
Global Signal Vulnerability (GSV)
Analysis for Selective State Element

Hardening in Modern Microprocessors
Michail Maniatakos, Student Member, IEEE, Chandrasekharan (Chandra) Tirumurti, Member, IEEE,

Rajesh Galivanche, Senior Member, IEEE, and Yiorgos Makris, Senior Member, IEEE

Abstract—Global Signal Vulnerability (GSV) analysis is a novel method for assessing the susceptibility of modern microprocessor

state elements to failures in the field of operation. In order to effectively allocate design for reliability resources, GSV analysis takes into

account the high degree of architectural masking exhibited in modern microprocessors and ranks state elements accordingly. The

novelty of this method lies in the way this ranking is computed. GSV analysis operates either at the Register Transfer (RT-) or at the

Gate-Level, offering increased accuracy in contrast to methods which compute the architectural vulnerability of registers through high-

level simulations on performance models. Moreover, it does not rely on extensive Statistical Fault Injection (SFI) campaigns and

lengthy executions of workloads to completion in RT- or Gate-Level designs, which would make such analysis prohibitive. Instead, it

monitors the behavior of key global microprocessor signals in response to a progressive stuck-at fault injection method during partial

workload execution. Experimentation with the Scheduler and Reorder Buffer modules of an Alpha-like microprocessor and a modern

Intel microprocessor corroborates that GSV analysis generates a near-optimal ranking, yet is several orders of magnitude faster than

existing RT- or Gate-Level approaches.

Index Terms—GSV, AVF, reliability, vulnerability analysis, modern microprocessor, control logic, workload.

Ç

1 INTRODUCTION

AGGRESSIVE technology advancements and continuous
shrinking of modern process geometries enable multiple

sources of errors to jeopardize the reliability of modern
microprocessor designs. Among them, soft (or transient)
errors due to neutron particles from cosmic rays and alpha
particles from packaging material [1], [2] have resurfaced as a
key point of interest. Reports of numerous incidents in major
server lines and high availability computer systems [3]
highlight the extent of the problem. Besides soft errors,
uncertainties caused by process, voltage and temperature
variations have also become a serious concern, forcing
designers to use pessimistic design margins. This, in turn,
elucidates the conflicting objectives of reliable operation and
high performance, since the latter is typically achieved in
modern microprocessors through aggressive voltage scaling
and power manipulation.

To address these increasing threats, a plethora of design
solutions for protecting latches from Single Event Upsets
(SEUs), as well as combinational logic from Single Event
Transients (SETs) have been proposed. Solutions can be

generally applicable, such as duplication or triplication [4],
latch hardening techniques [5], [6] or transistor sizing for
reliability techniques [7], [8]. Alternatively, solutions that
are customized to specifically exploit modern micropro-
cessor features have also been proposed: checkpointing and
symptom-based error detection and recovery were intro-
duced in [9], functional inherent codes to exploit the
inherent redundancy present in modern microprocessors
were utilized in [10], a small, in-order checker was used to
detect errors in a high-performance microprocessor in [11],
while flushing as an efficient technique to protect against
errors was suggested in [12].

Despite the demonstrated effectiveness of these solu-
tions, applying them blindly across an entire design incurs
prohibitive cost. As a result, various methods for assessing
the susceptibility of individual latches or logic gates have
also been proposed [13], [14], in order to support partial
hardening approaches [15], [16], [17], [18]. Susceptibility
evaluation and the corresponding ranking of latches or
logic gates typically takes into account a number of factors,
including electrical device characteristics, timing issues, as
well as the actual logic function implemented. These factors
reflect the circuit-level and gate-level reasons that may
prevent an SEU or an SET from causing a soft error in a
circuit.

Modern microprocessors exhibit a high degree of
architectural-level and application-level masking, resulting
in many errors being suppressed or having a low prob-
ability of affecting the workloads that are typically
executed. Indeed, the multitude of functional units and
stages in deeply pipelined superscalar microprocessors,
along with advanced architectural features such as dynamic
scheduling and speculative execution, imply that rather
complex conditions need to be satisfied in order for an error

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012 1361

. M. Maniatakos is with the Department of Electrical Engineering, Yale
University, 10 Hillhouse Ave. #505, New Haven, CT 06520-8267.
E-mail: michail.maniatakos@yale.edu.

. C. Tirumurti and R. Galivanche are with the Validation and Test Solutions
Group, Intel Corporation, Santa Clara, CA 95050.
E-mail: {chandra.tirumurti, rajesh.galivanche}@intel.com.

. Y. Makris is with the Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX 75080.
E-mail: yiorgos.makris@utdallas.edu.

Manuscript received 28 Feb. 2011; revised 11 Aug. 2011; accepted 13 Aug.
2011; published online 31 Aug. 2011.
Recommended for acceptance by S. Shukla.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-02-0133.
Digital Object Identifier no. 10.1109/TC.2011.172.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

in the control logic to affect the architectural state of the
microprocessor or the outcome of an application. In an
effort to capture these additional masking factors, vulner-
ability analysis methods have been developed specifically
for microprocessors [19], [20], [21], [22]. These methods
typically employ simulation of actual workload using a
performance model or an RT-Level model of the micro-
processor and aim to assess the probability that a transient
error in a state element will affect workload execution. As
we discuss in the next section, however, the use of
performance models limits the accuracy of vulnerability
analysis, while the use of RT-Level models requires
prohibitive simulation time.

In this paper, we propose a new method for ranking state
elements in modern microprocessors. The proposed method
maintains the accuracy of RT- and Gate-Level simulations,
yet requires several orders of magnitude less simulation
time. To this end, it leverages a strong correlation between
discrepancies in global microprocessor signals and the
probability that an error will affect program execution, in
order to provide an accurate ranking of state elements. The
remainder of the paper is structured as follows: Ranking of
state elements based on previous vulnerability analysis
methods is discussed in Section 2. Ranking based on the
proposed global signal monitoring method is introduced in
Section 3. The infrastructure employed to perform a
comparative evaluation of the two alternatives is described
in Section 4. The setup used for the experiments is discussed
in Section 5, and the results are presented in Section 6.

2 RANKING BASED ON ARCHITECTURAL

VULNERABILITY FACTOR (AVF)

The notion of Architectural Vulnerability Factor has been
extensively used in the past to rank state elements based
on their criticality to program execution correctness. AVF
expresses the probability of a bit-flip resulting in a visible
system error. Visible system errors include operating
system crashes, incorrect program outputs, microprocessor
stalls, etc. Not all faults in microprocessor structures affect
the outcome of an application; a fault might be suppressed
by several factors, such as electrical, logical, and latch-
window masking. Furthermore, architectural and applica-
tion-level masking might also prevent a fault from
affecting the user. For example, an error in the branch
prediction can lead to an incorrect prediction with no
visible impact to the user. Thus, the branch predictor has
an AVF of 0. On the other hand, an error affecting the
address where data are stored might appear to the user as
an illegal address exception or corrupt some files on the
hard disk. Arguing that a bit has an AVF factor of 0.80
implies that, on average, 8 out of 10 bit-flips on that
particular bit will cause a visible system error. AVF is
extremely useful in evaluating the reliability of a design
and calculating whether a given architecture meets the
Mean Time Between Failures (MTBF) and Failures in Time
(FIT) specifications required. For example, to meet an
MTBF target of 1,000 years (114 FIT), given that all bits
exhibit an AVF factor of 100 percent, one concludes that
80 percent of these bits must be protected [19].

Accurate calculation of AVF is not trivial and requires
lengthy simulations. Previously proposed methods for
performing AVF analysis employ either performance

models [19] or RT-Level models [20], [21], [22] of a
microprocessor. As we explain below, the former enable
fast AVF estimation but suffer in terms of accuracy, while
the latter offer far more accurate results but require
prohibitive simulation times.

The performance model-based method described in [19]
introduces the concept of Architecturally Correct Execution
(ACE) and defines ACE bits as those that can cause
corruption in the final output of a program. In contrast,
un-ACE bits are those which under no conditions may
produce a discrepancy in the final program outcome (i.e.,
branch predictor bits). ACE analysis is performed and
evaluated on an IA-64 performance simulator, using which
the authors can generate deterministic AVF estimates for
the ACE bits and rank the corresponding state elements
based on their criticality. For this purpose, workloads are
simulated to completion and the impact of faults in these
state elements is analyzed in a single simulator pass, which
is performed rapidly. The major drawback of ACE analysis
and AVF estimation using the architectural performance
model, however, is the lack of detail about the actual
hardware structures of the microprocessor. Therefore,
analysis is only performed for the modeled components,
which in the case of [19] includes components that affect the
performance of a microprocessor. This results in significant
loss of accuracy in AVF estimation. Furthermore, extensive
manual effort is required to identify the conditions that
classify a bit as ACE or un-ACE.

The methods described in [20], [21], [22] resolve the AVF
estimation accuracy problem by performing statistical fault
injection in the RT-Level model, which reflects the actual
hardware structures of the microprocessor. This accuracy,
however, comes at a cost: RT-Level simulations are far
slower than performance models and fault simulation tools
are not readily available at this level. Furthermore, a
rigorous transient fault injection campaign requires exces-
sive simulation times in order to provide statistically
significant results, especially since AVF computation re-
quires that the workload is executed to completion. In [20],
the authors provide a qualitative comparison of the AVF
estimation accuracy of their extensive RT-Level simulations
to the ACE analysis presented in [19]. Their findings
conclude that ACE analysis overestimates soft error vulner-
ability by about 3.5� and that this discrepancy stems from
the model’s lack of hardware detail and the single-pass
simulation method. In [23], the authors of [20] counter
argued that added detail to ACE analysis can lead to tighter
AVF bounds. However, more detail slows down simulation,
defeating the purpose of fast performance simulators. Thus,
the limited details available at the performance model
remain the main contributor to AVF overestimation.

3 RANKING BASED ON GLOBAL SIGNAL

VULNERABILITY (GSV)

In order to generate an accurate state element ranking
without extensive simulations, we present an alternative
method based on monitoring of global microprocessor
signals, called Global Signal Vulnerability analysis. Specifi-
cally, instead of estimating the probability that transient
errors in a state element will affect the outcome of a program
(i.e., the AVF), we assess the vulnerability of global micro-
processor signals to stuck-at faults in this state element.

1362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012

Specifically, the GSV of a state element is defined as the number of

discrepancies that appear on predefined global signals during

execution of representative workload in the presence of stuck-at

faults in this state element. Every time a discrepancy appears at

a global signal, the GSV of the fault-injected state element is

incremented and the fault simulation resumes after reinstat-

ing the correct state. Intuitively, the higher the GSV of a state

element, the more vulnerable the microprocessor is to errors

in this state element and, by extension, the higher the

probability of an incorrect program outcome.
Algorithm 1 presents the details of the GSV calculation

method. The input sets of the GSV algorithm are:

1. The set of latches to be analyzed and ranked; this
set can include any number of latches from any
hardware structure in the microprocessor.

2. The set of workload portions used for ranking; long
traces and large variety of workloads provide more
accurate results.

3. The set of signals to be monitored for discrepancies;
these signals can be generic, such as off-chip
memory access signals and any signal in the chip
periphery, or more specific, such as TLB misses and
specific stall signals indicating severe malfunctions.

After the designer defines the inputs of the algorithm, the

microprocessor is warmed up either by simulating the

workload from the beginning until cycleWstart or by restoring

a checkpointed state of the microprocessor at the same cycle.

Afterward, the chosen workload is executed for the duration

defined by ½Wstart;Wend�. Then, for every latch, stuck-at-0 and

stuck-at-1 faults are injected; for every discrepancy that

appears in any of the signals in the GSVList, the GSV of the

latch increases by 1 and the faulty microprocessor state is

replaced by the correct one. Ranking of state elements is,

subsequently, performed based on their GSV.
Algorithm 1. GSV algorithm

The underlying conjecture is that there exists a strong
correlation between GSV and AVF. Despite this correlation,
differences compared to AVF-based ranking are expected
due to the following reasons:

. Discrepancies identified at global signals may be
eventually masked by the application. Examples
include data written in L1 caches that are never used
by the application.

. GSV may reflect discrepancies that only occur if a
state element is stuck-at a value for a multicycle
period, but would not occur due to a single-cycle
transient error. For example, if a transient error
alters the ready bit of an instruction to be issued,
then this instruction will be issued at the next cycle
and the error will be masked. If the same bit is stuck-
at a value for more cycles, this instruction will never
be issued and the microprocessor will stall.

. The period between the time of fault injection and
the time of discrepancy appearance may under-
estimate the number of transient errors that would
affect the application. For example, if a fault is
injected at time t ¼ 0 and a discrepancy at a global
signal appears at time t ¼ 100, any number between
1 and 100 transient errors could potentially result in
an incorrect application outcome.

Nevertheless, since the proposed method observes global
signals, the impact of these differences on the accuracy of
the ranked list is minimal, as we experimentally corroborate
in Section 6. Similar to [20], in order to obtain an accurate
ranking of the state elements, we estimate GSV on an
RT-Level model of the microprocessor. However, instead of
simulating all possible transient errors in a state element or a
sample thereof (e.g., 10,000 injections per state element were
performed in [20]), our method only requires one simulation
for each stuck-at fault in this state element. As a result, the
simulation time required to rank the state elements based on
their GSV is several orders of magnitude faster.

4 STUDY INFRASTRUCTURE

To evaluate the effectiveness of the proposed ranking
method, we use two different complex, high-performance
microprocessor models: Illinois Verilog Model (IVM) [24],
which is an open-source Alpha 21264 microprocessor and a
modern Intel microprocessor, which implements the
P6 architecture [25]. Both models implement many high-
performance features, requiring a large number of state
elements, which are the main target of this study.

4.1 Microprocessor Models

IVM. IVM is a Verilog model resembling an Alpha 21264
microprocessor and implementing a subset of its instruction
set. IVM features a 12-stage pipeline with up to 132
instructions in flight and many modern high-performance
features, such as out-of-order execution, hybrid branch
prediction, dynamic scheduling, speculative execution, and
memory dependence prediction. A block diagram of the
microprocessor is presented in Fig. 1.

Since the IVM model implements only a subset of the
Alpha ISA, a functional simulator [26] is also used in

MANIATAKOS ET AL.: GLOBAL SIGNAL VULNERABILITY (GSV) ANALYSIS FOR SELECTIVE... 1363

conjunction with the RT-Level model. The functional
simulator can execute a number of instructions before
transferring the state to the RT-Level model and can also
execute a workload to its completion after the state is
transferred back from the RT-Level model. Fault injection is
performed during RT-Level simulation by mutating the
microprocessor model. More information about the infra-
structure, as well as the fault injection technique can be
found in [27].

Intel P6. In order to evaluate the effectiveness of GSV in
commercial microprocessors, we performed extensive ex-
periments on a contemporary Intel microprocessor imple-
menting the P6 architecture, whose features include out-of-
order execution, register renaming, superpipelining, and
speculative execution.

Fig. 2 shows the basic P6 architecture. Instructions flow
from the instruction cache to the decoders, where they enter
the out-of-order cluster and are stored in the Reservation
Station (RS). The Reorder Buffer (ROB) guarantees in-order
retirement after out-of-order instruction execution. The
Memory Reorder Buffer (MOB) interacts with the data
cache in order to fetch the required information.

4.2 GSV Infrastructure

In order to implement the algorithm presented in Section 3,
we built an infrastructure around the two microprocessor
models. A simplified flow diagram of our method is
presented in Fig. 3. First, the list of key global signals and
the list of state elements to be injected are parsed. Examples
of key global signals include TLB misses, stalls, and register
file access signals. For every state element in the list, two
microprocessor model replicas are warmed up for a number
of instructions. Next, a stuck-at fault in the specified state
element is injected in one of the two models while they
execute in parallel. In every clock cycle, the specified global
signals are checked for discrepancies. As long as no
discrepancy is identified, the simulation proceeds until a

prespecified clock cycle limit. If a discrepancy is identified,
the signal name is stored, the faulty model is reset by
transferring the correct state from the golden machine and
the simulation resumes. In this way, several discrepancies
in global signals may be identified in a single fault
simulation pass.

Due to certain limitations of the designs and the tools,
some parts of the infrastructure (gray boxes in Fig. 3) were
implemented differently for the two microprocessor mod-
els. Specifically, warm up in IVM is performed with the use
of a functional simulator (since IVM does not implement
the entire Alpha ISA). Intel P6 is warmed up by loading a
checkpointed state of the whole microprocessor on each
iteration. As for the golden model state transfer, clearing
the faulty state in IVM involves deleting the faulty machine
and creating a new replica of the golden one. For the Intel
microprocessor, the closest checkpoint is loaded and a fault
free simulation is performed until the desired clock cycle.

5 EXPERIMENTAL SETUP

This section describes the details of the performed analysis.
Simulations on IVM were performed using two servers
with two Quad-Core processors each, while simulations on
P6 were performed using Intel’s in-house tools and
infrastructure.

5.1 Modules

Two modules were selected for GSV evalution: The instruc-
tion scheduler (named reservation station in P6) and the
ReOrder Buffer. Both modules are vital parts of the out-of-
order execution of the two microprocessors; given their
complicated operation and rich set of control fields, both
modules constitute excellent candidates for our analysis.

Scheduler. The scheduler receives several instructions
from the rename unit, maintaining a buffer of up to 128
instructions. It dispatches instructions to each functional

1364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012

Fig. 1. IVM architecture [24]. Fig. 2. P6 architecture [25].

unit depending on the availability of instructions and the

presence of any data or structural hazards. Its control fields

include the program counter, valid and issued bits,

functional unit designator, instruction tag, source/destina-

tion register pointers, etc., fields that are utilized in many

control units of the microprocessor. The scheduler in IVM

consists of 5,664 latches.1

ROB. The reorder buffer ensures correct execution order
within the out-of-order cluster. It assigns an identification
tag to each instruction and validates proper commitment.
All finished instructions are stored in a buffer and their
results commit to the Real Register File (RRF) after all
preceding instructions have committed. The ROB in IVM
consists of 12,176 latches.

5.2 Workload

A training set of three different benchmarks, namely bzip,
mcf, and cc is used to generate AVF-based and GSV-based
lists and an evaluation set of three more benchmarks,
perlbmk, crafty, and eon is used for comparing them. The
chosen benchmarks represent a variety of typical workload,
such as memory intensive, heavy branch usage or high
instruction throughput applications. Table 1 lists some
statistics for the workloads utilized. Consistent with the
results shown in [20], all these benchmarks exhibit very
high masking factors.

5.3 Generating Ranked Lists

Generating AVF-based ranking. In order to rank the state
elements based on AVF, we repeat the fault injection
campaign described in [20]. Specifically, 6,000 transient
errors are injected to all state elements uniformly at random
over a time period of 10,000 clock cycles. As shown in [28],
the vast majority of the faults appear within that time
period. The AVF of each state element is computed as the
ratio of incorrect over all 6,000 fault-injected executions.
This process is repeated for each of the three different
benchmarks in the training set and the final ranked list of
state elements is generated based on the average AVF.

Generating GSV-based ranking. Table 2 lists the global
signals which we use for generating the GSV-based ranking
of state elements in IVM. Similar signals were selected for
the analysis on P6. This selection includes memory access
signals (i.e., register file, l1cache, etc.) as well as global error
flag signals (i.e., stall, tlb miss, etc.). Using these signals, the
single-pass stuck-at fault injection method described in
Section 3 is applied to each state element, both for stuck-at-0
and stuck-at-1 faults. Note that in the GSV-based ranking
method the benchmarks do not need to be executed to
completion; hence, simulation stops at the end of the
selected workload portion and the GSV of each state
element is computed as the number of times a discrepancy
in one of the global microprocessor signals occurs during
the fault-injected execution. This process is repeated for
each of the three different benchmarks in the training set
and the final ranked list of state elements is generated based
on the average GSV.

6 EXPERIMENTAL RESULTS

In this section, we compare the ranked lists generated based
on AVF and GSV in terms of accuracy and simulation time,
and we discuss the results.

6.1 Positional Comparison of Ranked Lists

The first set of results compares the position difference of
the latches in the two lists generated by AVF and GSV
analysis. Table 3 shows that the average difference for the

MANIATAKOS ET AL.: GLOBAL SIGNAL VULNERABILITY (GSV) ANALYSIS FOR SELECTIVE... 1365

three benchmarks used for evaluation is less than 56
positions, for both microprocessors and both modules.
Given that in IVM the scheduler consists of 5,664 elements
and the ROB consists of 12,176 elements, this average
positional difference amounts in less than 1 percent for both
modules, implying that the two ranked lists are very
similar. Results for P6 are consistent with this observation.

6.2 Coverage Comparison of Ranked Lists

Figs. 4 and 5 report the coverage achieved by each of the two
ranked lists for each of the three benchmarks in the training
set and each of the three benchmarks in the evaluation set,
for both modules and microprocessor models. The Y -axis
represents the percentage of transient errors that are
suppressed by protecting the corresponding percentage of
the state elements shown in the X-axis, for each benchmark
shown in Z-axis. As a point of reference, a third curve (i.e.,
biased) is also plotted for each benchmark, reflecting an
optimal state element ranking with regards to this particular
benchmark only. As may be observed, both the AVF-based
and the GSV-based ranked lists achieve near-optimal
coverage and the difference between them is very small.
Indeed, the average difference between the coverage
achieved by the AVF-based and the GSV-based ranked lists
over any percentage of protected state elements is
1.4 percent for the Scheduler of IVM (Fig. 4a), 1.6 percent
for the ROB of IVM (Fig. 4b), 2.4 percent for the Scheduler of
P6 (Fig. 5a), and 0.9 percent for the ROB of P6 (Fig. 5b). Thus,
selecting the GSV over the AVF list in order to protect a fixed
amount of state elements results in insignificant coverage loss.

Concerning the coverage of the lists vis-a-vis the biased
list, AVF and GSV perform comparably as shown in
Table 4. The numbers shown in Table 4 are the average
among the two microprocessors and the two modules. On
average, the coverage difference between the biased list

and the AVF-based list is 5.3 percent, while the same figure
between the biased list and the GSV-based list is
5.6 percent. Thus, both AVF-based and GSV-based lists can
provide accurate measurements about the vulnerability of
hardware structures.

6.3 Simulation Times

The main advantage of the presented technique lies in the
simulation times required to generate the near-optimal
ranking of state elements. Tables 5 and 6 contrast the time
required for calculating the AVF-based and GSV-based
ranked lists. The GSV-based method achieves a 1;215 �
speedup over the AVF-based method for IVM, while the
corresponding speedup for the Intel microprocessor is
1;017 �. This difference in simulation time is expected since
the GSV-based method collects ranking data for a state
element in six passes (i.e., two passes, one for stuck-at-0 and
one for stuck-at-1 faults, for each of the three benchmarks in
the training set), while the AVF-based method performs
statistical transient error injection and requires 18,000
passes (i.e., 6,000 transient errors for each of the three
benchmarks in the training set). Apparently, if a larger
sample was used for statistical fault injection the speedup
would be even greater. Furthermore, benchmarks in the
GSV-based method are not run to completion, thus saving
additional time. However, each stuck-at fault simulation
pass in the GSV-based method is slower than a transient
error injection pass in the AVF-based method due to the
overhead of reinstating the fault-free machine state and
resuming the simulation. Nevertheless, the overall speedup
exceeds three orders of magnitude while the ranking accuracy is
minimally impacted.

6.4 Discussion

The simulation times needed to generate a ranked list of state
elements based on their criticality to workload execution

1366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012

TABLE 1
Statistics from Executing Utilized Benchmarks for 10,000 Clock Cycles

TABLE 2
Global Signals Monitored in IVM

TABLE 3
Average Position Difference in Ranked Lists

using RT-Level estimation of the AVF metric [20] are
prohibitive for a complete microprocessor model. As can
be observed in Table 5, ranking the state elements of only the
instruction scheduler while utilizing a limited set of three
benchmarks required two months of extensive simulations
on 16 microprocessor cores, rendering any extensive study
infeasible. Thus, the speedup achieved by the presented
GSV-based ranking method is essential in order to enable a

designer to perform full-scale vulnerability analysis of
microprocessor state elements within a reasonable time.

The results of this analysis can be used to guide an
efficient allocation of resources, aiming to maximize
reliability improvement given a specified budget. For
example, if a designer is allowed to allocate 10 percent of
the area for protecting the most important state elements,
the presented method can provide a rapid, yet still very

MANIATAKOS ET AL.: GLOBAL SIGNAL VULNERABILITY (GSV) ANALYSIS FOR SELECTIVE... 1367

Fig. 4. Coverage comparison of AVF-based and GSV-based ranked lists in IVM.

accurate ranking of the state elements based on their
criticality to instruction execution correctness.

Besides the absolute ranking of state elements, such
analysis results can further provide insight to the designer
with regards to vulnerable portions of the modules.
Browsing through the ranked lists for the IVM scheduler,
we notice storage elements that are obvious candidates and
are expected to cause problems when unprotected, such as

the issue_head or issue_tail pointers. However,
among the top ranked state elements, we also find
unexpected ones which are not straightforward high-risk
candidates, such as a set of registers called temp_full,
which temporarily holds portions of the instruction to be
issued. Using this information, the designer may choose to
refine the design taking into account the criticality of the
various state elements.

1368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012

Fig. 5. Coverage comparison of AVF-based and GSV-based ranked lists in P6.

7 CONCLUSION

This study reveals a strong correlation between the

probability that transient errors in a state element will

affect the outcome of a program and the vulnerability of

select global microprocessor signals to stuck-at faults in this

state element. This correlation is leveraged by the method

described herein in order to quickly and accurately rank

state elements based on their criticality to application

execution correctness. Experimental results on both an

open-source Alpha microprocessor and a commercial Intel

microprocessor demonstrate that the ranked state element

list obtained by GSV is equally accurate to the one obtained

using the AVF metric, yet the time needed to generate it is

three orders of magnitude faster.

ACKNOWLEDGMENTS

This work was supported by a generous gift from Intel

Corporation The first author performed part of this research

during a summer internship with Intel Corporation in Santa

Clara, CA. Preliminary versions of parts of the results

reported herein were presented at the 2010 VLSI Test

Symposium [29].

REFERENCES

[1] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans.
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

[2] C. Constantinescu, “Trends and Challenges in VLSI Circuit
Reliability,” IEEE Micro, vol. 23, no. 4, pp. 14-19, July/Aug. 2003.

[3] R.C. Baumann, “Soft Errors in Commercial Semiconductor
Technology: Overview and Scaling Trends,” IEEE Reliability
Physics Tutorial Notes, Reliability Fundamentals, 2002.

[4] E. Touloupis, J.A. Flint, V.A. Chouliaras, and D.D. Ward, “Study
of the Effects of SEU-Induced Faults on a Pipeline Protected
Microprocessor,” IEEE Trans. Computers, vol. 56, no. 12, pp. 1585-
1596, Dec. 2007.

[5] L.R. Rockett Jr, “An SEU-Hardened CMOS Data Latch Design,”
IEEE Trans. Nuclear Science, vol. 35, no. 6, pp. 1682-1687, Dec. 1988.

[6] M. Zhang, S. Mitra, T.M. Mak, N. Seifert, N.J. Wang, Q. Shi, K.S.
Kim, N.R. Shanbhag, and S.J. Patel, “Sequential Element Design
with Built-in Soft Error Resilience,” IEEE Trans. Very Large Scale
Integration Systems, vol. 14, no. 12, pp. 1368-1378, Dec. 2006.

[7] Q. Zhou and K. Mohanram, “Transistor Sizing for Radiation
Hardening,” Proc. Int’l Reliability Physics Symp., pp. 310-315, 2004.

[8] N. Miskov-Zivanov and D. Marculescu, “MARS-C: Modeling and
Reduction of Soft Errors in Combinational Circuits,” Proc. Design
Automation Conf., pp. 767-772, 2006.

[9] N.J. Wang and S.J. Patel, “Restore: Symptom Based Soft Error
Detection in Microprocessors,” Proc. Int’l Conf. Dependable Systems
and Networks, pp. 30-39, 2005.

[10] C. Metra, D. Rossi, M. Omana, A. Jas, and R. Galivanche,
“Function-Inherent Code Checking: A New Low Cost On-Line
Testing Approach for High Performance Microprocessor Control
Logic,” Proc. IEEE European Test Symp., pp. 171-176, 2008.

[11] T.M. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. ACM/IEEE Int’l Symp. Micro-
architecture, pp. 196-207, 1999.

[12] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt, “Detailed Design
and Evaluation of Redundant Multithreading Alternatives,” Proc.
Int’l Symp. Computer Architecture, pp. 99-110, 2002.

[13] C. Zhao, X. Bai, and S. Dey, “A Scalable Soft Spot Analysis
Methodology for Compound Noise Effects in Nano-Meter
Circuits,” Proc. Design Automation Conf., pp. 894-899, 2004.

[14] M. Zhang and N.R. Shanbhag, “Soft-Error-Rate-Analysis (SERA)
Methodology,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 10, pp. 2140-2155, Oct. 2006.

[15] R. Garg, N. Jayakumar, S.P. Khatri, and G. Choi, “A Design
Approach for Radiation-Hard Digital Electronics,” Proc. Design
Automation Conf., pp. 773-778, 2006.

[16] S. Almukhaizim, Y. Makris, Y. Yang, and A. Veneris, “Seamless
Integration of SER in Rewiring-Based Design Space Exploration,”
Proc. IEEE Int’l Test Conf., pp. 29.3.1-29.3.9, 2006.

[17] C.G. Zoellin, H.J. Wunderlich, I. Polian, and B. Becker, “Selective
Hardening in Early Design Steps,” Proc. European Test Symp.,
pp. 185-190, 2008.

[18] S. Krishnaswamy, S.M. Plaza, I.L. Markov, and J.P. Hayes,
“Signature-Based SER Analysis and Design of Logic Circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 1, pp. 74-86, Jan. 2009.

[19] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,”
Proc. Int’l Symp. Microarchitecture, pp. 29-40, 2003.

[20] N.J. Wang, A. Mahesri, and S.J. Patel, “Examining ACE Analysis
Reliability Estimates Using Fault-Injection,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 460-469, 2007.

[21] E.W Czeck and D.P Siewiorek, “Effects of Transient Gate-Level
Faults on Program Behavior,” Proc. Int’l Symp. Fault-Tolerant
Computing, pp. 236-243, 1990.

[22] K. Seongwoo and A.K. Somani, “Soft Error Sensitivity Character-
ization for Microprocessor Dependability Enhancement Strategy,”
Proc. Int’l Conf. Dependable Systems and Networks, pp. 416-425, 2002.

[23] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing
Accurate AVFs Using ACE Analysis on Performance Models: A
Rebuttal,” IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 21-
24, Jan. 2008.

[24] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing
the Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. Int’l Conf. Dependable Systems and Networks, pp. 61-
70, 2004.

[25] L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,”
Microprocessor Report, vol. 9, no. 2, pp. 9-15, 1995.

[26] D. Burger, T.M. Austin, and S. Bennett, “Evaluating Future
Microprocessors: The Simplescalar Tool Set,” Technical Report
CS-TR-1996-1308, Univ. of Wisconsin, Madison, 1996.

MANIATAKOS ET AL.: GLOBAL SIGNAL VULNERABILITY (GSV) ANALYSIS FOR SELECTIVE... 1369

TABLE 4
Coverage and Ranking Difference Compared to Biased

TABLE 5
Ranking Speedup for IVM

TABLE 6
Ranking Speedup for P6

[27] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-Level Impact Analysis of Low-Level Faults in a
Modern Microprocessor Controller,” IEEE Trans. Computers,
vol. 60, no. 9, pp. 1260-1273, Sept. 2011.

[28] M. Maniatakos, C. Tirumurti, A. Jas, and Y. Makris, “AVF
Analysis Acceleration via Hierarchical Fault Pruning,” Proc.
European Test Symp. (ETS), pp. 87-92, 2011.

[29] M. Maniatakos and Y. Makris, “Workload-Driven Selective
Hardening of Control State Elements in Modern Microproces-
sors,” Proc. VLSI Test Symp., pp. 159-164, 2010.

Michail Maniatakos received the BS and MS
degrees in computer science and embedded
systems from the University of Pireaus, Greece,
in 2006 and 2007, respectively, as well as the
MS degree in electrical engineering from Yale
University, New Haven, CT, in 2008, where he
is currently working toward the PhD degree. His
current research interests include test and
reliability of modern microprocessors and com-
puter architecture. He is a student member of
the IEEE.

Chandrasekharan (Chandra) Tirumurti is a
research scientist with the Validation and Test
Solutions group at Intel Corporation based in
Santa Clara, California. His current focus is on
strategic manufacturing test initiatives for main-
stream CPUs. An alumnus of Indian Institute of
Technology, Kharagpur, India, he has wide
experience in many areas of CAD and design,
including simulation, data path synthesis, defect-
oriented testing and fault tolerance. He has

published several papers in the areas of test and fault tolerance. He
mentors funded research and SRC projects actively for Intel and is an
avid cricketer. He is a member of the IEEE.

Rajesh Galivanche received the MS degree in
electrical and computer engineering from the
University of Iowa. He is a senior principal
engineer in the Technology and Manufacturing
Group at Intel. As the architect for DFT and Test
Technology, he sets the strategy for research
and development of design-for-test and manu-
facturing test technologies for Intel Core-based
microprocessor and atom-based consumer SoC
products. He also chaired the Intel wide task

force on logic fault tolerance in Intel products. In these roles, he works
closely with both the academia and the EDA industry in advancing the
state-of-the-art in test and fault tolerant systems. He has published
several papers in IEEE conference proceedings, three patents issued,
and two patent applications pending. He served as keynote speaker in
many workshops in manufacturing test and online testing related
workshops. He served on the program committees of IEEE VLSI Test
Symposium, and IEEE International Test Conference European Test
Symposium in the past. He is a senior member of the IEEE.

Yiorgos Makris received the Diploma of com-
puter engineering and informatics from the
University of Patras, Greece, in 1995, and the
MS and PhD degrees in computer science and
engineering from the University of California,
San Diego, in 1997 and 2001, respectively. He
then spent more than 10 years as a faculty of
electrical engineering and of computer science
at Yale University and he is currently an
associate professor of electrical engineering at

The University of Texas at Dallas, where he leads the Trusted and
Reliable Architectures (TRELA) Research Group. His current research
interests include soft-error mitigation in digital circuits, machine learning-
based testing of analog/RF circuits, mitigation of hardware Trojans, as
well as test and reliability of asynchronous circuits. He serves on the
organizing and program committees of many conferences in the areas of
test and reliability and is the program chair for the 2012 Test Technology
Education Program (TTEP) of the IEEE Test Technology Technical
Council (TTTC). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 10, OCTOBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

