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Abstract—We present a nonintrusive concurrent error detection (CED) method for protecting the control logic of a contemporary
floating-point unit (FPU). The proposed method is based on the observation that control logic errors lead to extensive data path
corruption and affect, with high probability, the exponent part of the IEEE-754 floating-point representation. Thus, exponent monitoring
can be utilized to detect errors in the control logic of the FPU. Predicting the exponent involves relatively simple operations; therefore,
our method incurs significantly lower overhead than the classical approach of duplicating the control logic of the FPU. Indeed,
experimental results on the openSPARC T1 processor using SPEC2006FP benchmarks show that as compared to control logic
duplication, which incurs an area overhead of 17.9 percent of the FPU size, our method incurs an area overhead of only 5.8 percent yet
still achieves detection of over 93 percent of transient errors in the FPU control logic. Moreover, the proposed method offers the
ancillary benefit of also detecting 98.1 percent of the data path errors that affect the exponent, which cannot be detected via duplication
of control logic. Finally, when combined with a classical residue code-based method for the fraction, our method leads to a complete
CED solution for the entire FPU which provides a coverage of 94.1 percent of all errors at an area cost of 16.32 percent of the FPU

size.

Index Terms—Error correction, control logic, floating point, IEEE-754

1 INTRODUCTION

AS aggressive scaling continues to push technology into
smaller feature sizes, various design robustness
concerns continue to arise. Among them, the frequent
occurrence of transient errors [1], [2] has resurfaced as a
contemporary problem of interest. This problem is mainly
attributed to strikes by neutrons or alpha particles and the
corresponding single event upsets (SEUs) in memory bits,
or single event transients in combinational logic, which
may potentially result in a soft error [3], [4]. However,
several other factors such as design marginalities, negative
bias temperature instability, coupling, power supply noise,
and so on, [5], [6] also threaten the robustness of modern
microprocessor units. The increasing severity of the above
threats has spawned renewed efforts in developing cost-
effective concurrent error detection (CED) methods for
various key components of a circuit.

Arithmetic and logic units (ALUs) are fundamental
building blocks of any microprocessor. Practically, every
instruction goes through the ALUs. Thus, enterprise micro-
processor designs include reliability features that protect
ALUs against errors [7], [8], [9], [10]. Floating-point units
(FPUs), in particular, are among the most crucial and
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hardest to protect [11], [12], mostly due to the inexact
calculation nature of floating-point arithmetic. And while
progress is being made on solutions using error detecting/
correcting codes for the data path portion of an FPU [13],
[14], [15], little is known about its control logic, where either
duplication [16] or triple modular redundancy (TMR) [17]
techniques are usually applied. Control logic errors might
have catastrophic impact on the FPU output [18], [19],
jeopardizing application execution and providing the end
user with erroneous results. Furthermore, the size of control
logic in modern FPUs is significant, often amounting up to
20 percent of the FPU size, thus rendering the application of
error detection methods necessary.

In this study, we propose an elegant novel method to
protect the control logic of an FPU by monitoring the
exponent part of the floating-point representation. Our
method is based on the conjecture that a control logic error
will incorrectly guide the data path and, by extension,
severely alter the expected outcome of the performed
operation. As a result, it is highly likely that a control logic
error will modify the value of the exponent portion of the
floating-point output. Given that it is relatively straightfor-
ward to calculate the correct exponent through simple
operations, monitoring exponent correctness leads to an
inexpensive yet very efficient CED method for the FPU
control logic. Furthermore, it provides the ancillary benefit
of detecting errors in the exponent part of the representa-
tion and, when combined with a residue code-based error
detection method for the fraction, it results in a very low-
cost CED solution for the entire FPU.

The rest of the paper is organized as follows: Section 2
briefly describes existing techniques for the protection of
FPUs, followed by a short introduction to the IEEE-754
floating-point arithmetic standard in Section 3. Section 4
describes the proposed exponent monitoring-based CED

Published by the IEEE Computer Society



MANIATAKOS ET AL.: LOW-COST CONCURRENT ERROR DETECTION FOR FLOATING-POINT UNIT (FPU) CONTROLLERS

method, followed by an actual CED implementation on the
FPU of a modern microprocessor, which is presented in
Section 5. Section 6 describes the development of the
simulation-based experimental infrastructure. The merit
figures of the proposed method, namely the attained
coverage and incurred overhead, are assessed in Section 7,
followed by a discussion of its role in developing a cost-
effective CED for the entire FPU in Section 8.

2 ERROR DETECTION IN FPUs

Several error detection methods have been proposed for
protecting FPUs. Most of them, however, target the data
path and have been ported from the corresponding
techniques for integer arithmetic, while methods specifi-
cally designed to protect the FPU control logic have yet to
be developed.

2.1 Data Path

The most popular technique for reliable arithmetic opera-
tions is residue codes [20], [21], [22]. Low-cost residue codes
are single arithmetic error detecting codes with unidirec-
tional error detecting capabilities. The efficiency of residue
codes depends on the selection of the check base b. The
higher the base, the more errors the code will detect, yet
also the more expensive the hardware overhead which will
be incurred. Popular base selections are b = 15 (4 bits) and
b =3 (2 bits). In both cases, the resulting modulo circuit is
highly simplified and the theoretical error detection
percentage is 1 — (1/2") = 93.4% forb=15and 1 — (1/2%) =
75% for b = 3. Residue codes have been successfully applied
to various designs [14], [23], [24].

Other techniques include Berger codes [25], [26] and
two-rail checkers [23], [27]. Berger codes are optimal
unidirectional error detecting codes. ALUs using Berger-
encoded operands have been shown to be strongly fault
secure [14], [18].

Finally, besides arithmetic codes, custom solutions have
been proposed to protect the FPU data path. In [13], a
reduced precision checker has been added to determine
whether the result is correct within some error bound.
However, reduced precision checking has only been applied
to the floating-point adder (FPA). In [15], the authors use the
multiplier circuitry to detect errors that may happen in the
divider. Similarly, this technique applies specifically to the
floating-point divider (FPD).

2.2 Control Logic

The simplest and most straightforward CED solution for
random logic, such as the control logic of the FPU, is
duplication [16]. The main advantage of duplication is
simplicity and applicability to any given design. However,
the >100 percent area overhead (including the comparators)
and the extra delay required for checking make duplication
less appealing for modern FPUs. Furthermore, control in
modern, pipelined FPUs is distributed across multiple
components, necessitating manual and tedious effort to
identify and replicate it.

TMR [17] has similar properties to duplication, with the
added advantage of error correction. However, the hard-
ware overhead of >200 percent (including the comparators
and the voter) makes it prohibitive for commercial designs.
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TABLE 1
IEEE-754 Floating-Point Value Layout
[[ Precision [ Bits [ Sign [ Exponent [ Fraction [ Bias ||
Single 32 | 131 | 8[3023] 2B [220] | 127
Double 64 1 [63] 11 [62-52] 52 [51-0] 1023
Quad 128 | 1[127] | 15 [126-112] | 112 [111-0] | 16383

3 FLOATING-POINT ARITHMETIC

The IEEE-754 standard is the most commonly used floating-
point representation for real numbers on computers. Many
computer languages allow or require that some or all
arithmetic be carried out using IEEE-754 formats and
operations. This section provides a very brief overview of
the standard, to assist in better understanding the proposed
method. Extensive information on floating-point arithmetic
can be found in [28], [29].

Floating-point representation essentially represents real
numbers in scientific notation. Scientific notation expresses
numbers as a base and an exponent. For example, 123.45
could be represented as 1.2345 x 10% or 12.345 x 10!. IEEE
754 floating-point numbers have three components: the
sign, the exponent, and the mantissa. The mantissa is
composed of the fraction and an implicit leading digit (i.e.,
1). The exponent base (i.e., 2) is also implicit and need not
be stored. Thus, IEEE-754 floating-point numbers are
represented as (—1)™7" x 1. fraction x 2¢"P°""_Table 1 shows
the layout (the number of bits and the bit ranges for each
field) for the most commonly used precisions. Quadruple
precision is rarely implemented in hardware and is usually
performed by software traps.

The sign bit is 0 for positive numbers and 1 for negative
numbers. The exponent field needs to represent both
positive and negative exponents. To do this, a bias is added
to the actual exponent to get the stored exponent. For single-
precision floating-point numbers, this value is 127. Thus, an
exponent of zero means that 127 is stored in the exponent
field. A stored value of 200 indicates an exponent of (200-
127), or 73. The mantissa represents the precision bits of the
number. To maximize the quantity of representable num-
bers, floating-point numbers are stored in normalized form.
This basically puts the radix point after the first nonzero
digit. For example, 123.45 in floating point would be (—1)" %
1.9289062 * 25 in single precision. Consequently, the stored
representation would be 42F6E66616.

Finally, exponent field values of all 0s and all 1s are
reserved by IEEE to denote special values in the floating-
point scheme. Zero is a special value denoted with an
exponent field of zero and a fraction field of zero. While —0
and +0 are distinct values due to the extra sign bit, they
both compare as equal. The values +o0c0 and —oco are
denoted with an exponent of all 1s and a fraction of all Os.
The sign bit distinguishes between negative infinity and
positive infinity. Being able to denote infinity as a specific
value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well
defined in the IEEE-754 standard. Finally, the value not a
number (NaN) is used to represent a value that does not
represent a real number. NaN is represented by a bit
pattern with an exponent of all 1s and a nonzero fraction.
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There are two categories of NaN: quiet NaN (QNaN, most
significant fraction bit set, propagates freely through
most arithmetic operations) and signaling NaN (SNaN,
most significant fraction bit clear, signals an exception when
used in operations). Semantically, QNaN denotes indeter-
minate operations, while SNaN denotes invalid operations.

4 PRroprosep CED METHOD

Our method is based on the conjecture that an error in the
control logic will lead to extensive data path corruption,
which will propagate to the exponent part of the floating-
point representation. Numerous examples can be provided
to show the impact of control errors on the exponent and
justify our approach:

e  Special case control: The control logic identifies
whether the input operands are NaN, infinity, 0,
and so on. Mishandling of special cases due to errors
will result in a completely different output with an
incorrect exponent. For example, any operation with
NaN results in a NaN. If the control logic mistreats a
normal operand as NaN, then the operation 3 *5
will result in NaN (exponent = 255) instead of 15
(exponent = 130).

o  Algorithm stage control: All floating-point operations
go through several stages before generating the final
results. In case a stage is skipped or repeated (e.g.,
one more or one less division round is performed)
due to a control error, the result will be incorrect and
is very likely to be reflected in the exponent.

e  Select lines: Control logic is responsible for driving
the correct operands to the data path. In case an
error occurs and the control drives a 0 instead of a 7,
the operation 7 * 18 will result in a 0 (exponent = 0)
instead of 126 (exponent = 133).

e  Operation control: Along with the operands, the
control logic also drives the signals for the operation
selection. Therefore, if due to an error the operation
changes, say from addition to subtraction, then the
operation 2.0 +1.9 will result in 0.1 (exponent of
123) instead of 3.9 (exponent of 128).

These are only a few examples of data path corruption
due to control logic errors, supporting our conjecture that
errors in the FPU control logic can be detected by monitoring
the data path. Since the exponent part of the data path is
likely to be affected and fairly simple to calculate [28], we
seek to develop a low-cost CED method for the control logic
by predicting—through additional logic—the exponent part
of the floating-point result and comparing to the actual
value.

4.1 Calculating the Exponent

In this section, we discuss the exponent calculation for
each of the three types of FPU functions, namely
arithmetic operations, conversions, and other operations.
We note that the exponent is calculated independently of
the fraction operation; hence, the result is not exact
because possible fraction normalization may affect the
final value of the exponent.
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4.1.1 Arithmetic Operations

The first category is arithmetic operations, such as
additions, subtractions, multiplications, and divisions. We
remind that the IEEE-754 representation of normalized
floating-point operands is (—1)" % 1.f % 2¢, where s is the
sign, f is the fraction, and e the exponent. Thus, exponent
calculation in multiplication and division is simple, i.e.,

(1) = L fr % 29) % ((=1)™ % 1. fo % 2?)

1
= (—1)51+52 * 1f1 * ].fg * 2€1+€2 ( )

for multiplication and
((_1)51 * 1. f1 * 2"'1)/((—1)52 * 1.fo x 262) @)

= (=12 1 fy /1. fo % 2070

for division. So, we simply need to add (for multiplication)
or subtract (for division) the exponents, operations which
can be performed by the same hardware structure. In case
the fraction overflows and needs to be normalized, the
exponent needs to be adjusted accordingly. Hence, for
arithmetic operations, we can only predict the exponent of
normalized results with a £1 accuracy. Consequently, if an
erroneous result differs from the correct result by 1, error
masking will occur. However, our conjecture is that in the
presence of a control logic error, the data path is corrupted
extensively; hence, the probability of such masking is very
low. Indeed, the results presented in Section 7 corroborate
this conjecture.

For addition and subtraction, the exponent is the largest
of the two operand exponents; therefore, a simple com-
parator suffices to calculate it (similar to the multiplication/
division cases, normalization may be required). This does
not apply in the case of cancelation (i.e., when there is a
subtraction of operands with equal exponents or exponents
that differ by 1). In this case, the exponent can take a wide
range of values and cannot be computed accurately without
information from the fraction. To moderate cost, our CED
method only checks if the operands are equal (so the result
is zero) and ignores the rest of the cases. Nevertheless, the
results shown in Section 7.6 indicate that the consequent
error masking is very small.

4.1.2 Conversions

Another common operation performed in FPUs is conver-
sion from/to integer/floating-point representations. The
exponent of the results can be exactly calculated by
appropriately offsetting the input operand. For floating-
point precision conversions (single to double and vice
versa), the exponent needs to be offset by £896, because the
actual exponent is e, — 127 in single precision and e; — 1,023
in double precision. Thus, for single to double conversion,
the exponent is e; = (e; — 127) 4+ 1,023 and for double to
single e, = (eq — 1,023) + 127.

4.1.3 Other Operations

Modern FPUs usually implement more operations, such as
absolute value, negation, and comparison. In all these
operations, the exponent is very simple to calculate.
Negation/absolute value operations affect only the sign
(i.e., the exponent is the same). Comparison operation
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TABLE 2
Sample Floating-Point Instructions
Result Fraction
H Operation Exponent ‘ Normal. ‘ Sign H
Addition maz(er,ez) | Yes sign(mazx(e1, e2))
Subtraction mazx(e1,e2)’ | Yes sign(max (e, e2))
Multiplication el +e2 Yes sign(e1) @ sign(e2)
Division el — es Yes sign(e1) ® sign(e2)
Single to Double | e; + 896 No sign(er)
Double to Single | e; — 896 No sign(er)
Negation el No —sign(e1)
Absolute Value el No +

I Equal or different-by-1 exponents may lead to cancelation.

results are implementation specific, as the output result is
the comparison result and not a floating-point number. For
example, SPARC ISA defines the exponent field of the
output as 0, and the comparison result is stored in the flags
field. Table 2 summarizes the exponent operation for
common FPU operations.

4.2 Sign Calculation and Flags

Using the hardware present for exponent calculation, the
sign bit of the result can also be calculated, thus expanding
the error detecting capability of the presented method.
Table 2 shows the sign bit for a sample instruction set.
Therefore, we can include the sign bit to form an extended
signature which our method checks against.

Similarly, most modern FPUs have an extra flags field,
which we can use to expand the aforementioned signature.
For example, as discussed in Section 4.1.3, the comparison
operation in both SPARC ISA and Intel x87 ISA stores the
result in the flags field (2 bits for SPARC, 4 bits for x87).
Since we already have comparison operations to determine
the result exponent for addition/subtraction, those flags can
easily be generated without extra overhead. Furthermore,
the x87 defines flags for 0, NaN, and infinity results that can
also be extracted from the CED hardware.

4.3 Error Recovery

The proposed CED methodology is nonintrusive and
operates independently of the FPU. Error signaling occurs
through comparison after the instruction is executed; thus,
on-the-fly correction of the result is not possible. However,
the CED successfully pinpoints the corrupted instruction
and the FPU may easily recover via reissuing. Reissuing
can be performed either at the software level (FPU signals
invalid operation) or completely transparently at the
hardware level (by adding extra hardware). We also note
that while recovery from a transient error can be achieved
via reissuing, repeated failure of an instruction indicates a
failing unit which should be replaced or substituted via
software traps.

5 CED IMPLEMENTATION

In this section, we present an actual implementation of the
proposed CED methodology. Since our method can be
easily applied to any IEEE-754 compliant FPU, we selected
the latest open-source FPU implementation provided by
Sun through the openSPARC project.
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Fig. 1. T1 PCX—FPU—CPX interface [31].

5.1 Test Vehicle

The test vehicle of our study is the register transfer-level
(RTL) model of the openSPARC T1 microprocessor [30],
the open source version of the UltraSPARC T1 micro-
processor.

The openSPARC T1 processor has eight SPARC proces-
sor cores which have full hardware support for four
threads. Thus, there can be up to 32 threads running in
parallel, greatly increasing throughput. Each of the cores
has an instruction and a data cache, as well as an
instruction and a data translation look-aside buffer (TLB).
The eight cores are connected through a crossbar (CCX) to
an on-chip L2-cache, as well as the J-Bus controller
(IOBridge) and the shared FPU.

Each SPARC CPU core can send a packet to the FPU,
using the cache-processor crossbar (CPX). Conversely, the
FPU can send a packet to any one of the eight cores using the
processor-cache crossbar (PCX). Fig. 1 presents the commu-
nication between the FPU and the eight SPARC cores.

A floating-point instruction is delivered from the cores to
the FPU in either one- (single-operand instructions) or two-
packet transfer. One source operand is transferred in each
cycle and the crossbar always provides a two-cycle transfer.
In case of single-operand instructions, an invalid transfer is
produced in the second cycle [31].

Since the FPU is a single-shared resource, each of the
eight SPARC cores may have a maximum of one FPU
instruction waiting to be executed. Thus, the FPU can hold
up to eight instructions at a given time. The FPU
implements the SPARC V9 floating-point instruction set,
and is fully compliant with the IEEE 754 standard [32]. The
floating-point register file and floating-point state register
are in the SPARC core floating-point front-end unit, which
is unique for every core (and not shared like the FPU).

The FPU includes three execution pipelines:

e FPA: executes additions, subtractions, comparisons,
and conversions.

e  Floating-point multiplier (FPM): executes multiplica-
tions.

e FPD: executes divisions.

Incoming instructions are stored in a 16 entry x155 bit
FIFO queue (unless the FIFO is empty, in which case it is
bypassed). In each cycle, one instruction may be issued from
the FIFO and one instruction may complete and exit the FPU.
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FPU Divide pipeline: FPD
input FPU

From PCX — FiFQ Multiply pipeline: FPM output
queue arbitration
Add pipeline: FPA

Fig. 2. T1 FPU functional block diagram [31].

—» To CPX

Fig. 2 shows a block diagram with the three independent
pipelines. NaN source propagation is supported by steering
the NaN source through the pipeline to the result:

e Input FIFO queue: The FIFO stores the instructions

waiting to be executed. For single-source instruc-
tions, the first operand slot in the FIFO is forced to
zero. The unused region of a single-precision
instruction is also forced to zero. The FIFO also
stores five tag bits generated by the source operands.
These tag bits store information about special cases
(zero fraction, zero exponent, etc.).
Eight entries, issued in FIFO order, are dedicated to
the FPA and FPM pipelines. Similarly, there are
eight entries for the FPD pipeline, having issue
priority over the FPA/FPM entries.

e Adder pipeline: The adder is fully pipelined (four
stages), but certain integer conversions require a final
pass through the final stage. The FPA pipeline has a
latency of 4 clock cycles (or 5 for integer conversions).

o Multiplier pipeline: The multiply pipeline has six
pipeline stages and all instructions have a fixed
latency of 7 clock cycles.

e  Divider pipeline: Division is executed in a nonblock-
ing, dedicated data path with seven pipeline stages.
Latency varies between 7 and 32 cycles for single-
precision operations and 61 cycles for double
precision.

o  Output arbitration: Only one instruction can exit the
FPU per cycle. The FPD pipeline has priority over
the FPA and FPM pipelines, which, in turn are
prioritized in a round-robin fashion. If an instruction
is stalled at the final stage of a pipeline due to output
arbitration, the corresponding input FIFO queue will
not issue a new instruction.

5.2 Implementing CED

Table 3 summarizes the instructions that the T1 FPU
implements. The pipeline where each of these instructions
is executed is also listed in the third column of the table,
with most instructions executed in the Add pipeline.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO.7, JULY 2013

TABLE 3
openSPARC T1 Floating-Point Instructions
[[ Mnemonic | Description | Pipe ||
FADD (s,d) Addition FPA
FSUB (s, d) Subtraction FPA
FMUL (s, d),FsMULd | Multiplication FPM
FDIV (s, d) Division FPD
FCMP [E] (s,d) Comparison FPA
FsTOd Single To Double FPA
FdTOs Double To Single FPA
F (i,x)TOs Integer/Long to Single FPA
F (i, x) TOd Integer/Long to Double FPA
F(s,d)TO (i, x) Single/Double To Integer/Long | FPA

Since the FPU provides support for all IEEE-754 floating-
data types, including NaN, zero, and infinity, special care
must be exercised during exponent calculation in these
cases. Table 4 summarizes all combinations involving
special numbers. The exponent field suffices to determine
whether an operand is NaN or infinity (i.e., all bits are 1,
symbolized as MAX_EXP) but, for zero, a comparison is
also required to determine whether the mantissa bits are
zero. As can be seen in Table 4, in most cases involving a
special number the resulting exponent is a MAX_EXP.
There are, however, a few combinations, such as num
division by infinity or some operations with 0, where this is
not the case.

As discussed in Section 4.2, given the added hardware to
calculate the exponent, we can also calculate the compar-
ison flag fields of the output packet, further increasing the
efficiency of the proposed CED. Specifically, there are 5 bits
that can be calculated: The 2-bit Fcc_flags, where the
field is 00 when the two operands are equal, 01 when the
first operand is greater, 10 when the second operand is
greater, and 11 when the two operands are unordered (in
case of NaNs). Besides the 2-bit Fcc_flags, the FCMP bit
is 1 when there is a comparison operation, and the
PCX_flags are copied from the respective field of the
input packet.

5.2.1 Signature Calculation and Validation

The 11-bit exponent, along with the 1-bit sign field and the
5-bit flag field {Fcc_flags, FCMP, PCX_flags}, form an
extended 17-bit signature which serves as the basis for our
CED method. Specifically, the predicted signature of an
FPU instruction is compared to the actual signature of the
outgoing FPU packet when the instruction is executed.
Fig. 3 shows the block diagram of the proposed CED
method, with the details of the signature calculation block

TABLE 4
Floating-Point Special Cases (Add/Sub/Mul/Div)

op2/opl | NaN +00 -00 +0 -0 +num -num
NaN | NaN NaN NalN NaN NalN NalN NaN
+oo/NaN | NaN/-oco +00/-00 +00/-00 +00/-00 +00/-00
+oo | NaN | +oo/NaN | -oo/NaN | NaN/+0 | NaN/-0 +00/+0 -00/-0
NaN/+oco | -oo/NaN | -oo/+00 | -0o/+00 -00/+00 -00/+00
-0o | NaN | -oco/NaN | +oo/NaN | NaN/-0 | NaN/+0 -00/-0 +oo/+0
+00/+00 -00/-00 +0/+0 +0/-0 +num/+num | -num/-num
+0 | NaN | NaN/+oo NaN/-co +0/NaN | -0/NaN +0/+00 -0/-00
+00/+00 -00/-00 +0/+0 -0/+0 +num/+num | -num/-num
-0 | NaN | NaN/-co | NaN/+co | +0/NaN | -0/NaN +0/-00 -0/+00
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Fig. 3. Block diagram of CED and signature calculation.

expanded in the bottom part of the figure. Besides the
exponent calculation rules described in the previous section,
we point out that in the case of single-precision operands,

the three most significant bits of the exponent field in the
predicted signature are set to zero, as is also done in the
corresponding packets exiting the FPU. As for predicting
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the flag fields, the only additional component is a mantissa
comparator, which is necessary when the exponents are
equal. Overall, the inputs to the signature calculator are the
exponents, the operation code, the mantissa comparison
result, the MSB position of the operand, the precalculated
“exponent” field of the F(s,d)TO(i,x) result, and the
PCX_flags, which are copied from the input packet.

Given that the exponent can be predicted with a £1
accuracy, validating the signature of an instruction leaving
the FPU requires a twofold comparison, as indicated in the
right part of Fig. 3. Specifically, we compare both the
calculated exponent and its incremented-by-one version to
the actual exponent of the instruction exiting the FPU and
we only activate the CED output if both comparisons fail.
For this scheme to be correct, we need to always store the
smaller of the two possible exponent values as the
calculated signature. Therefore, for subtraction and division
operations, where mantissa normalization may decrement
the result exponent, we decrement our calculated exponent
by 1. Thus, the final signature will be checked for its actual
value and its incremented-by-1 value. This eliminates the
need for an additional subtractor and comparator at the
signature validation stage of the CED method.

5.2.2 Comparison Synchronization

The FPU is a shared resource with multiple floating-point
instructions in flight. Moreover, the latency of some
floating-point instructions (i.e., division) is variable and
cannot be predicted a priori. Hence, it is not possible for our
CED method to predict which instruction should exit the
FPU at each time. Instead, the signatures calculated for each
incoming instructions are stored in an array which is
indexed using the CPU ID of the outgoing instruction. We
point out that the FPU outputs the CPU ID in one-hot
encoding; this needs to be converted before accessing the
proper entry in the buffer. The CPU ID is a unique identifier
because each of the eight cores can have a maximum of one
outstanding FPU instruction. A thread with an outstanding
FPU instruction switches out while waiting for the FPU
result. This allows up to eight instructions to be in the FPU.
Therefore, storing the signatures requires an 8 entry x17 bit
memory with 1 read and 1 write port. We do not need more
ports because only one instruction can arrive at the FPU
within two cycles, and only one instruction can exit the FPU
in a given clock cycle.

Table 5 shows the information extracted from the
incoming (PCX) and the outgoing (CPX) packets to assist
in signature calculation and comparison synchronization.
Most floating-point instructions require a two-packet
transfer; hence, buffers are added to hold the information
necessary from the first incoming packet before we can
correctly calculate the exponent. Fig. 3 puts everything
together, showing all the CED modules.!

Finally, we would like to note that the proposed CED
method operates at the boundary of the FPU and validates
the signature of the final output. Hence, unlike CED which
is based on duplication and comparison of control logic
blocks within the FPU, our method has no false alarms.

1. To avoid cluttering the figure, the CED shows the exponent of a
double-precision operand. In case of single precision, the exponent bits are
driven accordingly.
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TABLE 5
PCX/CPX Packet Format
I [ Bits | Description [
123 | Packet valid bit
122:118 | PCX packet request type
116:144 | CPU ID
113:112 | Thread ID
PCX 79:72 | Operation code
68:67 | Condition codes FSR_fcc
65:64 | Rounding mode
63:0 | Floating point operand
144 | Packet valid bit
143:140 | CPX packet return type
135:134 | Thread ID
CPX 76:72 | Floating-point flags
69 | Compare operation
68:67 | Condition codes
66:65 | Condition codes from PCX
63:0 [ Floating point result

6 EXPERIMENTAL SETUP

To assess the effectiveness of our method, we built an
extensive simulation infrastructure to perform error injec-
tion experiments. Since our target is transient errors, we
need to perform a large number of injections; therefore, the
infrastructure must support very fast simulations and error
impact evaluation.

6.1 Experiment Flow
Fig. 4 shows the data flow of our experiments. Two
different types of workload are used during the evaluation:

e  Synthetic benchmarks: A python-based assembly gen-
erator was developed to generate multithreaded
assembly utilizing floating-point instructions. The
assembly generator can generate up to 32 different
assembly files, one for each thread. The user can
specify the percentage of the floating-point instruc-
tions in the file, as well as the desired number of

MT
) ' FPU
M5 Simulation Assembly Golden Model
Generator
T ‘
VPI
v Y v
Transient Error
Collect assembly 0penSPARC T1 Injection &
traces Simulation ificati
Classification
A
VPI
3 Y
Collect
VCD traces R I 1
h 4
Convert to » —
testbench CED 0

Testbench Simulation

Fig. 4. Simulation infrastructure.
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instructions for each pipeline (FPA, FPM, FPD).
Floating-point registers are randomly selected for
each instruction. Ten of the registers contain special
values (NaNs, Inf, 0) to ensure operations with
special numbers. Synthetic benchmarks ensure uti-
lization of all resources and appearance of every
possible special case.

e  SPEC2006FP benchmarks: To accurately evaluate the
in-field performance of our CED method,
SPEC2006FP benchmarks are used. Since the RTL
model of the openSPARC does not support system
calls (because no operating system is loaded), the
M5 simulator [33] is used to execute the SPEC
benchmarks. The execution trace is collected, dis-
tributed to different threads, and then loaded to the
RTL similarly to synthetic benchmarks.

The chosen workload is simulated in the openSPARC T1
environment using sims, and value change dump traces are
collected at the input of the FPU. These traces are then
converted to a separate test bench using Synopsys vcat. This
test bench can be simulated using Synopsys vcs without the
need to simulate the entire microprocessor model.

Statistical fault injection (SFI) is used to evaluate the
effectiveness of the CED against soft errors. Recent work
[34] has showed that SFI measurements closely match the
results of the actual proton and neutron irradiation of a
chip, strengthening the quality of our evaluation. Error
injection is performed during simulation by mutating the
microprocessor model using the parallel saboteurs techni-
que. An extensive description of the RTL error injection
method can be found in [35].

The transient error injection is controlled by a python
script through verilog procedural interface calls. The same
script is used for error classification, with the help of a golden
model that runs in parallel with the injected FPU model.

6.2 Hardware Synthesis

To provide hardware overhead estimates, we synthesized
the FPU model using Synopsys Design Compiler targeting a
90 nm library. The timing constraints were set to a clock
period of 1 GHz, to match the running speed of the
UltraSPARC T1. The total area of the synthesized FPU is
816,660 pum? (587,947 ym? combinational, 181,110 zm? non-
combinational, and 47,601 ym? net interconnect area). Fig. 5
shows the hierarchy of the FPU along with the area
percentage of each main module. The largest module is
the 54 x 54 multiplier. The division pipeline is rather small
(and, naturally, rather slow at the same time). The model
also contains a few more very small modules, such as
repeaters (to optimize timing) and scan-control modules,
which are not shown in the figure. These modules along
with the pipeline registers and the wiring add up to the
remaining 23.4 percent of the FPU area.

6.3 Control Duplication

The simplest and most straightforward CED solution for
random logic, such as the control logic of the FPU, is
duplication. The control modules in the openSPARC T1
FPU are relatively small. Therefore, blindly duplicating
these modules and continuously monitoring the outputs of
each pair of duplicates through a comparator are an
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Fig. 5. FPU hierarchy and area breakdown.

appealing option. However, there are two limitations in
this approach:

e A transient error in a control module monitored
through duplication will trigger the CED output
even if the module is not actively participating in
instruction execution at the time of the strike, or if
the error is later masked by the subsequent FPU
logic and never reaches the output. In essence,
duplication-based CED of the distributed control
modules may cause false alarms.

e Control discrepancies do not only originate from
errors in modules that are considered pure control but
may also occur as a result of errors in other parts of the
FPU, such as the In and Out modules or the pipeline
registers between the various stages. Such control
discrepancies will not be detected by a distributed
duplication-based control module CED method.

The latter is, indeed, a serious limitation. The experi-
mental results presented in Section 7 demonstrate that only
43 percent of the control errors affecting the outgoing
packet originate from the pipeline controller modules. This
happens mainly because parts of the In and Out modules,
which are part of the data path, carry crucial information
that eventually propagates to the corresponding control
logic of the FPU pipelines (e.g., whether the exponent is
zero or all ones, whether the fraction is zero, etc.). The same
applies to the registers between the pipeline stages. The
corresponding control errors are even more crucial to detect
than those originating from the clearly marked control
modules. The reason for this is that the In and Out
modules are always used for every incoming instruction;
thus, errors there have a high probability of propagating to
the output. Similar arguments hold for the pipeline registers
and repeaters, which are part of the information flow in the
CPU and may also cause control errors.
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TABLE 6
Error Classification Statistics
Non-masked errors
Module | FP-100 | FP-1 | bwaves | milc | zeusmp | leslie3d
fpu_top | 2.78% | 2.01% | 2.65% | 3.51% | 3.40% 2.63%
in| 3.97% | 279% | 3.89% | 6.97% | 6.48% 5.12%
in_ctl | 12.1% | 11.0% | 8.46% | 8.60% | 7.48% 6.71%
in_dp | 278% | 1.87% | 2.86% | 5.46% | 5.33% 4.39%
add | 1.43% | 1.28% | 1.90% | 5.28% | 3.91% 2.47%
add_ctl | 2.04% | 1.76% | 1.85% | 5.31% | 4.62% 2.71%
add_exp | 0.44% | 0.57% 0.58% | 4.07% 2.36% 1.37%
add_frac | 0.59% | 043% | 1.15% | 2.79% | 2.68% 1.24%
mul | 1.98% | 1.31% | 1.82% | 0.36% | 0.69% 2.23%
mul_ctl | 3.71% | 2.81% | 2.94% | 1.60% 1.97% 2.71%
mul_exp | 2.29% | 1.48% | 1.81% | 0.10% | 0.35% 2.15%
mul_frac | 1.60% | 0.89% | 0.51% | 0.03% | 0.28% 2.62%
div | 7.70% | 5.51% | 3.25% | 0.35% | 0.90% 1.24%
div_ctl | 11.9% | 9.53% | 5.71% | 2.31% 1.94% 2.80%
div_exp | 450% | 3.34% | 2.14% | 0.00% | 0.00% 0.21%
div_frac | 4.45% | 3.83% | 3.28% | 0.01% | 0.16% 1.14%
out | 4.74% | 3.49% | 5.28% | 5.64% | 5.65% 4.23%
out_ctl | 164% | 15.8% | 15.6% | 16.8% 16.3% 16.2%
out_dp | 4.37% | 3.06% | 4.65% | 532% | 4.75% 4.37%
[ Total | 2.13% [ 1.45% | 1.40% | 1.51% | 153% | 2.55% ||

Based on the above discussion, in order for a duplica-
tion-based CED scheme to effectively detect all control
errors, it needs to incorporate not only the clearly marked
control modules but also every location wherein an error
will result in a control discrepancy. The overhead of such a
duplication-based scheme for detecting all control errors in
the openSPARC T1 FPU is 17.9 percent.

7 CED EVALUATION

This section describes the experimental results that support
our conjectures. We simulated the openSPARC T1 micro-
processor using different types of workload. First, two sets
of synthetic workload: The first one (FP-100) consists of
100 percent floating-point operations, to resemble applica-
tions with intense need for floating-point calculations. The
second (FP-1) consists of 1 percent floating-point instruc-
tions, matching the profile of common applications that
place very little demand on the FPU. Furthermore, four
SPEC2006FP benchmarks, namely bwaves, milc,
zeusmp, and leslie3d were utilized to evaluate the
effectiveness of the proposed method using real workload.
Seven million transient errors were injected in total,
uniformly distributed over workload, time, and location
across the FPU.

7.1 FPU Error Impact Analysis

Error masking: The first set of results, shown in Table 6,
present statistics regarding the impact of injected errors on
the FPU output. As expected in a transient error injection
campaign, masking is very high; indeed, among the injected
errors, only 1.76 percent on average reach the FPU output
(i.e., nonmasked errors).

The key observation from these results is that the average
nonmasked error rate of control modules (_CTL) is
8.9 percent (i.e., one out of nine transients affects the
FPU), a percentage that is much higher than the average
nonmasked rate of data path modules, which is only
1.43 percent. In other words, errors in the control logic are
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Fig. 6. Error classification in FPU modules.

six times more likely to affect the output than errors in
the data path. This statement supports our claim that
despite the control logic being smaller, protecting it is
necessary for ensuring reliable FPU operation.

We also point out that the percentage of nonmasked
errors varies among the different control modules, with
in_ctl, div_ctl, and out_ctl having higher percen-
tages. This is expected for the in_ctl and out_ctl
modules, because all instructions have to go through them
and they always contain critical information regarding
instruction execution. As for div_ct1, division instructions
have 10 times more latency than other instructions (up to
61 cycles), so the probability that the FPD pipeline will be
occupied by a valid instruction during the workload
execution is much higher.

The necessity to carve out the entire control logic
throughout the FPU is highlighted by the output error
classification results presented in Fig. 6. Data path errors are
defined as errors in the data path modules affecting the
final result, with everything else defined as a control error.
It is clear that for In and Out modules, many of the control
faults originate from the _DP units. Thus, as discussed in
Section 6.3, these parts have to be included in an efficient
duplication scheme.

Finally, among the different benchmarks, the average
number of corrupted bits in the output packet for control
logic errors is 5 bits. This supports our conjecture that
control logic errors lead to extensive data path corruption.

7.2 CED Fault Coverage

The coverage achieved by our CED method for control
errors, as shown in Table 7, is 93.8 percent on average for
the given workloads. The proposed CED method does not
reach 100 percent coverage for three reasons: First, some
level of error masking occurs due to the +1 comparison of
the output exponent (around 1.9 percent). Second, some
control logic errors affect only the fraction portion of the
result and never propagate to the exponent (around
3.7 percent). Finally, cancelation counts for the rest of the
missed faults.

In comparison, duplication-based CED, as described in
Section 6.3, offers 100 percent coverage, yet with possible



MANIATAKOS ET AL.: LOW-COST CONCURRENT ERROR DETECTION FOR FLOATING-POINT UNIT (FPU) CONTROLLERS

TABLE 7
Exponent Monitoring Coverage

Control Logic

Workload | Fault Coverage
FP-1 95.7%
FP-100 94.5%
bwaves 95.4%
milc 91.7%
zeusmp 93.3%
leslie3d 92.2%

[ Average | 93.8% |

false alarms and at a much higher cost, as discussed in
Section 7.3. However, exponent monitoring provides the
ancillary benefit of also covering 98.1 percent of the errors
that affect the exponent, which control logic duplication is
unable to detect. The implication of this ancillary benefit is
that no additional CED method is needed to cover the
exponent portion.

7.3 Area and Delay Overhead

The second set of results, shown in Table 8, discuss and
compare the area and delay overhead of our proposed
exponent monitoring method to traditional duplication for
performing CED in the FPU control logic.

In terms of area overhead, the cost of duplication is
17.9 percent of the FPU size, of which 16.1 percent is to
replicate the control logic and 1.8 percent is to compare.
In contrast, the proposed exponent monitoring incurs
only one-third of this cost, for a total of 5.8 percent of the
FPU size.

The proposed CED method operates in parallel with and
is nonintrusive to the FPU functionality; therefore, the only
added delay is for comparing the output packet signature to
the one stored in the CED memory array. We note that since
the CPU ID is broadcasted one clock cycle before the packet
exits the FPU, the CED extracts the correct signature from
the memory in advance. Thus, no delay overhead is added
by the exponent monitoring method. In contrast, duplica-
tion-based CED incurs a nontrivial delay overhead while
comparing the control logic output at each pipeline stage.

7.4 Power Overhead

Estimates of power overhead per benchmark are presented
in Fig. 7. The estimates are calculated using Synopsys
PrimeTime, representing averaged power analysis based on
toggle rates.

The power overhead of the proposed method is approxi-
mately three times less than control duplication (8.3 percent
versus 24.7 percent). Besides the reduced area footprint, an
additional advantage of the exponent monitoring method,

TABLE 8
Exponent Monitoring versus Duplication

FPU Control Area Coverage of

CED Method Overhead | Control | Exponent | Fraction
‘ Duplication 17.9% 100% - - ‘
[| Monitor Exponent 5.8% 93.8% 98.1% 15% ||
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which contributes to the lower power consumption result, is
the fact that it is only active during issue and commit of the
floating-point operation. In contrast, a control logic dupli-
cate is active throughout all stages of the floating-point
operation (up to 61 cycles for double-precision divisions).
Given the extensive efforts to reduce power in modern
designs, exponent monitoring constitutes a very appealing
option for a low-power error detection mechanism.

7.5 Error Recovery

Since our CED method operates independently of the FPU,
the erroneous instruction can be easily detected and
reissued. Two different implementations can be used:

1. Software trap: With no additional hardware over-
head, the FPU may signal an exception for an
erroneous result (the IEEE-754 standard defines a
precise exception model). The operating system will
be responsible for clearing the exception and
reissuing the instruction. The SPARC T1 FPU has
an fp_exception_other trap than can be used to
notify the OS for detected errors.

2. Hardware reissue: In case that error containment is
required, the FPU can store the instructions in a
buffer and reissue the ones that were detected as
erroneous. As expected, the buffer adds a significant
amount of extra logic to the system, but error
recovery is completely transparent to the user.

Fortunately, the SPARC T1 FPU already has a 16-entry
FIFO for storing the incoming floating-point instructions.
Thus, in our current implementation, we use this buffer for
error correction by applying some minor modifications:

e An extra bit is added per entry, indicating that the
instruction has been successfully executed. This
extends the 155 x 16 FIFO to 156 x 16 bits.

e In case the FIFO is empty, the instruction bypasses
the FIFO and goes directly to the corresponding
pipeline. The design needs to be modified to force
the instruction to always go through the FIFO as well
as to the pipelines.
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TABLE 9
Cancelation Analysis
Errors in Possible Actual Equal Range
Workload | Add/Sub | Cancellation | Cancellation | Operands | Detection
bwaves 28.72% 14.39% 3.54% 13.19% 0.11%
milc 78.18% 0.05% 0.0% 0.01% 0.05%
zeusmp 66.83% 3.88% 3.64% 2.03% 0.36%
leslie3d 18.16% 5.42% 5.34% 2.23% 0.52%

All detected errors were corrected by our CED.
Furthermore, the performance penalty for transparently
correcting the erroneous results is trivial for all the given
workloads, because a reissue penalty of up to 61 cycles
(double-precision division) will have a negligible impact in
a million cycles workload execution.

7.6 Cancelation

Finally, we assess the impact of cancelation on the effective-
ness of the proposed CED method and we examine the utility
of various strategies in ameliorating this problem. As shown
in the third column of Table 9, the fault coverage loss due to
cancelation ranges from 0 to 5.34 percent during execution of
real-world heavy floating-point applications. Below, we
compare four approaches for dealing with cancelation:

e Disable CED if cancelation possible: Whenever the
exponents are the same or differ by 1, the CED is
disabled. This is not an appealing option, because
there are many cases where cancelation does not
actually occur, leading to a coverage loss of up to
14.39 percent, as shown in the second column of
Table 9.

o Disable CED if cancelation detected: This approach
reduces the fault coverage loss down to less than
5.34 percent, but detecting cancelation requires
information from the fraction, which comes at a
much higher area overhead cost.

e  Disable CED if cancelation possible and equal operands:
In most of the cases, cancelation occurs from
subtracting the same operands (with the result being
0). By simply subtracting the fourth from the second
column of Table 9, we can extract that the cancela-
tion attributed to nonequal operands is 1.2, 0.04,
1.85, and 3.19 percent for the four benchmarks
respectively. Since the added CED hardware already
has circuitry for detecting equal operands, this is the
most appealing option and is what our CED method
actually implements. There is no additional over-
head, and the fault coverage loss due to cancelation
is contained under 3.19 percent.

e  Detect invalid range of exponent: Further fault cover-
age loss of up to 0.52 percent can be recovered
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through a mechanism for checking the validity of
the exponent, as shown in the last column of Table 9.
Validity may be checked based on the fact that the
exponent, after cancelation, will lie within +63 of the
calculated one. This option incurs extra overhead
(i.e., adders and comparators) which does not easily
justify the fault coverage gain of up to 0.52 percent;
hence, we opted to omit it.

8 CosT-EFFecTIVE CED FOR ENTIRE FPU

We now examine the utility of exponent monitoring in
developing a cost-effective CED method for the entire FPU.
We note that, as previously shown in Table 8, exponent
monitoring also detects around 15 percent of the errors that
only affect the fraction portion of the floating-point
representation, which the duplication method is unable to
detect. Yet this percentage is very small, hence additional
steps need to be taken to provide a complete FPU CED
solution. To this end, we investigate how our method can be
combined with base-15 residue code for the fraction, to
reduce the overall CED cost for the FPU. Specifically, we
compare three alternative scenarios: 1) using base-15
residue codes for the fraction and the exponent but leaving
the control unprotected; 2) adding control logic duplication
to the above solution; and 3) combining exponent monitor-
ing with base-15 residue code only for the fraction (because
the exponent is already covered).

The results reported in Table 10 demonstrate two key
points: First, if control is left unprotected, the overall fault
coverage would be a mere 59.2 percent. This shows, once
again, that protection of control logic is necessary in
modern FPUs. Second, the proposed exponent monitoring
method enables a complete FPU CED solution that provides
almost equivalent coverage to the duplication-based solu-
tion (i.e., 94.1 percent versus 96.2 percent), yet incurs almost
half of the cost (i.e., 16.32 percent versus 29.78 percent),
thereby constituting a very appealing option.

9 CONCLUSION

We presented a novel method for detecting transient errors
in the control logic of a modern FPU. We demonstrated that
errors in the control logic lead to an extensive corruption of
the data path and, by extension, have a high probability of
affecting the exponent field of the operation output. There-
fore, independently calculating and validating the exponent
of the outgoing packet provides very high coverage to such
errors. As demonstrated on the openSPARC T1 processor,
the proposed exponent monitoring-based CED method costs
less than one-third of the cost of duplicating the control

TABLE 10
Comparison of CED Solutions for Entire FPU
Detection Method Coverage Hardware
Control | Exponent | Fraction || Control | Exponent | Fraction | Total || Overhead
- Res-15 Res-15 0% 94.3% 94.3% | 59.2% 14.82%
Duplication Res-15 Res-15 100% 94.3% 94.3% | 96.2% 29.78%
Exponent Monitoring Res-15 93.8% 98.1% 94.3% | 94.1% 16.32%
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logic, while maintaining over 93 percent of its coverage.
Moreover, in conjunction with a known residue code-based
method for the fraction of the floating-point representation,
it facilitates a complete CED solution which offers over
94 percent coverage for the entire FPU at the cost of
16.32 percent of its size, which to our knowledge, constitutes
the most cost-effective approach to date.
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