter is (1, |,0) with a group ID of ¢ and a
time field of ¢, then the output is (0,1,1) with the same
group ID i and a time field of ¢ + 1. Notice that we only
maintain time stamps for transitions, that is, (0,7,1) and
(1,1,0). The time stamps for other signal values are not
kept, since they are typically not necessary. While this
might sacrifice some accuracy, it helps moderate computa-
tional time.

Maintaining time stamps for the output of a multi-input
gate is more complicated than for an inverter. In the
simplest case, the output transitions as a result of changes
on input signals that belong to the same group, while the
remaining inputs are stable. In this case, the group ID of the
output transition is the same as that of the input transitions
and the time field equals that of the triggering input
transition, incremented by 1. It is possible, however, that the
output is the result of multiple input transitions that do not
all belong to the same group. For instance, Fig. 5 illustrates
four such cases. In cases a and b, the output transition takes
place only after both of the input transitions have taken
place. In order to represent this relation, a new group ID i3
is assigned to the output and this new group is denoted as a
successor of both groups i; and 4,. Transitions in a
predecessor group precede transitions in its successor
groups. SPIN-SIM keeps track of this relation by maintain-
ing group masks. Each group i of a total of n groups is
assigned a group mask m; = (m;i, M2, ..., M), within
which every group j is assigned a corresponding bit m;;.
A bit m;; is set to 1 if its corresponding group j is a
predecessor of the current group i; otherwise, it is set to 0.
In the previous example, the two bits corresponding to
groups i; and iy are set to 1 in the mask of group is.
SPIN-SIM also sets the time field of the output transition to
the maximal of those of the input transitions, incremented
by 1. In cases c and d, the output transition takes place after
either one of the input transitions takes place. The input
transition that takes place first precedes the output
transition. However, since it is not known which transition
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occurs first, this relation is difficult to express. In the
interest of simulation speed, we decided to avoid repre-
senting this information in SPIN-SIM and so we set both
mask bits to 0, because the degradation of simulation
accuracy by doing so is seldom noticeable.

A transition triggered by another transition is, typically,
within the same group as the first one. However, there are
exceptions. Fig. 6 gives such an example. Since one input to
gate AN D, is (1,1, 1) and the other is a transition (0, T, 1) with
group ID 4, and time field 1, the transition propagates to the
output of AND,; and the waveform is (0, T, 1) with the same
group ID and an incremented time field of 2. This output fans
out to both gates ANDy; and NAND;, so the transition
propagates to their outputs since, for both of them, the other
inputis (1, 1, 1). Thus, the output waveform of gate AN D, is
(0,7,1) and that of gate NAND; is (1, |, 0). However, neither
of the two output transitions inherits the group ID of the input
transition. This happens because although both transitions
are triggered by a common input transition, which definitely
precedes them, they exercise different gate delays, hence
their relative order is undetermined. If both of them inherited
the group ID of the input transition, their relative order
would be falsely set. Therefore, SPIN-SIM assigns a new
group ID i, to the output transition of gate AN D and another
new group ID i3 to that of gate NAND;. Both of their time
fields are set to 3, which is the time field of the input transition
incremented by 1. The signal group i¢; is set to be the
predecessor of both signal groups i, and 43 in their group
masks, respectively, which confirms the fact that the output

<0,1,1>

<LL1> (ir, 3)
<1,1,1> _| 01 IA>ND2
<0,1m,1> — (i1, 2) <1,X,1>
(i1, 1) AND; OR;
<1,1,1> 1.0>

NAND; (i3, 3)
Group ID: Group mask:

TR

i

Fig. 6. Example of time stamps and group masks.
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transition of AN D, precedes those of both gates AN D, and
NAND,. The group masks of these signal groups are also
illustrated in Fig. 6. Notice that the bit corresponding to group
71 in the group mask of both i, and i3 is set to 1. Also, by
convention, in the mask of every group, the bit corresponding
to the group itself is always set to 1. When the output
transitions of gate AND; and NAN D, reach gate OR,, they
belong to different groups. This implies that there is no
relative order between them and, therefore, the output
waveform of gate OR; is (1, X, 1).

The gate evaluation process is also adapted after
considering the relative timing of the signal transitions. If
there are fewer than two input transitions on the inputs, or
if there is no relative order between any two transitions, the
gate function is evaluated through the original truth table.
However, if there is a relative order between any two input
transitions, the output might be different. One method to
address this would be to store the outputs under all
possible input and relative order combinations into the
truth table, and index by both input values and their
relative timing during gate evaluation. Yet, this method
would expand the truth table and would need additional
memory space. Instead, SPIN-SIM adopts an alternative
method which keeps the original truth table but splits the
evaluation process into several phases. For example, in
Fig. 7, the two input transitions of the AND gate are within
the same group and, therefore, have a relative order. Since
the time field of the transition on input a is smaller than
that on input b, the transition on input a precedes that on
input b. In the first phase, the signal on input a is (1, ],0)
and the signal on input b takes its pretransition value, that
is, (0,0,0). The output is (0,0, 0) according to the original
gate evaluation method. Then, in the second phase, the
signal on input a takes its posttransition value, that is,
(0,0,0), the signal on input b is correspondingly (0,1, 1),
and the output is (0,0,0). SPIN-SIM computes the final
output as the concatenation of the outputs of the two
phases which, in this case, is (0,0,0). Note that this is the
correct result, which is different from the original truth
table result of (0,X,0).

The complete algorithm for deriving the waveform of the
output signal and its time stamp under any possible input
combination is formally presented in Section 4.

3.3 Judicious Time Frame Unfolding

SPIN-SIM unfolds time frames carefully. Unlike in
Procedure A of Eichelberger’s algorithm, which treats
transitions and hazards in the same way, if there is a hazard
but no transition detected on any PPO after evaluation, the
corresponding PPI is set to the destabilizing value and the
process is repeated until no more hazards are detected. Then,
if a transition is detected on any PPO, the corresponding PPI

(<0,0,0>)

is set accordingly, the circuit is reevaluated, and any hazards
are handled as previously described. This process is repeated
until no more hazards and transitions occur on PPOs, or until
the number of iterations exceeds a predefined limit. Such a
limit is necessary to break the infinite loop that occurs when
the circuit oscillates, in which case the first terminating
condition will never be satisfied. After this step, a procedure
similar to Procedure B of Eichelberger’s algorithm takes
place to determine the stabilizing values on the POs and the
state signals.

We demonstrate this by simulating again the circuit of
Fig. 3 using SPIN-SIM. The initial condition is ¢ =0 and
e =0.Thestimulusisa = (1, |,0) and b = (1, 1, 1). The signal
values for each node in the four simulation iterations are
listed in the second through fifth column in Table 3,
respectively. The time stamps of signal transitions are also
listed in parenthesis when applicable. The first number in the
parenthesis is the signal group ID and the second number is
the time field value. Since SPIN-SIM uses the 13-valued
algebra, it is not necessary to set the changing inputs to
undefined values in the first simulation iteration in Proce-
dure A. The input transition on a is assigned a group ID of
0 and a time stamp of 1. The circuit is then evaluated and the
value on PPO e turns out to be a rising transition with a time
stamp (0, 3). Unlike Eichelberger’s method, in which the
corresponding PPI ¢’ is set to the destabilizing value in the
next iteration, SPIN-SIM replaces the value and the time
stamp on ¢’ with those on e, which are (0, 1, 1) and (0, 3), since
this is a transition and not a hazard. Note that this kind of
replacement of a stable value with a transition resembles
more a signal value correction than a time frame unfolding,

TABLE 3
SPIN-SIM Results on the Example Circuit of Fig. 3

Node Ist iter 2nd iter | 3rd iter 4th iter

a (L,1,0) | (1,1,0) | (1,1,0) | (L,],0)
(0,1) (0,1) (0,1) (0,1)

b (1,11 [ (L4, [ (LLL [ (1,1,1)

4 (0,0,0) | (0,0,0) | {0,T,1) [ (0, T, 1)
(0,4) (0,4)

¢ 140,0,0) | (0,1,1) | (0,1,1) | {0, T,1)
(0,4) (0,4) ©, 4

d (1,1,1) | (1,1,0) | (L,1,0) | (1, 1,0)
(0,5) (0,5) ©, 5

e’ 0,0,0) | (0,7,1) | (0,7,1) | (L,],0)
(0,3) (0,3) (0,6)
[0,3]

€ 0,1,1) | (11,00 | (1,1,0) | (L,],0)
(0,3) (0,6) (0,6) (0,6)
[0, 3] [0,3] [0,3]

! (0,1,1) [ (0,7,1) [ {(0,1,1) | (0,1, 1)
(0,2) (0,2) (0,2) (0,2)
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since there is no signal timing information loss. After
evaluation, the result is a rising transition on ¢ and a falling
transition on e. Given the inputs f=(0,7,1)(0,2) and
d = (1,],0)(0,5), the result on e would be (0, X, 0). However,
SPIN-SIM identifies from their time stamps that there are two
transitions in the result, and the former has been already
stored in ¢/, so only the latter transition is reported; the time
stamp of the previous one is still kept, as shown in brackets,
to indicate the starting point of the current waveform. This
time stamp is called starting time stamp. In the third iteration,
SPIN-SIM corrects the value on ¢ to (0, T, 1) (0, 4) but does not
change the value on ¢’ to (1, ],0)(0, 6), since by doing so, it
would discard the old waveform information on ¢’. Thus, this
is a true time frame unfolding.” Since no hazard is detected in
the end of the third iteration, the time frame unfolding on €’ is
performed and the time stamp of the old transition is kept as
its new starting point. Since the evaluation results in no
additional signal changes, Procedure A terminates.

Procedure B is not executed because the next state
values on the PPOs coincide with those on the PPIs and the
simulation finishes. The final result confirms the previous
analysis, which indicates that the final value should be
¢ = 1. Note that if any hazards are detected on PPOs, the
corresponding PPIs are set to destabilizing values, as in
Eichelberger’s method. The starting points of waveforms
are maintained so that evaluation of unfolded signals will
produce a correct result with a proper starting point. Time
frame unfolding might not terminate in case of oscillations;
hence, an upper limit of simulation iterations is experi-
mentally set (in our experiments, a limit of 50 sufficed to
obtain maximal simulation accuracy). When the number of
iterations exceeds this limit, SPIN-SIM assumes that the
circuit is oscillating and sets the switching signals to
destabilizing values.

The complete simulation algorithm and the verification
method for conservative time frame unfolding are formally
presented in Section 4.

4 EXTENDED 13-VALUED ALGEBRA THEORY

In this section, we formalize the proposed extension to the
13-valued algebra which enables it to deal with timing
constraints in the circuit. First, we introduce notation and
definitions, as well as lemmas that capture the causal
relationship between input and output transitions and are,
thus, used for assigning appropriate time stamps to output
transitions during gate evaluation. Then, we examine the
necessary conditions for performing conservative time frame
unfolding and we prove a theorem that enables an easy
method for checking whether a time frame unfolding is
conservative. We remind that this capability is crucial, since
arbitrary time frame unfolding may overlook possible
sequential hazards. Subsequently, we describe the rules for
performing gate evaluation in the extended 13-valued
algebra, including generation of the output waveform,

2. Arbitrary time frame unfolding may conceal hazard conditions as
discussed in Section 4. Although a verification method for time frame
unfolding is developed in Section 4, it might lead to conservative results.
Therefore, in order to improve simulation accuracy, SPIN-SIM always
performs signal corrections before time frame unfolding.
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assignment of appropriate time stamp and, when necessary,
verification that any time frame unfolding is conservative.
Finally, we describe how these rules are incorporated in
Eichelberger’s method to enhance simulation accuracy
through advanced hazard detection in asynchronous circuits.

4.1 Notation and Definitions

In order to capture the timing constraints used in asynchro-
nous circuits, we extend the 13-valued algebra with time
stamps and represent a signal w by a tuple {v,,¢}, where

e v is one of the values in the 13-valued algebra. We
denote the set of all the 13-valued waveforms as V, the
set of constants in V as C = {(0,0,0), (1,1,1)}, the set
of transitions as 7 = {(0, 1,1), (1, |, 0)}, and the set of
unknown waveforms as U = {vjve V\ (CUT)}.
Also, we denote the initial value of a 13-valued
waveform v as In(v) and the final value of v as Fi(v).
For instance, In((1, |,0)) =1 and Fi((0, X, X)) = X.

e i indicates the start time of v and is valid only if v is
a transition (v € T'); otherwise, it is meaningless and
is assigned an empty value, which we denote by E.
Even when v is a transition,  might be undefined if
the start time is the simulation initialization, in
which case ¢ is assigned an E. We also note that a
signal {v,#, E}, { # E is invalid.

e tindicates the time that a transition in v occurs and is
also valid only if v € 7; otherwise, if v CUU, t is
meaningless and is assigned the empty value E.

We call a time stamp ¢ or { trivial if and only if its value is
E. Also, for convenience, we define as WV (w) the 13-valued
waveform of the extended waveform w = {v,t,t}, ST(w)
the start time of w, and T7T(w) the transition time of w.
Obviously, WV (w) = v, ST(w) = t, and TT(w) = t.

The reason for introducing and assigning time stamps
to transitions is to express order between signals. Since the
delay of each gate in a Speed-Independent circuit is arbitrary,
t and t are expressed in the form of relative rather than
absolute time. We denote t; < ty or ty > t1 (f; < ts Or to = t1)
if a time stamp t¢; precedes (does not succeed) another time
stamp ty, t; =ty if ¢; and ¢, are simultaneous, and ¢, ||¢; if
there is no relative order between ¢; and ¢;, where t;, t, may
be either start time stamps or transition time stamps. Itis easy
to see that the relative signal order is transitive, i.e., if ; <
(j)tz and ty < (j)t;;, then ¢; < (j)t5

Similar to ternary and 13-valued logic, not all values in the
extended 13-valued algebra are exclusive. For instance,
{{X,X,X), E,E} represents an arbitrary waveform, hence
includes all other values. This relationship is represented by
imposing a partial ordering between waveforms. We denote
vy < vy if the set of the waveforms that v, represents is a
subset of the waveforms that vy represents. In 13-valued
algebra, the partial ordering < is defined as illustrated in the
Hasse diagram in Fig. 8. In the extended 13-valued algebra,
for any two signals w; = {v, t1,t1} and wy = {va,t2, 15},
where £, = £, the order between them is defined as follows:
if t; =ty, Or t; = E, or ts = E, the same order exists as
between v; and v,. In addition, for any w = {v, # E,t # E},
w < {(X, X, Fi(v)), E, E}. More importantly, for any ternary
function F' that is extended to 13-valued or extended
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<X X, X>

. -

OXX> <XX0> <XX1> <1XX>

T > >

<0,X,0> <0,X,1> <1X,0> <1X1>
| | |

<0,0,0> <0,1,1> <1,/,0>0 <11,1>

Fig. 8. Partial orders of 13-valued algebra.

13-valued algebra, if w; < ws, then it holds true that
F(wy) < F(wy). The above property is often used in deriving
and proving the following lemmas and gate evaluation rules.

In order to derive the correct relative order between
input and output signals during gate evaluation, it is
important to know the causal relationship between them. A
transition at the output of a combinational gate F' is caused
by transitions at one or more inputs of the gate. An input
waveform v; leads to the output transition v, when v; is the
necessary condition for v,. We denote v; — v, if and only if
Vo €T, F(vr,...,0...,0,) =0, and F(vq,...,{In(v),
In(v;), In(v;)), ..., v,) = (In(v,), In(v,), In(v,)).

Since an output transition must occur no earlier than the
input transition that leads to it, the following lemma holds:

Lemma 1. Given an arbitrary combinational logic gate
F(wi,...,wi,...,w,), assume that w; = {v;,t;,t;} and
wy = Fwy,...,wi, ..., w,) = {vy, 1o, t,}. If vi,v, €T and
v; — v, then t; < t,.

For example, suppose that the input waveforms to a
2-input NAND gate are w;, ={(1,1,1), E, E} and w;, =
{{1,1,0), E,t;,}, respectively, and the output waveform is
w, ={(0,1,1), E, t,}. Obviously, WV (w;,) —» WV (w,), and
ti, 2 t,. Note that ¢;, =t, only if the NAND gate is ideal
and no delay is associated with the output.

Another property of causal relationships between input
and output signals, which is important for deriving
correctly their relative order, is that an output transition
can only be caused by an input transition, as stated in the
following lemma:

Lemma 2. Let v; and v, be 13-valued algebra waveforms on an
input and the output of an arbitrary combinational gate
F(uy,... sUn). If v, € T, but v; ¢ T, then v; /> v,.
Not all output transitions have a unique input transition

that leads to them. For example, suppose that the input

waveforms to a 2-input NAND gate are w;, ={(1, |,0), E, t;, }
and w;, ={(1,],0), E, t;,}, respectively, and that the output
waveformisw, = {(0,1,1), E, t,}. Here, neither WV (w;, ) nor

WV (w;,) leads to WV (w,), despite the fact that either one of

them causes the output transition.

In general, an output transition must be caused by a
nonempty set of input transitions, as the following lemma
states:

Lemma 3. If F(vi,...,0,...,0,) =0, and v, € T, then
Im (m > 0) input transitions denoted as v; € T, where
w=L2,....n, 3, <J, p<q k p q=12,...,m,
s.t. F(vi,...,vj-1,In(v),), In(vj,), In(v,)),..., (In(vj,),
In(vj, ), In(v;,)),...,v,) = (In(v,), In(v,), In(v,)), and

s Uiy v

Vk =1,2,...,m, F(uv,...,{In(v;), In(v;), In(v;)),. ..,
o (In(vj, ), In(v;,), In(v;,)), - -, Vn) = Vo.

4.2 Conservative Time Frame Unfolding

The start time stamp in the extended 13-valued algebra is
introduced to support correct gate evaluation in asynchro-
nous sequential circuits. Unlike their synchronous counter-
parts, wherein a global clock signal indicates the boundaries
of time frames within which gate evaluation is safely
performed, transitions on feedback lines in asynchronous
circuits may happen in arbitrary order and at arbitrary
speed. Therefore, the boundaries of time frames are unclear
and, thus, time frame unfolding has to be performed
carefully during simulation. Otherwise, potential hazards
may be overlooked, leading to incorrect evaluation results.
For example, suppose that the signal to input 1 of a gate is a
sequence of transitions happening at ¢, t12, . . ., ti,, respec-
tively, the signal to input 2 is a sequence of transitions
happening at t3,%,...,t,, and that there is no relative
order between the two sequences of input transitions. After
the first two transitions ¢;; and ¢9; are evaluated, if the value
of input 1 reaches ¢, through time frame unfolding the old
value t;; is discarded. Thus, it will not be evaluated with
any of the transitions ¢y, a3, . . ., 2, that have yet to appear
on input 2. However, since no relative order is defined
between t;; and these transitions, they may meet in practice.
As a result, evaluation through time frame unfolding may
be incorrect and potential hazards may be ignored.

In the following, we discuss the conditions under which
a time frame unfolding is conservative, and we prove a
theorem which enables a simple method for assessing
whether a time frame unfolding is safe to perform during
gate evaluation.

Ujm ..

Lemma 4. Let the transition sequence to input 1 of a gate be
ti1, tiz, ..., tim and the transition sequence to input 2 be
ta1, a2, . .., ton. Also assume that the value of input 1 in the
previous simulation time frame reaches t1;, i = 1,2,...,m — 1
and the value of input 2 in the previous simulation time frame
reaches tyj, 7 =0,1,...,n, where ty denotes the time before
transition ty and ty,.1) denotes the time after the last
transition ty, on input 2. Finally, assume that, Vi,
tii = tony1). Unfolding of the current time frame which
replaces ty; on input 1 with t;,y) is conservative if t1; = to(j41).

Proof. Due to transitivity, since ti; < ty(j;1) and ty(j11) =
tg(j+2), t2(]'+3)7 ..., tan, we have ty; < t2<j+1), tQ(]‘+2>7 .y top,
which means that ¢;; will not meet any of the
transitions that have yet to appear on input 2. Thus,
no resulting waveform is overlooked by unfolding
transition t1; to t(;+1), so this time frame unfolding is
conservative. 0
During gate evaluation in an asynchronous sequential

circuit, any time frame unfolding that satisfies the condition

of Lemma 4 is conservative and the evaluation results are
guaranteed to detect any hazard. If it does not satisfy the
above condition, however, gate evaluation has to report
unknown waveforms to avoid neglecting hazards. Unfortu-
nately, using the condition in Lemma 4 to assess conserva-
tiveness of time frame unfolding is problematic in practice.
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The reason is that, in order to examine the unfolding to ¢ ;11),
Lemma 4 needs to check whether ¢; < ty;41). However,
lo(j+1) is not yet available. To resolve this limitation, we prove
the following theorem to examine conservativeness of time
frame unfolding;:

Theorem 1. Assume that a gate is completely evaluated through
time frame unfolding and that no hazard is detected. This gate
evaluation is conservative if for each new waveform w, that
appears at an input of the gate, either TT(w;) = ST (ws) or
ST (we) = E, where wy is the current waveform on the other
input of the gate.

Proof. Assume that the transition sequence to input 1 of
a gate is t11, 12, . . . , t1m, the transition sequence to input 2

.,ta,, and the gate is completely evaluated

through time frame unfolding with Theorem 1

is to1,199, ..

satisfied. Assume also that for each new time frame,
wy, which satisfies TT(wi) = tii1), ST(w1) =ty
i=1,2,...,m— 1, the previous waveform on input 2 is
wh, and TT(wh) =ty; (as a special case, if wj is
the waveform before transition ¢y, then j=0
and TT(w)) =ty = E). We prove that during the timing
frame unfolding, it must hold that t;; = ST (w;) = ty(41).
If wf is the last transition on input 2 and j = n, the above
is obviously correct. Otherwise, since the time frames are
completely unfolded, let us consider the step when ws is
unfolded from ty; to ty(;;1). At that time, it holds that
TT(ws) = tyj1) = ST(w)), where w) is the waveform on
input 1. Since TT(uw)) =ty; in the step immediately
before w; changes from ty; to #(;4), it must be true that
ST (w)) > t1; when w, changes from ty; to to(j+1)- There-
fore, ty(j41) = t1; for any step in time frame unfolding.
Thus, according to Lemma 4, the gate is conservatively
evaluated through this time frame unfolding. ]
In order to use Theorem 1 for checking whether a time
frame unfolding is conservative during a gate evaluation, we
define the following two functions. Function ¢ checks
whether the input waveform has changed into a new
transition since the last time that the gate was evaluated.
Using function § and Theorem 1, function £ examines whether
two input waveforms were obtained through conservative
time frame unfolding;:

1

bu = { 0 otherwise,
1, if by, = 0,64, =0,
1, if 6y = 1,8, =1,
ST(wq) = E or TT(wy) = ST (wy),
ST(wy) = E or TT(wy) = ST (wy),
if 6y, = 1,60, =0,
ST(wq) = E or TT(wy) = ST (wy),
1, if by, = 0,60, =1,

ST(wy) = E or TT (wy) = ST (w1),

0, otherwise.

if w e 7, and w has changed,

gwl,u:g = 17
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4.3 Rules for Gate Evaluation

In the extended 13-valued algebra, signals are annotated
with time stamps to capture relative signal order. Thus, the
rules for gate evaluation used during simulation need to be
extended accordingly. In this section, we first develop
evaluation rules for gates with two inputs. Then, we extend
the rules for evaluation of multiple-input gates. In order to
make this section succinct, we only present evaluation rules
for a few representative cases; the rest are derived similarly.
In a two-input gate, new evaluation rules are needed for
each possible combination of values of start and transition
time stamps of the two input waveforms. Suppose that the
combinational function of the gate under evaluation is F,
the two inputs are w; = {vy, &, t1} and wy = {vg, b, to}, and
the output is wz = {v3,%3,t3}. When all time stamps are
trivial, i.e., when {; = t; = s = t, = E, the evaluation rules
reduce to those used in the traditional 13-valued algebra.
However, when the time stamps are nontrivial, new
evaluation rules are necessary to deal with them:

1. First, we consider the case that ST (w;) = ST (w2) =
TT(w;) = E, but TT(w;) # E. Suppose that
w; = {Ul,E, tl}, and w9 = {’UQ,E, E} Then, the
following evaluation rules hold:

vy =WV (F(wy,ws)) = F(v1,vs),

ty = ST(F(wi,wy)) = E, (1)

t1 : wv3eT,

t3 = TT(F(w17 w2)) = { E . OthCI‘WiSC

When v3 € 7, it must hold that 77 (ws) = t; for the
following reason. According to Lemma 3, if v3 € 7, it
must be true that v; — w3, since vo ¢ 7. Therefore,
ts = t;. Thus, when evaluating ideal gates with no
output delay, t3 =t;. Extension of the evaluation
rules for practical gates with associated output delay
is straightforward, as we describe at the end of this
section.

2. Second, we consider the case that ST(w;) =
ST (wq) = E, but neither TT(wy) nor TT(ws) is E.
Assume that w; ={v,E,t1}, t1 # E, and ws
{ve, E, t2}, t2 # E. Also assume that vy = (b1, [,b1)
and vy = (by, |, bs), where b; and b, are either 0 or 1. In
the following, we consider the cases that ¢;||t; and
t1 < ty, respectively; the remaining cases are similarly
derived:

a. If t1]|ty, the following evaluation rules hold:

V3 = WV(F(wl,wg)) = F(’Ul7 1)2),
t3 = ST(F(wy,u»)) = E,

t1, if vg3 € T,v; — w3,
v 7+ U3,
to, if vg3 € T, U1 7L> U3,
ty = Vg — V3,

Late(t1,t2), if vz € T,v1,v9 — v,
Ht7Vt7ét37 if’U3 GT3U13U27L’U37

E, otherwise.
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Note that function Late(t1,t2) in the above
equations returns the later one of t; and ¢,.
When both v; and v lead to v3, v3 succeeds both
of them, i.e., it does not precede the later one.
Such a case is illustrated in the example of
Figs. 5a and 5b.

b. If t; < ty, the evaluation procedure takes place
in three phases. In the first phase, w; is
evaluated with w) = {(be, b2, b0), E, E} accord-
ing to rule (1). Assume that the result is
wy = {v}, E,t,}. Second, w{ = {(b1,b1,b1), E, E}
is evaluated with ws. Assume that the result
is wi = {v§, E,t}. In the last phase, v} and w}
are combined into the final waveform as
follows:

i. Ifvy el or v el, then

ST (ws)

n(vh), X, Fi(tf)),

o

=
E,
E.

Il
S S8
Il

ii. Otherwise, if both v} and v§ € C, then

Such an evaluation case is illustrated in the
example of Fig. 7.
iii. Otherwise, if only v4(v}) € T, then

WV (w3) =v3 = v (vf),
ST(U}:;) :ti; = fg7
TT(ws) =t5 = t5(t5).

iv. Otherwise, both v; and v; € T and the
following equations hold:

Note that, in this case, since a waveform in

the extended 13-valued algebra can only

express one transition, the previous transi-

tion is discarded and its transition time

stamp is used as the start time stamp of the

temporary result before the postprocessing

step which we describe later in the section.

3. Third, we consider the case that one input waveform
has nontrivial start and transition time stamps, while

the other has trivial start but nontrivial transition

time stamps, for instance, w; = {vht],tl}, b, #F
and Wy = {UQ,E7 tz}, to 7é F, and tAl < t9. Since w1
and wy might be new waveforms that have changed
since the last time the gate was evaluated, the
evaluation process first needs to verify whether
time frame unfolding is conservative by using
Theorem 1:

F({vi, E,t1 }, {va, E, t2})),

v, if vy ¢ U,
WV (ws) =v3 = oy = 1,

<X X, Fz v3)> otherwise,

t%-—w§77}7({v1,l? t1},{vs, E, t2})),

t3 7'é E V3 ¢u

ST : tg =FE v ¢U,
otherwise,

t; —TT F({’UI,E tl} {’UQ,E tg}))
E, if us €U,
tg, if V3 €Z/I,

TT(w3) =t3 = R
(ws) =t ty =i orty, = E,

> {3, otherwise.

Note that, in the last case of the above equation, we
force t3 = t3 because it is possible that t}||t, Vt #
according to the previous evaluation rules. There
may be no relative order between ¢3 and ¢, or ¢, but
ts must succeed 3.

Fourth, we consider the case that both of the two
input waveforms have nontrivial start and transition
time stamps. Assume that wy = {v, ti,t1}, t, t1 £ E,
and wy = {vy, s, 12}, o, ty # E. The evaluation result
is subject to the relative order between f, t, b,
and ¢:

a. If t1||ty, then

’Ug = WV(F({’Ul, E, tl}, {1}2, E, tz})),
th = ST(F{vy, E, t1}, F{vy, E, t5},
ty =TT(F({v1, B, t1}, {v2, E, 12})),

v, if vy €C,
5117] wy — 17
vj, if vy € T,th = 11,1
U2 = . S
s = Eort,>f,b,
S’wl,wz - ]-7
<X, X, Fi (vg)>, otherwise,
o — tg I U3 ¢ u,
s E : wvel,
i, if th # E,v3s €U,
ts =19 Late(fy,fy), ifth=FE,v3¢U,
E, if vg € U.
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b. Otherwise, if {; < t; < {3 < to, then

vy =WV (F{(Fi(v1), Fi(w), Fi(n)), E, E}, {vs, E, 12})),

v, if vy €U,
v3 = 511:1,11}2 = 17
<X,X,Fi(vg)>, otherwise,
. { E vg €U,
i3 .
to otherwise,
ty =TT(F({{Fi(v1), Fi(v1), Fi(n)), E, E}, {va, E, t2})),
te = FE V3 € Ll,
2 th otherwise.

c. Otherwise, if f; < 5, then

wy = F({vi, B, t1}, {v2, &2, 12}), bt

d. Otherwise, if £y <ty < {1 < t1, then

UIB :WV(F({Ulvatl}a {<Fi(v2)’Fi(v2)7Fi(U2)>7Ea E}))a
if vy €U,
gufmug = 17
(X, X,Fi(vy)), otherwise,
t/g :TT(F({UI,E, tl}v {<Fi(v2)7Fi(v2)7Fi(U2)>7E> E}))a

/
U,

V3 =

£ = { Lj} v3 €U,
’ t otherwise,
by = { E vy €U,

th otherwise.

e. Otherwise, if &5 < ¢, then

wg:F({’Ul,ﬂ,tl},{vg,Eﬂfg}), tAIHtQ.

Multiple-input gates. Evaluation of multiple-input gates
can be easily performed by using the above two-input gate
evaluation rules. For multiple-input gates implementing
associative functions, a simple method is to compute the
function input by input, using the evaluation rules for two-
input gates, i.e., F(I1, Iy, I3) = F(F(l1,I2), I3). In the general
case, a multiple-input gate can be replaced during evalua-
tion by its equivalent model composed with two-input
simple gates.

Postprocessing. After the resulting output waveform w/, of a
combinational gate F' is computed according to the above
evaluation rules, if it has a nontrivial start time stamp, it
needs to be postprocessed in order to generate the final result.
Assume that the original waveform of the gate output before
evaluation was w/. The following rule is used to generate the
final waveform w,:

wh, it ST(w)) =F
{Wv (w)), TT(w)),TT(w,)}, if ST(w)) # E,
w, =

w” if ST (w

07

{<X7X7 Fi(w;)>,E,E}, otherwise.
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In the above equation, the newly calculated waveform w/,
is checked against the original waveform w/ in order to
ensure that no waveform is skipped between the two
waveforms, in which case potential hazards may be ignored.

We also point out that (2) is valid only for evaluation of
an ideal gate, i.e., when no delay is associated with the gate
output. For a gate with output delay, the time stamps of w,
are derived in the following way to reflect the delay between
the inputs and the output:

wh, if ST (w)) = E,
WV (uw) ¢ T,
{Wv(w)),E,t,}, if ST(w)) = E,
WV(w;) eT,
{Wv (w)), TT(w)),t,}, if ST(w) # E,
o= WV () €T,
ST (w)) =TT (w)),
w), if ST (w)) # E,
WV (w)) €C,
{<X, X, Fi (w;)>, E, E}, otherwise,

to =TT (w)).

4.4 Simulation Algorithm

The above rules for gate evaluation and time frame unfolding
are incorporated into Eichelberger’s method to enhance
simulation accuracy. Signal waveforms are expressed in the
extended 13-valued algebra, gates are evaluated accordingly,
and time frame unfolding is checked for conservativeness.
Specifically, in Procedure A, changing PIs are set to the
corresponding waveforms in 7, each with a new transition
time stamp. All other PIs and PPIs are set to the correspond-
ing waveforms in C or /{ if unknown. Then, POs and PPOs are
evaluated following the corresponding rules in Section 4.3.
The main steps of the simulation method are described in
Algorithm 1.

Algorithm 1. Simulation using extended 13-valued algebra
i <= 0; PI°, PPI° < initial values
repeat {Procedure A}
evaluate PO!, PPO'; i <= i+ 1
if WV(PPO'"™!) € U then {any hazard on PPO'"!}
PPI' < corresponding destabilizing value
else
PPI' & PPO-!
end if
until PPI' = PPI'"!, or i = Max
while PPI~! 4 PPO"! do {Procedure B}
PPI' < PPO"!
evaluate PO?, PPO"; i < i+ 1
end while

5 HANDLING COMPLEX GATES

Another difficulty in simulating asynchronous circuits
stems from complex gates. Complex gates are commonly
used to extend the limited class of Delay-Insensitive circuits
that can be built out of simple gates and operators. By
extension, complex gates such as C-elements and complex
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Fig. 9. C-element: pseudogate implementation.
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domino structures are also frequently used in the design of
Speed-Independent circuits. While it is possible to treat
them as simple gates, as in [15], the number of types of
complex gates is not small. Hence, allocating a dedicated
truth table for each of them is a considerable memory cost.
In addition, the number of inputs of a complex gate is often
high, and since the number of entries in the truth table is
exponential to the number of inputs, this memory cost is
amplified. Moreover, the utilization of multivalued algebras
augments the memory cost significantly by increasing the
base number.

Instead, SPIN-SIM uses simple gates to represent each of
these complex gates that have simple gate-level equivalent
implementations. However, a naive replacement often in-
troduces additional hazards which result in a circuit thatisno
longer Speed-Independent. The key challenge is to design
such gate-level equivalent implementations that mimic the
original complex gate in both functionality and timing,
employing both pseudogates and real gates. Fig. 9 gives an
example of a pseudogate implementation of a C-element. All
gates in this example are pseudogates, except for the output-
stage buffer. SPIN-SIM assumes no delay when a signal
propagates through a pseudogate; hence, its time stamp does
not increase. Therefore, the only delay is contributed by the
buffer on the output, which mimics successfully the timing
property of a complex C-element. Pseudobuffers are also
inserted in the inputs to make internal fan-out invisible to the
outside of the complex gate. To support SPIN-SIM, we
developed a library of gate and pseudogate equivalent
implementations for the most commonly used complex gates.
In this way, SPIN-SIM simulates complex gates accurately
and efficiently, without incurring additional memory cost.

6 FAULT SIMULATION

Fault simulation of Speed-Independent circuits is similar to
that of synchronous circuits. The targeted fault list includes
all stuck-at faults on inputs or output of gates, except those
inside a complex gate, and may be pruned through equivalent
fault collapsing to speed up fault simulation. Each test vector
is simulated on the good circuit and on each bad circuit,
where a single stuck-at fault from the collapsed fault list is
injected. The output values of the faulty circuit are compared
to those of the good circuit and, if the fault is detected, it is
dropped from the fault list. This process is repeated until all
the test vectors are simulated.

In order to discuss fault collapsing in Speed-Independent
circuits, we adopt the definitions in [22]. We refer to
fault equivalence/dominance in a single gate as
g-equivalence/dominance, in a combinational circuit as
c-equivalence/dominance, and in a synchronous sequential
circuit as s-equivalence/dominance. The corresponding

TABLE 4
Fault Collapsing Results

Circuit # of Complex # of Collapsed | Collapsing

Name Gates Gates Faults Faults Rate (%)
alloc-outbound 12 7 70 41 414
chul33 10 5 54 32 40.7
chul50 10 4 56 34 39.3
converta 9 3 54 37 31.5
dff 8 6 44 28 36.4
ebergen 14 7 74 46 37.8
half 3 3 22 15 31.8
hazard 8 5 48 33 31.2
master-read 25 19 144 86 40.3
mp-forward-pkt 11 5 60 34 43.3
mrl 27 16 152 93 38.8
nak-pa 16 12 82 48 41.5
nowick 11 5 56 28 50.0
ram-read-sbuf 16 11 90 55 38.9
rcv-setup 7 4 40 25 37.5
rpdft 12 6 62 34 45.2
sbuf-ram-write 20 9 110 69 373
sbuf-send-ctl 17 12 94 59 37.2
seq4 16 8 96 63 34.4
Average 38.7

extensions to asynchronous sequential circuits are defined
as follows: A fault yis said to a-dominate another fault z in an
asynchronous sequential circuit if and only if every test
sequence for z is also a test sequence for y. Two faults z and y
are said to be a-equivalent in an asynchronous sequential
circuitif and only if # a-dominates y and y a-dominates «. Itis
obvious that the equivalence relationship in a single gate
remains valid in a Speed-Independent circuit. Unfortunately,
a c-equivalent pair of faults might not be a-equivalent in a
Speed-Independent circuit, since the circuit under each fault
might have different hazard conditions that lead to different
undetermined states. Therefore, a test for one fault in a
c-equivalent pair might be invalid for the other. For the same
reason, as well as due to self-hiding and delayed reconver-
gence [22], a c-dominant and ¢-dominated pair of faults might
not be an a-dominant and a-dominated pair. Therefore,
SPIN-SIM collapses conservatively, i.e., only g-equivalent
faults.

Although efficient parallel fault simulation techniques
have been devised for synchronous circuits [23], similar
techniques for asynchronous circuit are yet to be devel-
oped. The main reason is that 13-valued algebra requires
more bits to represent a value, and, more importantly, that
the basic gate functions in 13-valued algebra deviate from
common bitwise logic operators. Therefore, similar to
Fsimac [15], SPIN-SIM performs fault simulation serially.

7 EXPERIMENTAL RESULTS

SPIN-SIM has been developed in C, based on the simulation
engine of HOPE [23]. The input circuit netlist is in ISCAS89
format and the stuck-at fault list can be defined through a
file or generated automatically by the tool. We experimen-
ted with SPIN-SIM on a standard set of Speed-Independent
circuits synthesized by Petrify [24]. The name, number of
gates, and number of complex gates of each benchmark are
listed in the first, second, and third columns of Table 4,
respectively. Complex gates like Muller C-elements are
handled as described in Section 5. In each benchmark, a
reset input is assumed to be connected to every memory



406

1 W Eichelberger's method
seq4 [ SPIN-SIM
sbuf. d—ctl !

sbuf-

1PAft p—
TCV-SetUp ———

ram-read-sbuf

NOWiCK —

nak-pa

mr1

mp—forward-pki n—
t d

hazard
alf ——
ebergen
O —
converta
CHUTE0 ——
ChUT33 —

alloc—outbound

L I L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Average CPU time (s)

Fig. 10. Simulation CPU time.

element to appropriately initialize the circuit. Experiments
were performed on a workstation with dual Xeon 1.7-GHz
processors and 1 Gbyte of RAM. For each benchmark, we
fault simulated 10,000 random test vectors generated
through the method described in [25]. A fault is reported
detected only if the generated test patterns are guaranteed
to detect it assuming any possible combination of gate
delays. This, however, does not imply that we are limited to
patterns that will never cause undetermined states or
oscillations in the circuit. In some cases, a circuit state
may be undetermined or in oscillation after applying a
pattern, but the faulty circuit may still be detected because
at least one output will be stable and will have a value
different than the expected good circuit response. In order
to demonstrate the efficiency of SPIN-SIM, we compare our
results to those of Eichelberger’s method, which we
implemented as in [10].

First, in Fig. 10, we compare the time that each method
spent on logic simulation of the test vectors on the good
circuit. For some circuits, such as chu150 and dff, SPIN-SIM
spends about 45 percent more CPU time than Eichelberger’s
method. This additional computational effort is mainly
spent to maintain time stamps during gate evaluation,
through which SPIN-SIM provides improved accuracy. For
some circuits, such as master-read, ram-read-sbuf, and seq4,
SPIN-SIM spends only about 10 percent more CPU time than
Eichelberger’s method. Finally, for some circuits such as
mr1, SPIN-SIM spends less CPU time than Eichelberger’s
method. This happens mainly because, in some cases, the
conservativeness of Eichelberger’s method leads to unde-
termined states which may cause additional simulation
iterations. Overall, SPIN-SIM spends around 21 percent
more CPU time than Eichelberger’'s method. Yet, the
accuracy of simulation is significantly improved. To
demonstrate this, Fig. 11 shows the number of undetermined
states for each circuit during the simulation of the random
patterns by each of the two methods. Evidently, Eichelber-
ger’s method fails to resolve many hazard-free circuit states,
and reports them as undetermined falsely, while the
techniques employed in SPIN-SIM result in a simulation
where circuit states are resolved much more accurately.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.3, MARCH 2009

seq4 1
sbuf-send-ctl T
sbuf. it

rpdft -

rev-setup -
d-sbuf

Il Eichelberger's method
1 SPIN-SIM

nowick -

Nak—pa e —

mri
mp-forward-pkt n—
d

hazard

half

ebergen

dff

converta q
ChU150 p—— b
Chu133 jaen b
alloc-0UthouNd | — b

T T T R S T S T

I . I . . . . .
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of undetermined states

Fig. 11. Number of undetermined states.

By overcoming the conservativeness of Eichelberger’s
method, when SPIN-SIM is used for fault simulation it
also achieves a significant improvement in the reported
fault coverage. Before comparing the two methods, we
first perform equivalent fault collapsing as discussed in
Section 6, the results of which are given in Table 4. The
number of stuck-at faults in each circuit before and after
fault collapsing is listed in the fourth and fifth column in
Table 4, respectively, along with the fault collapsing rate in
the sixth column. Although we only collapsed g-equivalent
faults, the fault collapsing rate is still considerable,
averaging at 38.7 percent. As illustrated in Fig. 12, across
all benchmark circuits, SPIN-SIM achieves an average fault
coverage of 97.1 percent, while Eichelberger’s simulation
method achieves an average fault coverage of only
75.6 percent using the same set of randomly generated test
vectors. In Fig. 13, we also illustrate the CPU time needed
by each method to fault simulate the 10,000 random test
vectors on each benchmark circuit. For several circuits,
such as chul50 and rpdft, SPIN-SIM spends 14 percent to
70 percent more CPU time, although both methods are
equally effective in terms of fault coverage. This is
attributed to the higher computational complexity of
SPIN-SIM, which keeps time stamps and other information
to increase simulation accuracy. However, SPIN-SIM
spends significantly less CPU time, even up to tens of
times less in some cases, on circuits such as ebergen and mr1.
At the same time, it provides a much better fault coverage,
since it alleviates the conservativeness of Eichelberger’s
method. Interestingly, this improved accuracy is the exact
reason for the CPU time savings. Eichelberger’s method is
unable to detect a considerable number of faults and
simulates each of them for every test vector, while SPIN-
SIM detects many of them in early stages and drops them
from the fault list. Thus, SPIN-SIM performs fewer
simulations and saves CPU time. The normalized savings
for these experiments were 33.9 percent.

8 OTHER ASYNCHRONOUS CIRCUITS

Although the proposed simulation method was developed
for Speed-Independent circuits, it can be extended to handle
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other classes of asynchronous circuits. For example, we can
employ the method in [26] to simulate Delay-Insensitive
circuits using SPIN-SIM. Delay-Insensitive circuits operate
correctly under the unbounded delay model, which allows
arbitrary gate and wire delays. Unlike in Speed-Independent
circuits, the wires in Delay-Insensitive circuits also have
unbounded delay. Therefore, we preprocess and transform
the circuit into a new circuit by inserting buffers on the wires.
As a result, under the Speed-Independent timing model, the
transformed circuit exhibits the same timing properties as the
original circuit. Therefore, the original circuit can be handled
by simulating the transformed circuit in SPIN-SIM. In Fig. 14,
we give an example of a Delay-Insensitive circuit (Fig. 14a)
and the transformed circuit used for simulation by SPIN-SIM
(Fig. 14b). The inserted buffers, which are used to mimic the
timing of the original Delay-Insensitive circuit, are shown in
dashed lines. We also note that it is not necessary to insert a
buffer in every segment of a wire, since some of them can be
combined with the delay of the gates that drive them.

Quasi-Delay-Insensitive circuits can also be simulated by
SPIN-SIM by preprocessing them in a similar way.
However, such circuits employ isochronic forks, in which
the delay on all fan-out branches of a wire is assumed to be
equal. These isochronic forks need to be handled differ-
ently. In general, we transform an isochronic fork into an
equivalent Speed-Independent circuit form, as shown in
Fig. 15. Therefore, it is not necessary to insert buffers in
these isochronic forks. Of course, buffers are still inserted
in other parts of the circuit, including nonisochronic forks.
After the preprocessing, Quasi-Delay-Insensitive circuits
can be handled by SPIN-SIM.

9 CONCLUSION

Accurate logic and fault simulation of asynchronous circuits
requires efficient and precise detection of both combinational
and sequential hazard conditions. Simulators for synchro-
nous circuits are not concerned with this problem, while
previously developed simulators for asynchronous circuits
solve it only partially and for certain classes of circuits. To
address this issue, we have developed SPIN-SIM, a logic and
fault simulation algorithm for Speed-Independent and
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Fig. 15. (a) An isochronic fork and (b) its equivalent Speed-Independent
circuit.

various other classes of asynchronous circuits by extending
Eichelberger’s classical hazard detection method. In addition
to adopting a 13-valued algebra, SPIN-SIM maintains the
relative order of causal signal transitions, unfolds time frames
carefully, and handles complex gates through a pseudogate
replacement technique. Experimental results indicate that
SPIN-SIM achieves much higher logic and fault simulation
accuracy, yet incurs only a slight increase in computation
time, if any at all.
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