2664

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

Revisiting Vulnerability Analysis
In Modern Microprocessors

Michail Maniatakos, Member, IEEE, Maria Michael, Member, IEEE,
Chandra Tirumurti, Member, IEEE, and Yiorgos Makris, Senior Member, IEEE

Abstract—The notion of Architectural Vulnerability Factor (AVF) has been extensively used to evaluate various aspects of design
robustness. While AVF has been a very popular way of assessing element resiliency, its calculation requires rigorous and extremely
time-consuming experiments. Furthermore, recent radiation studies in 90 nm and 65 nm technology nodes demonstrate that up to

55 percent of Single Event Upsets (SEUs) result in Multiple Bit Upsets (MBUs), and thus the Single Bit Flip (SBF) model employed in
computing AVF needs to be reassessed. In this paper, we present a method for calculating the vulnerability of modern microprocessors
-using Statistical Fault Injection (SFI)- several orders of magnitude faster than traditional SFI techniques, while also using more realistic
fault models which reflect the existence of MBUs. Our method partitions the design into various hierarchical levels and systematically
performs incremental fault injections to generate vulnerability estimates. The presented method has been applied on an Intel
microprocessor and an Alpha 21264 design, accelerating fault injection by 15, on average, and reducing computational cost for
investigating the effect of MBUs. Extensive experiments, focusing on the effect of MBUs in modern microprocessors, corroborate that
the SBF model employed by current vulnerability estimation tools is not sufficient to accurately capture the increasing effect of MBUs in

contemporary processes.

Index Terms—AVF, microprocessor vulnerability, statistical fault injection, multiple bit upset

1 INTRODUCTION

THE increasing threat of soft errors in nanometer technol-
ogies has resulted in a plethora of design solutions for
protecting latches from SEUs [1], as well as combinational
logic from Single Event Transients (SETs) [2], [3]. Despite
the demonstrated effectiveness of these solutions, apply-
ing them blindly across an entire design incurs prohibi-
tive cost. As a result, various methods for assessing the
susceptibility of individual latches or logic gates have
also been proposed [4], [5], in order to support partial
hardening approaches [6], [7], [8], [9], [10]. Susceptibility
evaluation and the corresponding ranking of latches or
logic gates typically takes into account a number of fac-
tors, including electrical device characteristics, timing
issues, as well the actual logic function implemented.
These factors reflect the circuit-level and gate-level rea-
sons that may prevent an SEU or an SET from causing a
soft error in a circuit. However, they are unable to cap-
ture error masking causes at higher levels and, therefore,

o M. Maniatakos is with the Department of Electrical and Computer
Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
E-mail: michail. maniatakos@nyu.edu.

e M. Michael is with the Department of Electrical and Computer
Engineering, University of Cyprus, Cyprus. E-mail: mmichael@ucy.ac.cy.

o C. Tirumurti is with the Validation and Test Solutions Group, Intel
Corporation, Santa Clara, CA 95050, USA.
E-mail: chandra.tirumurti@intel.com.

o Y. Makris is with the Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX 75080-3021, USA.
E-mail: yiorgos.makris@utdallas.edu.

Manuscript received 15 Nov. 2012; revised 14 Oct. 2013; accepted 31 Oct.
2014. Date of publication 25 Nov. 2014; date of current version 12 Aug. 2015.
Recommended for acceptance by A. Zomaya.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2014.2375232

they prove rather insufficient when applied to modern
microprocessors.

Modern microprocessors exhibit a high degree of
architectural-level and application-level masking, result-
ing in many errors being suppressed or having a low
probability of affecting the workloads that are typically
executed. Indeed, the multitude of functional units and
stages in deeply-pipelined superscalar microprocessors,
along with advanced architectural features such as
dynamic scheduling and speculative execution, imply
that rather complex conditions need to be satisfied in
order for an error to affect the architectural state of the
microprocessor or the outcome of an application. In an
effort to capture these additional masking factors, vulner-
ability analysis methods have been developed specifically
for microprocessors [11], [12], [13], [14], [15]. These
methods typically employ SFI and actual workload simu-
lation using an architectural performance model, a Regis-
ter Transfer (RT-Level), or a Gate-Level microprocessor
model, and seek to assess the probability that a transient
error in a state element will affect workload execution,
commonly known as the AVF. As we discuss in the next
section, however, the use of performance models limits
vulnerability analysis accuracy, while the use of RT-Level
or Gate-Level models of an entire microprocessor requires
prohibitive simulation time.

At the same time, the use of AVF for accurate micropro-
cessor vulnerability analysis is also challenged by the dra-
matic increase of multi-bit failure rates [16], [17]. AVF
captures the effect of an SEU through a SBF model. How-
ever, as process feature sizes continue to shrink, it has
become more likely that adjacent cells may also be affected
by a single event [18], thereby causing a MBU.

0018-9340 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MANIATAKOS ET AL.: REVISITING VULNERABILITY ANALYSIS IN MODERN MICROPROCESSORS

100

80+ — —

skt 65mm 11V

601 —-—-—

—6—90nmm12V

Frequency [%]

0 1 2 3 4 5 6 7 8 9 10 11 12
Error Bits per Single Event Upset

Fig. 1. Frequency distribution of number of faulty bits generated per SEU
for different process sizes [16].

An MBU is defined as an event that causes more than one
bit to be upset during a single measurement [19]. During an
MBU, multiple bit errors in a single word, as well as single
bit errors in multiple adjacent words may be introduced
[20]. While MBUs have been encountered in the past in
space applications [18], advanced memory structures
exhibit an increasing multi-bit failure rate [16], [17], pin-
pointing the need for incorporating multi-bit upsets in accu-
rate vulnerability analyses. Specifically, in [16], experiments
show that only 45 percent of the upsets affect only 1 bit; the
rest may affect up to 7 bits, as shown in Fig. 1. This failure
rate is further accelerated by reduced power supply voltage,
increased clock frequency, crosstalk and electromigration
effects [21].

Considering both single-bit and multi-bit upsets becomes
particularly important when assessing vulnerability of
modern microprocessors. A large area percentage of such
circuits is occupied by several in-core memory arrays, typi-
cally implemented using SRAM cells. To the best our
knowledge, while extensive studies have been performed
on increasing reliability of caches and register files [22], [23],
only a few MBU studies target modern microprocessor
modules [21], [24], [25].

Therefore, in order to provide accurate vulnerability esti-
mates in modern microprocessors, the following should be
addressed:

e Fast and accurate modern microprocessor fault simula-
tion: An RT-Level model is required, as functional
simulators’ overestimate AVF [12]. Using an RT-
Level model, however, is a major bottleneck as thou-
sands of simulations are required in an extensive SFI
campaign to assess vulnerability. This problem is
further accentuated when MBUSs are introduced.

e Proper modeling of multiple-bit upsets: Such models
depend on detailed radation-induced studies. Blindly
assuming multiple bit flips in adjacent cells is mis-
leading, as there may be no series of electrical events
that can result to such outcome following an SEU.

Accordingly, in this paper we present a thorough MBU

vulnerability analysis study in two complex modules of two

1. Since estimation of AVF using statistical fault injection relies on
comparing the system output in the presence of a fault to a golden
model output, preserving correct functionality is a requirement of the
simulation. Therefore functional simulators, rather than performance
simulators are needed.

2665

modern microprocessors. This study is facilitated by two
key contributions:

1) Enhanced fault models, as presented in Section 3, in
order to provide reliable vulnerability figures in the
presence of multiple bit errors. This study reveals
that using the conventional SBF fault model results
in inaccurate estimations of module vulnerability, as
compared to using more realistic fault models which
are crafted based on the findings of recent proton
and neutron irradiation tests.

2) A novel methodology for calculating vulnerability in
modern microprocessors using Hierarchical Fault
Pruning (HFP), presented in Section 4. The proposed
method is faster, yet maintains the accuracy of the
traditional SFI approach, which employs the entire
microprocessor monolithically. HFP leverages the
high masking factors of microprocessor modules to
quickly prune the fault list as it progresses towards
larger partitions where simulation is slower and,
thereby, accelerate vulnerability analysis.

Section 5 describes the employed simulation-based
experimental infrastructure. Results, along with a compara-
tive analysis between the various models are presented in
Section 6, followed by conclusions in Section 7.

2 RELATED WORK ON VULNERABILITY

The vulnerability of a microprocessor, expressed as its Soft
Error Rate (SER) [26], [27], [28], [29], is a function of several
elements that can affect the FIT (Failures In Time) rate of the
microprocessor. Common elements include elevation, tech-
nology generation, supply voltage, etc., and typical FIT rate
numbers for latches used in literature vary between 0.001 -
0.01 FIT/bit [30].

When a fault appears in a circuit, it may be masked by
the logic, the architecture, or the application itself. There-
fore, designers focus on faults that, with high probability,
result in a user-visible error. Calculating this probability,
however, is not trivial and researchers have followed vari-
ous approaches to obtain accurate estimates.

The notion of AVF has been extensively used in the past
to characterize the criticality of flip-flops and latches to pro-
gram execution correctness. AVF expresses the probability
of a bit-flip resulting in a visible system error. Previously
proposed methods for performing AVF analysis employ
either performance models [11], [31], [32] or RT-Level mod-
els [12], [13], [14] of a microprocessor. As we explain below,
the former enable fast AVF estimation but suffer in terms of
accuracy, while the latter offer far more accurate results but
require prohibitive simulation times.

The performance model-based method described in [11]
introduces the concept of Architecturally Correct Execution
(ACE) and defines ACE bits as those that can cause corrup-
tion in the final output of the program. In contrast, un-ACE
bits are those which under no conditions may produce a
discrepancy in the final program outcome (i.e. branch pre-
dictor bits). ACE analysis is performed and evaluated on an
[A-64 performance simulator, using which the authors can
generate deterministic AVF estimates for the ACE bits
and rank the corresponding state elements based on their

2666

criticality. For this purpose, workload is simulated to com-
pletion and the impact of faults in these state elements is
analyzed in a single simulation pass, which is performed
rapidly. Furthermore, another major benefit of ACE analysis
is that it can be performed early in the design cycle. The
major drawback of ACE analysis and AVF estimation using
the architectural performance model, however, is the lack of
detail about the actual hardware structures of the micropro-
cessor. Therefore, the analysis is only performed for the
modeled components, which in the case of [11] includes
only components that affect the performance of a micro-
processor. This results in significant loss of accuracy in
AVF estimation. Furthermore, extensive manual effort is
required to classify a bit as ACE or un-ACE.

The methods described in [12], [13], [14] resolve the AVF
estimation accuracy problem by performing SFI in the RT-
Level model, which reflects the actual hardware structures
of the microprocessor. Recent radiation studies with actual
proton and neutron irradiation tests showed that SFI meas-
urements at the RT-Level closely match in-field exposure
[33]. This accuracy, however, comes at a cost: RT-Level sim-
ulations are far slower than performance models and fault
simulation tools are not readily available at this level. Fur-
thermore, a rigorous transient fault injection campaign
requires excessive simulation times in order to provide sta-
tistically significant results. In [12], the authors provide a
qualitative comparison of the AVF estimation accuracy of
their extensive RT-Level simulations to the ACE analysis
presented in [11]. Their findings conclude that ACE analysis
overestimates soft error vulnerability by about 3.5x and
that this discrepancy stems from the model’s lack of hard-
ware detail and the single-pass simulation methodology. In
[32], Wang et al. [12] replied that added detail to the ACE
analysis can lead to tighter AVF bounds. Still, the limited
detail available at the performance model remain the main
contributor to AVF overestimation.

A different approach to compute the vulnerability of
state elements, called Global Vulnerability Factor (GSV)
analysis, is presented in [34]. GSV aims to approximate
AVF using single stuck-at fault simulations. GSV can pro-
vide, in much shorter time, the same relative ranking of
memory elements in terms of their criticality, as compared
to AVF. However, the acquired GSV figures are dependent
on the experimental setup and are not transferrable across
designs and experiments.

All the aforementioned vulnerability analysis techniques
employ single error models to estimate the reliability of a
microprocessor. Multiple, non-concurrent faults are dis-
cussed in [35] in order to evaluate the efficiency of design
diversity. Exhaustive characterization of multi-bit errors in
90/130 nm memories is presented in [17], while in [25], the
authors perform multi-bit error campaigns in an embedded
cache and discuss how cache scrubbing can reduce the dou-
ble-bit error rate. Another investigation of multi-bit failure
rate in advanced memories appears in [16], targeting 65 nm
processes. The latter study triggered the definition of a new
probabilistic framework for incorporating vulnerability of
memories to different fault multiplicities into AVF [24].
Finally, Touloupis et al. [21] investigate the effects of multi-
ple non-concurrent faults on the operation of a microproces-
sor. Both [24] and [25] conclude that the probability of non-

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

Fig. 2. Typically observed fail bit patterns [16].

clustered double faults is negligible, and can be eliminated
with simple scrubbing techniques [25].

In contrast, the work presented herein seeks to accelerate
and enhance vulnerability analysis in modern microproces-
sors with contemporary MBU fault models.

3 MBU FAULT MODEL

Recent radiation tests [16], [24] presented real-life evidence
of spatial MBUs in technologies below 130nm. Fig. 1 shows
the observed MBUs for two different technologies. For
65nm, almost 20 percent of the SEUs generated four soft
errors, highlighting the neccessity of taking into account
MBUs during SER analysis.

During a single event upset, ionizing radiation releases
charge in a device. This can happen either because of direct
ionization by the incident particle or because of ionization
by generated particles from the reaction between the parti-
cle and the device itself. Both effects induce charge collec-
tion, possibly affecting the state of the device. Depending
on the properties of the semiconductor device, the charge
collection can affect multiple nodes”.

Typically observed fail bit patterns, as presented in Fig. 2,
indicate that multi-bit upsets do not manifest as multiple bit
flips spread across rows or columns; instead, they are clus-
tered in double stripes perpendicular to the wordlines and
manifest as ‘force-to-0" or ‘force-to-1" effects. Fig. 3 shows a
highly compact layout of bit cells widely used in the design
of such arrays. Since the p-well is shared among every pair
of columns, in case a particle strikes and causes charge col-
lection, the generated charge raises the potential of the bulk
and turns on a parasitic bipolar transistor. Hence, the circuit
node is shorted to the bulk and the contents of the cell are
flipped. There is also a probability that parasitic bipolar
transistors in neighboring cells sharing the same p-well will
turn on, effectively generating an MBU. Depending on the
node hit by the particle, the value of the cell may or may not
change. For example, in case node Q is struck when the bit
is holding 0, the bit cell will not be affected; the same applies
when node QB is struck when the bit has a value of 1.
Consequently, about 50 percent of the upsets will not result
into bit flips.

This model is the basis of the experiments performed in
Section 6. A similar MBU fault model was also used in [24].
It should be noted that, the discussed effects apply only to
dense SRAMS; therefore, combinational logic is immune to
multiple-bit upsets [37].

4 HIERARCHICAL FAULT PRUNING

In this section, we propose a methodology that employs sta-
tistical fault injection in a hierarchical manner in order to

2. The interested reader can find an extensive discussion on the
physics of such charge collection in [36].

MANIATAKOS ET AL.: REVISITING VULNERABILITY ANALYSIS IN MODERN MICROPROCESSORS

Fig. 3. Compact mirror layout of arrays [24].

accelerate vulnerability analysis. This method is demon-
strated through the traditional AVF computation. In this
context, by “hierarchical” we imply that fault simulation
is incrementally performed in gradually expanding parti-
tions of the design. Assume, for example, that we are
interested in computing the AVF of the instruction sched-
uler module of the Alpha 21264 processor, shown in
Fig. 4. In this case, a possible hierarchy could involve the
instruction scheduler by itself in Level 1, the out-of-order
execution cluster, which includes the instruction sched-
uler, in Level 2, and the entire microprocessor in Level 3.
As can be observed, successive levels always include the
preceding ones, therefore fault simulation becomes
increasingly more expensive. At the same time, the size
of the fault list that needs to be simulated is drastically
reduced due to masking, as we proceed from each level
to the next. Indeed, modern microprocessors exhibit high
masking factors [38], [39], reported to be up to 98 percent
(AVF = 2%) [38]. Based on these two observations, HFP

2667

aims to accelerate AVF computation by reducing the sim-
ulation effort without sacrificing accuracy.

Hierarchical approaches have previously been used in
the literature in order to extract various design parameters,
such as timing, energy consumption and soft error rate fig-
ures [40], [41]. These approaches, however, only perform
static analysis of the circuit and do not dynamically con-
sider any actual workload. In contrast, our HFP approach
includes workload analysis, as this is essential for proper
AVF estimation.

The HFP method is presented in detail in Algorithm 1.
First, we partition the design into the various hierarchy lev-
els and create the list of latches to be injected. Then, we gen-
erate a fault list with random transients for each latch in the
first level. After initializing the algorithm, we fault simulate
all faults in this fault list. At the end of this simulation, any
fault which causes some discrepancy at the primary outputs
(POs) of the first level is stored and set to be injected again at
the next level. We define the fraction of the faults that appear
at the POs of the partition as Module Vulnerability Factor
(MVF), to avoid confusion with AVF which is defined based
on faults propagating to the POs of the entire design. When
all faults are simulated at the first level, all stored faults
become the input fault list of the second level and the same
process is applied. These faults are simulated again, since
the next partition contains the previous one, but now the
design is much larger and more faults will be masked and
will not appear at the POs of this new level. This process
repeats for each of the defined levels. At the end of the algo-
rithm, the AVF of each latch is calculated as the product of
the MVFs of this latch across all the different levels.

Faster fault simulations due to module size

[C————————————

,)
L1 | Branch Decod
ICache przl:;hm Fetch o
e J
: L

|
| I
| |
[_i I |
| - = - ; | - |
I ROB sk | | L1 |
I_ ______ i | | DCach ROB Rena
me
[Sched | I LY v I | = [I
[uler | | Execut| | ooq I | T . |
ion 4
I | I units | | Uler | I Memor | E’::f‘“l Sched I
| Faul I I | I ¥Unk Units uler |
[simulation | | Dut-oforder axeution | I |
JiL | | | Memory Out-of-order execution |
| ar |
| | | Fault | | Full chip |
| | simulation | |
JiL
| L I 4 |
| | | Fault I
simulation
: | Activatef fauItT : | | I
Activaled faults |
I . L) 9
| Fault Space | I Fault Space | | Fault Space |
I | Level 2 | l Level 3 |

| Level 1

Smaller fault space due to masking

Fig. 4. Sample partitioning (Alpha 21264).

2668

Algorithm 1. Hierarchical Fault Pruning algorithm

1 Assume T is the list of latches to be injected;

2 Assume n is the number of hierarchical levels;

3 Initialize Level = 1;

4 for each Latchin T do

5 Generate random fault list F'(Level, Latch) for Level = 1;
6 end

7 for Level = 1ton do

8 foreach LatchinT do

9 Initialize activated fault list A(Level, Latch) = (;

10 for each Fuult in F(Level, Latch) do

11 Fault simulate Fault;

12 if Fault propagates to partition’s POs then

13 Add Fault to A(Level, Latch);

14 end

15 end

16 MVF(Level, Latch) = |A(Level, Latch)|/|F (Level,
Latch)|;

17 F(Level + 1, Latch) = A(Level, Latch);

18 end

19 end

20 for each Latchin T do

21 AVF (Latch) = MVF(1, Latch) « MVF (2, Latch) - - - x
MVF (n, Latch)

22 end

For example, in the three-level hierarchy shown in
Fig. 4, let us assume that the MVF of a latch in the sched-
uler (i.e., MVF)) is 25 percent at the first level, i.e., 1 out
of 4 transients in this latch makes it to the POs of the
scheduler. Let us also assume that out of these faults,
25 percent make it to the POs of the out-of-order cluster
(e.g., MVF, = 25%) and, out of those, 25 percent leave
the full-chip model and are stored in memory (i.e., MVF;
= 25%). Evidently, the probability that a fault will reach
the POs of the second Ievel (out-of-order cluster)
is MVF,_, = MVF*MVF, = 25%%*25% = 6.25%, while the
probability that it will reach the POs of the third level
(entire design) is AVF = MVF,_3 = MVF*MVF,*MVF; =
25%*25%*25% = 1.5%, consistent with what is reported in
[38]. As a result, assuming an initial fault list size of 100
K faults in the scheduler, only 25K faults will be simu-
lated at level 2, and only 6.25K faults will be simulated at
the entire design level. In contrast, without the proposed
hierarchical approach, all 100K faults would have to be
simulated at the entire design level.

Defining the design hierarchy is a key part of the process
where designer expertise is important. A small number of
large partitions require fewer iterations of the HFP algo-
rithm, yet each iteration takes longer to complete. A larger
number of smaller partitions results in faster iterations of
the HFP algorithm, yet many faults are repeatedly injected
at successive levels. A balanced approach used herein,
which serves as a good starting point, is to define a hierar-
chy consisting of (i) sub-block level, (ii) layout block level,
and (iii) full-chip level.

Furthermore, given the HFP methodology, we can
employ several more techniques to further accelerate fault
injection, such as:

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

o Correlation of vulnerability factors between different par-
titions. As a fault is being injected across levels, there
may be a correlation between higher levels and the
final vulnerability estimate. For example, if a fault
escapes the Out-Of-Order cluster, there is a very
high probability that it will affect the user (thus, the
out-of-order partition will provide similar vulnera-
bility estimates to the full-chip partition).

e Fault list size reduction. Since HFP enables rapid fault
injection, the optimal fault sampling size can be
identified early in the design process, and used for
accurate vulnerability estimation.

These extra speed-up factors are extensively evaluated in

Section 6.

5 EXPERIMENTAL SETUP

In order to evaluate the effectiveness of our methods, we
performed extensive experiments on a contemporary Intel
microprocessor implementing the P6 architecture®, as well
as on the Alpha 21264 microprocessor.

The experiments utilize SFI campaigns to estimate the
soft error of the microprocessors under test. SFI has been
demonstrated to closely match actual radiation studies with
proton and neutron irradiation tests [33]. Furthermore, the
distributions of MBU faults used in the SFI campaigns have
been presented in [16] and have been extensively used in
the literature.

Fig. 5 shows the basic P6 architecture [42]. Instructions
flow from the instruction cache to the decoders, where they
enter the out-of-order cluster and are stored in the Reserva-
tion Station (RS). The Reorder Buffer (ROB) guarantees in-
order retirement after out-of-order instruction execution.
The Memory Reorder Buffer (MOB) interacts with the data
cache in order to fetch the required information.

The Alpha 21264 microprocessor full chip model appears
on the right side of Fig. 4. The Alpha 21264 instruction flow
is similar to the P6, featuring a 32-slot instruction array
scheduler for storing the incoming instructions from the
renaming logic, and the ability to dispatch up to 6 instruc-
tions to the corresponding functional units. The scheduler
also incorporates a scoreboard to resolve data hazards.

Our study focuses on the control units of the out-of-order
cluster, namely the Instruction Scheduler (known as Reserva-
tion Station in P6) and the Reorder Buffer. Following the
guidelines provided in Section 4, our hierarchy includes 3
levels. Level 1 corresponds to the module (i.e., either the RS
or the ROB). Level 2 corresponds to the partition (i.e., the
out-of-order execution engine, shown as the dark gray area
in Fig. 5 for the P6 and as presented in the middle of Fig. 4
for the Alpha 21264). Level 3 corresponds to the entire chip.

Our simulation experiment flow is shown in Fig. 6.
Before starting the HFP algorithm, certain initialization
steps are needed so that workload may be executed:

e Workload execution. A variety of workload should be
selected for effective AVF analysis. A typical work-
load requires several million cycles to be completed,
rendering full workload execution at the gate-level

3. A non-disclosure agreement with Intel Corporation prevents us
from providing details about the actual microprocessor.

MANIATAKOS ET AL.: REVISITING VULNERABILITY ANALYSIS IN MODERN MICROPROCESSORS

Instr TLB Instruction Cache —

f mn |

%—;?,gg? —»{ Simple Decoder
Buffer —» Simple Decoder RBeSfrfréfr
—i|GeneraI Decoder
Instruction
Fetch Unit Uop Sequencer -ﬂ

Reservation Station

Store itg&? k%%? Integer FP Integer
Data Unit Unit ALU Unit Unit

Memory Reorder
Buffer (MOB)

Data TLB

Data Cache —

System Bus Interface L2 Cache Interface 4

4 4 y

~. ~. ~.

v v y

Fig. 5. P6 general architecture [42].

impractical. In order to execute workload on P6, after
compiling the workload for the specific x86 architec-
ture, we use pinLIT [43] to extract workloads in the
object file format. As for the Alpha 21264, we employ
the mixed-mode simulation presented in [44], where
a functional simulator is used to warm-up the caches
and complete the workload, while the clock cycles of
interest are examined using an RT-Level model.

o Vector generation: The object file has to be simulated
in order to generate appropriate vectors for use dur-
ing fault simulation. A logic simulator is used to sim-
ulate workload and Value Change Dumps (VCDs)
are extracted at the input boundary of each level.

e Fault list generation: In order to apply SFI, a set of
fault locations is needed, on which transient error
injections are performed in order to calculate the
AVF. Since our focus is the AVF of memory ele-
ments, the design is parsed and the fault locations
are enumerated. Given this list, transient errors are
randomly generated and injected uniformly over
time, ensuring that the same number of errors is
injected in each element.

The workload used in our experiments comprises various
SPEC benchmarks, namely astar (path-finding algo-
rithms), bzip2 (compression), h264 (video compression),
lucas (primality checking), mcf (combinatorial optimiza-
tion), gzip (compression), parser (syntactic parser) and
gap (group theory). The benchmarks represent different
workload types, which is needed for accurate AVF calcula-
tion. Workloads were executed to completion using minimal
inputs. For the P6, all experiments were performed within

2669
T - — = jmrmimimimmem 3
i 1 i] ! X !
!| Parse latches | | 1| GCompile || i| Fullchip |
: i | workload |i s simulation |i
1 1 H i 1 I
b ! i i i 4
L Eau suislon 21 \ geclgTT i _ Logic simulator
T b P
i e 7 v 2 il
i i i i i ;
| Generate ' Extract ! :
o utist i i\ traces i ! ExtractvCD |
i i : ! i i
0] > i L i Ly
i__._.Ey.lllorL_.‘r ey E"l—'l ------ ! A: Debugger]
Fault list generation Warkioad selection Vector|generation
i
e e kit Kt
4 ! . t
| | Generate fault | | i | Fault Simulate
1 database ' » Leveln 1
1] 1 1
i i ! —
\ Fault enumerator v Fault simulator 1
S e e ol
_______ v
“ T
x Extract [i
— LastLevel? >
| detected faults Iu |
i n=n+1 i
i ; [Yes
| ! v
N e Yhoni L AVF

HSFI | calculation

Fig. 6. Experimental flow.

Intel’s environment, on machines with similar capabilities.
For the Alpha 21264, the experiments were performed on a
Xeon 3.4GHz server with 16GB of RAM. The times reported
in Section 6 are averages of several simulations to ensure fair
comparison in terms of required resources.

6 EXPERIMENTAL RESULTS

In the first part of this section, we demonstrate the AVF cal-
culation acceleration obtained by the proposed HFP method
over the traditional SFI approach and we investigate possi-
ble options for gaining further speed-up at the expense of
some minor accuracy loss. In the second part, we compare
the results of different MBU models, while in the third part
we evaluate vulnerability for realistic MBU distributions.

6.1 AVF Calculation Speed-Up
6.1.1 Hierarchical Fault Pruning

Table 1 compares the simulation time of SFI to that of HFP
for our fault-injection campaign of 175K faults. The reported
times are averaged over 20 fault simulation runs on a single
machine. The simulation time needed for each level in the
HFP method is also shown in the table. Specifically, HFP,
refers to the simulation time needed to obtain results at the
boundary of the first level (i.e., the RS or the ROB module),
HFP;_5 refers to the cumulative simulation time to obtain
results at the boundary of the second level (i.e., the out-of-
order execution engine), and HFP;_3 refers to the cumula-
tive simulation time to obtain results at the boundary of the
full chip. Evidently, HFP,_5 > HFP ;_, > HFP;.

In order to compare the simulation times between HFP
and traditional SFI, we need to compare the simulation time
of HFP;_3 and the simulation time of SFI. The correspond-
ing entries in Table 1 show that HFP outperforms SFI by
more than an order of magnitude. For example, calculating
AVF for the latches of the P6 RS while running the astar
workload on 175K faults via SFI requires 3 days (263,802

2670

TABLE 1
Simulation Time (in Minutes) Comparison between
HFP and SFI for 175K Faults for P6

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

TABLE 2
Simulation Time (in Minutes) Comparison between
HFP and SFI for 175K Faults for Alpha 21264

astar bzip2 h264 lucas mcf gzip bzip2 parser gap mcf
HFP, 68 67 68 55 44 HFP, 321 392 295 475 289
HFP;_, 166 137 130 89 153 HFP;_, 798 972 701 1,103 735
RS HFP,_3 284 302 312 528 397 Scheduler HFP,_3 1,252 1,674 1,358 2,503 1,210
SFI 439 3,023 6,839 6209 2,029 SFI 23,802 18,417 20,383 37,545 21,792
Speed-up 15x 10x 21x 12x 5x Speed-up 19x 11x 15x 15x 18x
HEFP; 110 117 111 122 103 HFP, 280 484 791 688 594
HFP,_» 131 142 133 145 125 HFP,_» 749 1,345 1973 1,831 1,002
ROB HFP,_; 281 421 426 440 492 ROB HFP,_3 1274 2972 3755 3,670 2,225
SFI 5247 3779 9438 7,645 5876 SFI 31,856 26,754 56,338 48,721 35,610
Speed-up 18x 9% 22x 17x 12x Speed-up 21x 9x 15x% 13 % 16

seconds), while the same results are obtained via HFP
within only 5 hours (17,075 seconds), corresponding to a
15x speed-up. On average, across our simulations, HFP
accelerated AVF calculation by 12.6x for RS and 15.6x for
ROB. The key implication of the obtained speed-up is that
we can now use HFP to generate statistically significant
AVF numbers (i.e., 5 benchmarks, 175K faults per bench-
mark) for a module within a day (on a single machine), as
opposed to the two weeks required by SFL

Similar speed-up is obtained while injecting faults at the
Alpha 21264 modules (Table 2). We note that the overall
time needed to extract AVF numbers is much higher than
for the P6, as one fault is injected per pass; in contrast, the
in-house Intel simulator can inject several faults per pass.

6.1.2 AVFto MVF Correlation

Further AVF calculation speed-up can be obtained, at the cost
of some minor accuracy loss, by leveraging an interesting
observation regarding the correlation between AVF and
MVF. Evidently, since a fault may be masked at a subsequent
level in an n-level hierarchy, MVF; > MVF,_; > ... >
MVF,_, = AVF for every latch. However, as we approach the
full-chip level, masking becomes less likely and depends
mostly on the application behavior (application masking)
rather than the properties of the injected latch; therefore, it is
likely that the MVF will become increasingly correlated to
the AVF. For example, the correlation coefficient between
MVF,_3 = AVF and MVF,_; in our experiment for the Intel
microprocessor is 97 percent. This does not come as a sur-
prise, due to the nature of the partitioning chosen. A fault
escaping Level 2 guarantees incorrect execution of an instruc-
tion, since Level 2 contains all the execution functionality.
The implication of this observation is that we can speed-
up AVF calculation by using the -much faster to compute—
MVF of preceding levels instead. For example, suppose that
AVF is used to rank the state elements of a module in order
to select and protect the most vulnerable ones. The top line
(MVF,_3=AVF) in Fig. 7 reports the coverage (y-axis) that
would be achieved by protecting the corresponding per-
centage of the state elements shown in the x-axis*. This is

4. Values on the axis are omitted and results are reported only for a
subset of the latches due to the confidential nature of the actual data.

the point of reference, reflecting an optimal state element
ranking. Suppose now that the same state elements are
ranked based on MVF,_, instead. In this case, the coverage
achieved by protecting the corresponding percentage
shown in the x-axis is given by the middle line on the plot
of Fig. 7. Evidently, the accuracy lost when selecting based
on MVF,_, instead of AVF is fairly small, while the compu-
tational gains are very large. For example, the 15x speed-up
reported in Table 1 for astar becomes 27 x if the simulation
stops at HFP_».

We note, however, that the correlation between
MVF,_3=AVF and MVF, is only 61 percent, implying that a
fault escaping the boundary of a small module, such as the
RS or the ROB, is not a good indication of whether it will
actually affect execution. As a result, ranking and protecting
state elements based on MVF;, as shown on the bottom line
of Fig. 7, yields very sub-optimal results.

6.1.3 Fault Injection Window

AVF calculation may also be accelerated, again at the cost of
minor accuracy loss, by limiting the number of simulation
cycles after a fault is injected. A similar approach is taken in
the RT-Level AVF calculation method described in [39],
where faults are not simulated until the end of the workload
due to limited resources. Instead, a fault is injected during a

—AVF(MVF 1-3)
—MVF 1-2
MVF 1

Coverage %

% of state elements protected

Fig. 7. Correlation between AVF and MVF calculated at various parti-
tions levels.

MANIATAKOS ET AL.: REVISITING VULNERABILITY ANALYSIS IN MODERN MICROPROCESSORS

34.24%
20.63%

5% 41.54%

0%

35%

30%

25%

20%

15%

10%

5% 3.56%

0%] 0.04%
01 2.99 100-999 1,000-9,999 10,000+

Cycles after injection that fault appears on outputs

% of faults

Fig. 8. Statistics driving fault injection window selection.

limited number of cycles (up to 10,000). Indeed, fault simu-
lation of RT- or Gate-Level models is feasible only for a few
thousand cycles.

In the results presented herein, complete workloads were
executed exclusively at the Gate-Level, yet with minimal
inputs in order to keep the clock cycles below 1 million.
Fig. 8 shows how many cycles, after injection of a fault, the
fault appears at the primary outputs of the corresponding
partition. As can be observed, over 96 percent of the faults
appear within 1,000 cycles after injection, and almost all
faults (i.e, 99.96 percent) reach the outputs within 10,000
cycles. Thus, we can safely stop the simulation 10,000 cycles
after fault injection and still compute very accurate AVF
numbers with the data available at that point in time. In our
experiments, this approach would result in an additional
10x AVF calculation speed-up, since we would fault simu-
late 10,000 cycles instead of 100,000+ typically used as a
safety margin [39].

6.1.4 Fault List Size

Finally, additional AVF calculation speed-up may be
obtained by moderating the fault list size, possibly at the
expense of minor accuracy loss. In our experiments, we
used a sample size of 2,500 injections per latch (5 bench-
marks, 500 injections per latch) to compute the AVF num-
bers, which we use as our baseline. In this section, we
examine the impact of reducing this sample size on the
accuracy of the computed AVF.

Fig. 9 shows how the AVF computed using smaller
fault list sizes (i.e., 1,000, 500, 250, 125, 60 and 30 injec-
tions per latch) correlates to the baseline AVF. For each
sample size, the average over 10 different fault lists is
reported (along with the deviation). For example, a sam-
ple size of 60 injections per latch correlates, on average,
78 percent with the optimal list, yet this number may be
as low as 40 percent. The key take-away point from this
graph is that accurate AVF estimations (i.e., with both
minimum and average correlation coefficient >90%) can
be obtained using a fault list size of as few as 250 sam-
ples. This leads to an additional 10x speed-up, since 250
instead of 2,500 injections are performed.

6.2 Comparison Between Different MBU Models

The usage of the Hierarchical Fault Pruning capability
allows the injection of a very high number of faults in a

2671

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Correlation Coefficient

0%
1000 500 250 125 60 30
Number of samples per latch

Fig. 9. Correlation between AVFs produced by different number of
samples.

short amount of time. In this section, we examine multi-bit
upsets, considering up to four upsets for a single event (i.e.
strike). Again, due to NDA, results only for the Alpha 21264
will be presented in this section.

Fig. 10 presents the hypothetical cases where MBUs
have a fixed radius. As expected, lower upset radius leads
to lower vulnerability estimates, and as the fault effect
radius increases, the vulnerability of the module under
test increases as well. An interesting observation from
Fig. 10 is that, while vulnerability factors for 3BUs and
4BUs are on average higher than those for 1BUs and
2BUs, the merit figures of 3BUs and 4BUs are similar.
Additional experiments showed that vulnerability does
not increase significantly for an upset radius of more than
4 bits. Even though, intuitively, an MBU of 5+ bits has
more chances of affecting the system output, as compared
to an MBU of 4 bits, results show that the probabilities
are approximately the same. This happens because of
‘dead instructions’, as described by Mukherjee in [11]. For
example, consider a 4-bit MBU at the instruction sched-
uler. An MBU of 4 bits is wide enough to probably affect
the system output, unless the scheduler location where
the hit occurred did not contain valid instructions. The
exact same case applies for MBUs that are 5+ wide (they
have to hit dead instructions in order not to affect the exe-
cution). Thus, 5+ BUs can be approximated by 4BUs for
saving simulation time.

0.20
0.18 -

0.16

I- 1
‘ | !
0.08
0.06 =
0.04 i
0.02 -
0.00 I

al m1BU
bzip2 cc gzip

m2BUs
= 3BUs
4BUs

Vulnerability
o
[
o

parser vortex Average

Fig. 10. Comparison between different MBU models.

2672

W SBF

i 1BU
® 90nmRD
65nmRD
0_00 h

bzip2 cc gzip

Vulnerability
o o [=]
[=] o [
o o (=]

o
i=]
&

(=3
(=3
(=]

parser vortex Average

Fig. 11. Vulnerability comparison for representative MBU distributions.

6.3 Vulnerability Comparison for Representative
MBU Distributions

Obviously, particle effects will not manifest exclusively as
1, 2, 3 or 4 BUs, but rather as a distribution of different
MBUs. Using the distribution extracted by radiation
experiments performed in 90 nm and 65 nm processes
[16] (appearing in Fig. 1), we can perform a realistic com-
parison of the vulnerability metric using SBF to the vul-
nerability estimated by representative distribution of
MBUs. Specifically, the 90 nm Representative Distribution
(90 nmRD) consists of 95 percent 1BU, 4 percent 2BUs
and 1 percent 4BUs. The 65 nm Representative Distribu-
tion (65 nmRD) reflects a completely different distribu-
tion, consisting of 45 percent 1BU, 18 percent 2BUs, 0.1
percent 3BUs and 27 percent 4BUs (as discussed in the
previous section 5+ BUs are approximated by 4BUs).

Fig. 11 presents a comparison of the SBF model to the two
MBU distributions of the respective process nodes. The
results corroborate that due to the introduction of a sig-
nificant percentage of 2+ MBUs, the SBF model leads to
inflated vulnerability factors, as compared to more realistic
distributions of faults. Specifically, the vulnerability estima-
tion of 0.12 based on SBF is 0.05 more than the vulnerability
estimation of 0.07 based on 90 nmRD. Thus, SBF overesti-
mates vulnerability by 71 percent. Similarly, for the
65 nmRD fault model, SBF overestimates vulnerability by
33 percent (0.09 compared to 0.12).

We should note, however, a major difference between
SBF and the newly defined MBU models, namely the data-
dependency of the upset. Specifically, in the SBF model an
event will always flip the target bit, independent of the exist-
ing data stored in this bit. In contrast, the xBU model will
approximately flip a bit 50 percent of the time, making the
actual effect data-dependent. Therefore, one might argue
that in order to ensure a fair comparison, the 1BU model
(which is approximately 50 percent of the SBF) should be
used as the baseline. In this case, which is also presented in
Fig. 11, the 1BU model underestimates the overall vulnera-
bility by 14 percent, for the 90 nmRD fault model and 34 per-
cent for the 65 nmRD fault model.

To summarize, independent of whether the SBF or the
1BU model is used as a reference point, our results support
the conjecture that, in contemporary technologies wherein

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

35
FIT rate normalized to 1 for SRAM cell at 90nm

3

25

2 5
>

15 £

1

0.5

0

240 215 150 165 140 115 90 65 40

Technology node (nm)

Fig. 12. SRAM SEUs as a function of the technology node [45].

MBUs are prevalent, vulnerability cannot be accurately esti-
mated without taking into account the distribution of MBU
faults. Finally, besides the inaccuracy of vulnerability esti-
mates, we would also like to point out an additional limita-
tion of relying on SBF or 1BU models, namely their inability
to correctly assess the effectiveness of error detection and
correction schemes. Suppose, for example, that a designer is
contemplating between a parity-based protection scheme
and a Double Error Detection-Single Error Correction
scheme. Using the SBF and 1BU models would fail to differ-
entiate between the robustness achieved by each of these
two options in the presence of MBUs. In contrast, using
actual MBU distributions would provide estimates that
would more accurately match in-field exposure.

6.4 Discussion on Future Technology Nodes

The fault models used in this study are based on radiation
results on the very commonly used 6T-based SRAM cells.
As discussed in [45], while the SEU rate in 6T SRAM cells
kept decreasing as technology shrunk form 250 to 65 nm,
that trend is reversed below 65 nm, as shown in Fig. 12. The
reason behind the decreasing trend was the reduction of the
cell area and the improvement of the technology, which
counterbalanced the negative effect that critical charge
reduction had on SER. Results in 40 nm, however, showed
an increase in SER rate, as shown in Fig. 12. Furthermore,
independent of the SER of individual cells, the number of
cells affected by an SEU continues to increase as process
shrinks [45], highlighting the need for (i) MBU inclusion in
vulnerability analysis and (ii) revisiting vulnerability esti-
mation in future technology nodes.

In order to provide vulnerability estimates in the pres-
ence of MBUs, the methodology proposed herein only
requires (i) the expected distribution of faults and (ii) the
expected workload. Therefore, it can be easily adapted for
evaluating vulnerability of future technologies.

7 CONCLUSION

In this study, we enhance the accuracy of vulnerability
analysis in modern microprocessors by incorporating
MBUs in the vulnerability estimation process. In order to
facilitate such a computationally expensive task, we intro-
duced the concept of Hierarchical Fault Pruning, which
exploits the high masking factors of modern microproces-
sors towards accelerating vulnerability analysis. By hier-
archically partitioning the design and incrementally fault

MANIATAKOS ET AL.: REVISITING VULNERABILITY ANALYSIS IN MODERN MICROPROCESSORS

simulating each level only for the subset of faults that
evade masking in previous levels, the number of simula-
tion cycles required is drastically reduced. On average,
HFP speeds-up vulnerability calculation by 15x as com-
pared to the traditional SFI approach, without sacrificing
any accuracy, and may be used for accurate MBU vulner-
ability analysis. The latter is shown to be a crucial
capability, as our experimental results on modern micro-
processors demonstrate that the traditional SBF model
does not capture the effect of MBUs, leading to inaccurate
vulnerability estimates.

ACKNOWLEDGMENTS

The authors” would like to thank the anonymous
reviewers for their insightful comments on improving the
content and the presentation of the paper. This work
was supported by a generous gift from Intel Corp. M.
Maniatakos performed part of this research during a
graduate student summer internship with Intel Corp. in
Santa Clara, CA, USA.

REFERENCES

[1] M. Zhang, S. Mitra, T. Mak, N. Seifert, N. Wang, Q. Shi, K. Kim,
N. Shanbhag, and S. Patel, “Sequential element design with built-
in soft error resilience,” IEEE Trans. Very Large Scale Integration
Syst., vol. 14, no. 12, pp. 1368-1378, Jan. 2006.

[2] Q. Zhou and K. Mohanram, “Transistor sizing for radiation hard-
ening,” in Proc. Int. Reliability Phys. Symp., 2004, pp. 310-315.

[3] N.Miskov-Zivanov and D. Marculescu, “MARS-C: Modeling and
reduction of soft errors in combinational circuits,” in Proc. Des.
Autom. Conf., 2006, pp. 767-772.

[4] C.Zhao, X. Bai, and S. Dey, “A scalable soft spot analysis method-
ology for compound noise effects in nano-meter circuits,” in Proc.
Des. Autom. Conf., 2004, pp. 894-899.

[5] M. Zhang and N. Shanbhag, “Soft-error-rate-analysis (SERA)
methodology,” IEEE Trans. Comput.-Aided Des. Integrated Circuits
Syst., vol. 25, no. 10, pp. 2140-2155, 2006.

[6] R. Garg, N. Jayakumar, S. Khatri, and G. Choi, “A design
approach for radiation-hard digital electronics,” in Des. Autom.
Conf., 2006, pp. 773-778.

[7]1 Q. Zhou and K. Mohanram, “Gate sizing to radiation harden
combinational logic,” IEEE Trans. Comput.-Aided Des. Integrated
Circuits Syst., vol. 25, no. 1, pp. 155-166, Jan. 2006.

[8] S. Almukhaizim, Y. Makris, Y. Yang, and A. Veneris, “Seamless
Intergration of SER in rewiring-based design space exploration,”
in Int. Test Conf., vol. 2, 2006, pp. 29.3.1-29.3.9.

[9] C. Zoellin, H. Wunderlich, I. Polian, and B. Becker, “Selective
hardening in early design steps,” in Proc. Eur. Test Symp., 2008,
pp- 185-190.

[10] S. Krishnaswamy, S. Plaza, I. Markov, and]. Hayes, “Signature-
based SER analysis and design of logic circuits,” IEEE Trans. Com-
put.-Aided Des. Integrated Circuits Syst., vol. 28, no. 1, pp. 74-86,
Jan. 2009.

[11] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proc. IEEE/
ACM Int. Symp. Microarchitecture, 2003, pp. 29-40.

[12] N.]J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” SIGARCH Comput.
Arch. News, vol. 35, no. 2, pp. 460-469, 2007.

[13] E. Czeck and D. Siewiorek, “Effects of transient gate-level faults
on program behavior,” in Proc. Int. Symp. Fault-Tolerant Comput.,
1990, pp. 236-243.

[14] K. Seongwoo and A. Somani, “Soft error sensitivity characteriza-
tion for microprocessor dependability enhancement strategy,”
in Proc. Int. Conf. Dependable Syst. Netw., 2002, pp. 416-425.

[15] M. Maniatakos and Y. Makris, “Workload-driven selective hard-
ening of control state elements in modern microprocessors,”
in Proc. VLSI Test Symp., 2010, pp. 159-164.

2673

[16] G. Georgakos, P. Huber, M. Ostermayr, E. Amirante, and F. Ruck-
erbauer, “Investigation of increased multi-bit failure rate due to
neutron induced SEU in advanced embedded SRAMs,” in Proc.
IEEE Symp. VLSI Circuits, 2007, pp. 80-81.

[17] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong,
“Characterization of multi-bit soft error events in advanced
srams,” in Proc. IEEE Int. Electron Devices Meeting, 2003, pp. 21-4.

[18] T. Criswell, P. Measel, and K. Wahlin, “Single event upset testing
with relativistic heavy ions,” IEEE Trans. Nuclear Sci., vol. 31, no.
6, pp. 1559-1561, Dec. 1984.

[19] R. Reed, M. A. Carts, P. W. Marshall, C. J. Marshall, O. Musseau,
P.J. McNulty, D. R. Roth, S. Buchner, J. Melinger, and T. Corbiere,
“Heavy ion and proton-induced single event multiple upset,”
IEEE Trans. Nuclear Sci., vol. 44, no. 6, pp. 2224-2229, Dec. 1997.

[20] R.Koga, S. Pinkerton, T. Lie, and K. Crawford, “Single-word mul-
tiple-bit upsets in static random access devices,” IEEE Trans.
Nuclear Sci., vol. 40, no. 6, pp. 1941-1946, Dec. 1993.

[21] E. Touloupis, J. Flint, V. Chouliaras, and D. Ward, “Study of the
effects of SEU-induced faults on a pipeline-protected microproc-
essor,” IEEE Trans. Comput., vol. 56, no. 12, pp. 1585-1596,
Dec. 2007.

[22] F. Faure, R. Velazco, M. Violante, M. Rebaudengo, and M. Reorda,
“Impact of data cache memory on the single event upset-induced
error rate of microprocessors,” IEEE Trans. Nuclear Sci., vol. 50,
no. 6, pp. 2101-2106, Dec. 2003.

[23] M. Rebaudengo, M. Reorda, and M. Violante, “An accurate analy-
sis of the effects of soft errors in the instruction and data caches of
a pipelined microprocessor,” in Proc. Des., Autom. Test Eur. Conf.,
2003, pp. 602-607.

[24] N. George, C. Elks, B. Johnson, and J. Lach, “Transient fault mod-
els and AVF estimation revisited,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2010, pp. 477-486.

[25] S. Mukherijee, J. Emer, T. Fossum, and S. Reinhardt, “Cache scrub-
bing in microprocessors: Myth or necessity?” in Proc. IEEE Pacific
Rim Int. Symp. Dependable Comput., 2004, pp. 37-42.

[26] Y. S. Dhillon, A. U. Diril, and A. Chatterjee, “Soft-error tolerance
analysis and optimization of nanometer circuits,” in Proc. Des.,
Autom.Test Eur., 2008, pp. 389—-400.

[27] B. Zhang, W. Wang, and M. Orshansky, “Faser: Fast analysis of
soft error susceptibility for cell-based designs,” in Proc. Int. Symp.
Quality Electron. Des., 2006, pp. 755-760.

[28] R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An efficient
static algorithm for computing the soft error rates of combina-
tional circuits,” in Proc. Des., Autom. Test Eur., 2006, pp. 1-6.

[29] S. Krishnaswamy, G. Viamontes, I. Markov, and]. Hayes,
“Accurate reliability evaluation and enhancement via probabilis-
tic transfer matrices,” in Proc. Des., Autom. Test Eur., 2005,
pp- 282-287.

[30] E. Normand, “Single event upset at ground level,” IEEE Trans.
Nuclear Sci., vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

[31] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem:
An architectural perspective,” in Proc. 11th Int. Symp. High-Perfor-
mance Comput. Arch., 2005, pp. 243-247.

[32] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee, “Computing
accurate AVFs using ACE analysis on performance models: A
rebuttal,” IEEE Comput. Arch. Lett., vol. 7, no. 1, pp. 21-24, Jan.-
Jun. 2008.

[33] P.Sanda, J. Kellington, P. Kudva, R. Kalla, R. McBeth, J. Ackaret,
R. Lockwood, J. Schumann, and C. Jones,“Soft-error resilience of
the IBM POWER6 processor,” IBM |. Res. Dev., vol. 52, no. 3,
pp- 275-284, 2008.

[34] M. Maniatakos, C. Tirumurti, R. Galivanche, and Y. Makris,
“Global signal vulnerability (GSV) analysis for selective state ele-
ment hardening in modern microprocessors,” IEEE Trans. Com-
put., vol. 61, no. 9, pp. 1361-1370, Aug. 2012.

[35] S.Mitra, N. Saxena, and E. McCluskey, “A design diversity metric
and analysis of redundant systems,” in Proc. IEEE Int. Test Conf.,
Sep. 1999, pp. 662-671.

[36] J. Black, P. Dodd, and K. Warren, “Physics of multiple-node
charge collection and impacts on single-event characterization
and soft error rate prediction,” IEEE Trans. Nuclear Sci., vol. 60,
no. 3, pp. 1836-1851, Jun. 2013.

[37] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia,
C. Brookreson, A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-
induced soft error rates of advanced CMOS bulk devices,” in Proc.
Int. Reliability Phys. Symp., 2006, pp. 217-225.

2674

[38] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer, “An
experimental study of soft errors in microprocessors,” IEEE Micro,
vol. 25, no. 6, pp. 30-39, Nov./Dec. 2005.

[39] N.]J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing
the effects of transient faults on a high-performance processor
pipeline,” in Proc, Int. Conf. Dependable Syst. Netw., 2004, pp. 61-70.

[40] R. Rajaraman, J. Kim, N. Vijaykrishnan, Y. Xie, and M. Irwin,
“Seat-la: A soft error analysis tool for combinational logic,”
in Proc. Int. Conf. VLSI Des., 2006, pp. 409-502.

[41] K. Ramakrishnan, R. Rajaramant, N. Vijaykrishnan, Y. Xie, M.
Irwin, and K. Unlu, “Hierarchical soft error estimation tool
(HSEET),” in Proc. Int. Symp. Q. Electron. Des., 2008, pp. 680—-683.

[42] L. Gwennap, “Intel’'s P6 uses decoupled superscalar design,”
Microprocessor Report, vol. 9, no. 2, pp. 9-15, 1995.

[43] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder,
“Automatic logging of operating system effects to guide applica-
tion-level architecture simulation,” in Proc. Int. Conf. Measurement
Model. Comput. Syst., 2006, pp. 227-238.

[44] M. Maniatakos, N. Karimi, A. Jas, Tirumurti, and Y. Makris,
“Instruction-level impact analysis of low-level faults in a modern
microprocessor controller,” IEEE Trans. Comput., vol. 60, no. 9,
pp- 1160-1173, Sep. 2011.

[45] A. Dixit and A. Wood, “The impact of new technology on soft
error rates,” in Proc. Int. Reliability Phys. Symp., 2011, pp. 5B—4.

Michail Maniatakos received the BSc and MSc
degrees in computer science and embedded
systems from the University of Piraeus, Piraeus,
Greece, in 2006 and 2007 respectively, as well
as the MSc, MPhil and PhD from Yale University,
New Haven, CT, in 2008, 2009, and 2012,
respectively. He is currently an Assistant Profes-
sor of Electrical and Computer Engineering at
New York University Abu Dhabi, Abu Dhabi,
UAE, and a Research Assistant Professor at the
NYU Polytechnic School of Engineering. He is
the Director of the Modern Microprocessor Architectures (MoMA) lab in
NYU Abu Dhabi and an author of multiple publications in the IEEE
Transactions and conference papers. His research interests include
robust microprocessor architectures, hardware security and heteroge-
neous microprocessor architectures. He is a member of the IEEE.

Chandrasekharan (Chandra) Tirumurti is cur-
rently a Research Scientist with the Validation
and Test Solutions group at Intel Corporation
based in Santa Clara, CA. His current focus is
on strategic manufacturing test initiatives for
mainstream CPUs. An alumnus of Indian Institute
of Technology, Kharagpur, India, he has wide
experience in many areas of CAD and design,
including simulation, datapath synthesis, defect
oriented testing and fault tolerance. He has
published several papers in the areas of Test and
Fault Tolerance. He mentors funded research and SRC projects actively
for Intel and is an avid cricketer. He is a member of the IEEE.

IEEE TRANSACTIONS ON COMPUTERS, VOL.64, NO.9, SEPTEMBER 2015

Maria K. Michael received the BS and MS
degrees in computer science and the PhD degree
in electrical and computer engineering from
Southern lllinois University, Carbondale, CA, in
1996, 1998 and 2002, respectively. She taught
as a Lecturer at the ECE Department at Southern
lllinois University from 2001 to 2002, and as an
Assistant Professor of Computer Science and
Engineering at the University of Notre Dame from
2002 to 2003. She is currently an Assistant
Professor with the Department of Electrical and
Computer Engineering, University of Cyprus, Cyprus. Her current
research interests are in the area of test and reliability of modern digital
VLSI circuits, embedded systems and multi-core architectures, including
on-line/adaptive testing for multi-core designs, test and diagnosis for
various faults (including timing and other deep-submicron/nanometer
induced faults), single- and multi-bit upset analysis and protection,
symbolic techniques for test and verification (BDDs and SAT) and paral-
lel methods/algorithms for EDA tools. She has served on the technical
program committees of several international conferences and work-
shops and is a reviewer for a number of scholarly journals and interna-
tional conferences. She is a co-recipient of a Best Paper Award of
MSE2009. She is a member of the IEEE.

Yiorgos Makris received the Diploma of
computer engineering and informatics from the
University of Patras, Patras, Greece, in 1995,
and the MS and PhD degrees in computer sci-
ence and engineering from the University of Cali-
fornia, San Diego, CA, in 1997 and 2001,
respectively. After spending over 10 years as a
faculty of electrical engineering and of computer
science at Yale University, he moved to The
University of Texas at Dallas where he is
currently an Associate Professor of electrical
engineering, leading the Trusted and Reliable Architectures (TRELA)
research group. His current research interests include the application of
machine learning and statistical analysis methods towards developing
reliable and trusted integrated circuits, with particular emphasis in the
analog/RF domain. He is also investigating error detection and correc-
tion methods for modern microprocessors, as well as novel com-
putational modalities using emerging technologies. He serves on the
organizing and program committees of many conferences in the areas
of test, security, and reliability and he is the program chair of the 2013
and 2014 IEEE VLSI Test Symposium (VTS). He is a recipient of the the
Best Paper Award from the 2013 Design Automation and Test in Europe
(DATE) conference. He is a senior member of the IEEE.

LS

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

