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Abstract—Beneath the potential benefits of the rapidly growing Internet of Things (IoT) technology lurk security risks. In this paper, we
propose a hardware-based generic framework for IoT workload forensics, an infrastructural technique to securely monitor and ensure
delivered IoT services in accordance with specifications and regulatory compliance. In particular, this technique identifies digital
workloads being executed in real time through dynamic program behavior modeling based on architecture-level data, fulfilled by
dedicated machine learning hardware, without the intervention of high-level software, e.g., the OS and/or the hypervisor. In contrast to
the conventional software-based solutions, whose effectiveness may be undermined by software attacks, and which introduce
significant runtime overhead, a hardware-based framework enables a secure, prompt and non-intrusive solution. The proposed
framework was evaluated on Zedboard, a Zynq-7000 FPGA embedding an ARM Cortex-A9 core. Experimental results using Mibench
workload benchmark reveal an average workload identification accuracy of 96.37% with insignificant area/power overhead.
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1 INTRODUCTION

The emergence of the Internet of Things (IoT) technol-
ogy facilitates the integration of multiple physical devices
including computers, mobile phones, vehicles, home and in-
dustrial appliances, etc., leading to new infrastructures and
applications in the domains of transportation, health care,
industrial plants, and futuristic robotics, etc [1]. However,
beneath the potential benefits of the IoT technology lurk
unprecedented public or private security risks. For instance,
a malfunctioning autonomous vehicle would result in mas-
sive accidents. Hacked public facilities may incur privacy
leakage. The logistics industries could suffer financial loss if
the control system malfunctions while, the robotic assistance
is unreliable if its embedded system executes unexpected
behavior. Thereby, developing digital forensics mechanism
to monitor, investigate, and ensure the legitimate execution
of the system behavior becomes invaluable.

On the other hand, addressing these security issues for
IoT applications, e.g., autonomous vehicle, is not at all
straightforward. For example, an evil attacker may degrade
the performance of the traffic control system or benefit him-
self via compromising roadside fog nodes or the targeted
vehicle, leading to severe consequences instantly when the
compromised vehicle hits the road or the hacked system
is deployed. Correspondingly, these security risks imply a
real-time investigation solution, which is able to monitor the
security status of a system continuously to ensure awareness
of suspicious behaviors in a timely manner [2]. To this
end, we propose real-time workload forensics for IoT ap-
plications in order to identify what workloads are executed
actively within a system, whose results can facilitate further
analyses and reactions.

Intuitively, workload forensics solutions can employ
software implementations due to the straightforwardness
and flexibility, which can be implemented at OS-level or
at hypervisor-level in a virtualized environment. OS-level

methods model and analyze the workload behavior by
inspecting OS-level semantics, e.g., system-level data struc-
ture, file system objects, system call pattern, etc. [3], [4],
[5], [6]. Despite their convenience in implementation, the
assumption that the underlying OS is trustworthy remains
doubtful, since malware may be injected in the OS, running
at the same privilege even as the OS, which can subvert
the probing and/or analysis software. For example, kernel
rootkits may hide or disrupt certain memory pages from be-
ing read by software tools or launch denial-of-service attack
when detecting the presence of these tools [7]. Moreover,
OS-level analysis requires deep coupling with the program
execution flow and the OS service control flow in order to
obtain and process the target data, thus, introduces notable
runtime overhead (commonly 2x to over 10x slowdown),
which prevents it from on-line deployment.

A potential solution to this issue is to leverage Virtual
Machine (VM) introspection, i.e., the target OS is wrapped
in a VM while the analysis software resides in a higher-
privileged hypervisor [8], [9], [10]. As a result, the privileged
analysis software can be resistant to OS-level attacks. Never-
theless, the hypervisor itself, as shown through recent work
[11], holds several vulnerabilities and can be compromised
by intrusion methods. Therefore, analysis tools running on
the hypervisor remain exposed to software tampering. On
the other hand, although hypervisor-level methods may sur-
pass the OS-level methods in performance due to coupling
with lower-level code, their nature as software implemen-
tation still lead to significant runtime overhead (18% to 9x
slowdown).

To address the aforementioned limitations, we propose
a hardware-based real-time workload forensics framework.
More specifically, we explore the possibility of relying ex-
clusively on custom hardware components in order to trace
architectural data of interest and further identify the exe-
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TABLE 1: Hardware-based vs. software-based forensics

SW-based HW-based

OS-level Hypervisor-level

Semantic gap 7 3 3

Security 7 7 3

Runtime
overhead

2x - 10x 18% - 9x ∼ 0

Platform
independence

7 7 3

cuted workloads in real time. As summarized in Table 1, the
proposed framework tries to improve the software-based
solutions as follows:

• Employing dedicated hardware tracing mechanism
leverages the fact that no software can hide its exe-
cution from the hardware, which, therefore, prevents
the trace module from software tampering. As a re-
sult, a hardware-based solution ensures the integrity
and the trustworthiness of the traced data, providing
a solid ground for further analysis.

• The hardware-based workload forensics solution,
since its deep coupling with the microprocessor, can
be deployed on-line with minimal runtime over-
head. While software-based solutions incur signif-
icant runtime cost and, thus, may be impractical
in deployment, a hardware-based solution enables
no-intrusive investigation and prompt response to
software execution.

• The methodology applied in the proposed frame-
work relies exclusively on common OS and proces-
sor architecture characteristics, resulting in an OS-
agnostic and architecture-agnostic solution.

The rest of the paper is structured as follows. Section
2 briefly discusses the application scenarios and introduces
the corresponding system design, including the critical com-
ponents, of the proposed framework. The detailed imple-
mentation and methodologies applied in each component
are introduced in Section 3, Section 4, and Section 5. Section6
presents the hardware implementation. We evaluate the ef-
fectiveness as well as the design overhead of our framework
in Section 7 and Section 8. Potential limitations are discussed
in Section 9. In Section 10, we present the related work.
Conclusions are drawn in Section 11.

2 SYSTEM OVERVIEW

2.1 Application Scenario
In this section, we briefly illustrate the application scenarios
employing workload forensics. A target IoT system allows
execution of a set of legitimate workloads {W1,W2, ...,Wn},
which are naturally restricted by the type of devices and
corresponding specifications in the IoT network. An ad-
versary is assumed to have access to the physical devices
or the network so that he is able to introduce additional
functionality or bypass legitimate functionality to benefit
himself. Correspondingly, as illustrated in Figure 1, two
common application scenarios are considered herein.

In the first scenario, unexpected suspicious workload
Wbad can be introduced by additional user-defined pro-
grams to benefit his own interest. These programs are not

W1

Wn
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W3
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W4 W6

(a) Injected new suspi-
cious workload
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W2
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W4

W1 W3 W4W2

W1 W3 W4W2

(b) Bypassed/reordered
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Fig. 1: Two application scenarios considered in IoT work-
load forensics

necessary to be specific malicious programs created by an at-
tacker, but can include a combination of common programs
which enable new functionalities and violate the pre-defined
specification. For example, in an election system facilitated
by a homomorphic encryption, an end user can introduce
decryption operation and homomorphic summation in the
election terminal (which is not allowed in the specification)
to contaminate the number of votes of a specific candidate
and manipulate the election result [12]. In this case, the
decryption and summation workloads introduced intention-
ally represent the Wbad, while the original legitimate data
transmission represent the legitimate workloads set.

In the second scenario, an adversary may compromise
the target system without introducing additional workloads
but through bypassing or reordering legitimate workloads
for malicious purpose. For instance, Miller and Valasek has
successfully demonstrated vehicle hacking, which can be
exploited to disable the brake system or track the car with
its built-in navigation system [13]. In this case, illegitimate
workload execution flow is created through disabling or
reusing existing functionalities.

2.2 System Design

The hardware-based workload forensics framework is re-
quired to be capable of distinguishing suspicious workloads
from benign ones as well as identifying active workloads in
response to the two application scenarios. The actual imple-
mentation consists of a hardware tracing module, a feature
extraction module, and a workload identification module.
The hardware tracing module is able to collect architectural
events related to program execution exclusively from the
hardware, whose data collection bus must remain invisible
to OS-level applications. On the other hand, the data of
interest can be collected in non-intrusive manner, leaving no
effect on the original processor execution path. The feature
extraction module generates representative features from
the collected data, which describe program behavior, while
the workload identification module, according to the afore-
mentioned application scenarios, wraps a machine learning-
based classifier to identify (1) whether one workload is
legitimate or not, (2) what a workload is if it is legitimate,
through their dynamic behavior at the granularity of pro-
cess. Herein, the machine learning algorithm is involved to
consider the runtime variation of program execution.

3 HARDWARE TRACING

The first and the foremost building block in our proposed
framework is a hardware tracing component, which logs

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:17:14 UTC from IEEE Xplore.  Restrictions apply. 



0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.3000237, IEEE
Transactions on Computers

3

Program Trace 
Macrocell 

(PTM) 
Trace Port 

Interface Unit 
(TPIU)

Embedded 
Trace Buffer 

(ETB)

APP. APP. APP. OS…...

ARM processor core

ARM CoreSight

Fu
n

n
el

R
ep

licato
r

APP. APP.

Fig. 2: Architecture of ARM CoreSight

architectural events that can distinguish program behavior.
Intuitively, the most informative event capable of modeling
the program behavior is the dynamic control flow. Control
flow tracing in hardware, however, is not straightforward
at all, since it requires deep coupling with the execution
pipeline of the underlying microprocessor while it is ex-
pected to introduce minimal performance overhead. Fortu-
nately, industrial-standard hardware tracing solutions have
been proposed, e.g., ARM CoreSight and Intel Processor
Tracing (PT) [14], [15]. Generally speaking, these solutions
aim at non-intrusively collecting program runtime branch
addresses so that the dynamic control flow of a program can
be reconstructed with the assistance of the binary image
of programs. For example, the ARM CoreSight employs a
hardware macro, i.e., the Program Trace Macrocell (PTM) to
fulfill the task. During the execution of an application in the
OS, the PTM generates multiple types of packets according
to customized trigger rules, which logs current context ID
value, direct and indirect branch address, timestamps, etc.
These packets are compressed in a specific way defined
by ARM in order to minimize the bandwidth of the data
log. The generated packets are then sent to the data stor-
age through a communication channel, namely funnel. Two
different data storage are introduced in CoreSight, namely
Embedded Trace Buffer (ETB) and Trace Port Interface Unit
(TPIU). The ETB maintains data in on-chip RAM so that
software debug tools can later access it, while the TPIU
drives the external pins of the trace port so that the trace
data can be offloaded to an external hardware. Hence, we
follow the latter path to collect our data of interest. An
architectural view of the ARM CoreSight design is shown
in Figure 2.

In order to simplify the design complexity as well as
ensure the practicality of our workload forensics frame-
work, we decide to take advantage of the state-of-the-art
industrial-standard hardware tracing techniques. Consider-
ing the easier accessibility to the physical devices embed-
ding ARM processor core and its hardware tracing module,
the ARM CoreSight is employed in our proposed frame-
work to facilitate the tracing task. Nevertheless, we note that
the proposed framework is not ARM CoreSight-dependent.
Essentially, any state-of-the-art hardware tracing solution,
e.g., Intel PT, or custom solutions, can be plugged into this
framework, while the ARM CoreSight is selected only to
facilitate the illustration of the proposed concept.

On the other hand, the wide adoption of the hardware
tracing technology in the latest commercial processors eases
the data acquisition of the proposed framework in various
real-life application scenarios, as summarized in Table 2. For
instance, both the ARM Cortex-A processor series, which

TABLE 2: Summary of application scenarios of commercial
processors with hardware tracing support

Applications ARM Intel

Server &
Desktop

Cortex-A75/A55 Xeon D family,
Xeon E3/E5 family,
Core i5/i7/i9 family

Mobile
devices

Cortex-A73/A57,
Snapdragon
(Qualcomm),
Ax (Apple)

Core i3/i5/i7 family,
Core m5/m7 family

Embedded
applications

Cortex-A35/A17,
Cortex-M23/M7/M4

Core i5/i7 family,
Xeon E3 family

bolster high-performance consumer infrastructure devices,
and the Cortex-M processor series, which are optimized for
low-cost Microcontroller (MCU) or System-on-Chip (SoC),
are equipped with the ARM CoreSight solution. So does the
Intel processor architecture, which embeds Intel PT starting
from its 5th generation, i.e., the Broadwell in 2015.

In order to collect representative architectural data to
describe program behavior and bridge the semantic gap, the
ARM CoreSight is configured to trace the value of context
ID register, which is interpreted as a process identifier [16],
and the corresponding direct and indirect branch target
addresses, which describe the program control flow and,
thus, model the program behavior. Upon the trace collected
through the CoreSight module, descriptive features are then
generated in the feature extraction module.

4 FEATURE ENGINEERING

Modeling program behavior using branch addresses ex-
clusively is restricted by the intrinsic implementation of
the ARM CoreSight. Nonetheless, the transition between
branch addresses is considered to be sufficient to reveal
both the static information of the execution of an arbitrary
application, i.e., the layout of its address space, as well as
the corresponding dynamic information, i.e., the program
execution control flow. To facilitate the next-step workload
identification, the feature extraction component extracts de-
scriptive features from the collected sequence of branch ad-
dresses. Specifically, we evaluate both the potential spatial
features and the temporal features as discussed below.

4.1 Spatial Features
We perceive the spatial features as the features which are
able to capture the information of the address space layout
of different applications. A common choice is, the Counts of
Occurrence (CoO), which partitions the address spaces and
then collects the counts of hits by branch addresses on each
partition. Generally speaking, a finer-grained partitioning
provides a more precise view of how an application orga-
nizes and utilizes its address space during runtime, while
the size of the feature space grows linearly according to the
granularity and incurs higher implementation overhead.

A typical address space layout is shown in Figure 3. As
may be observed, the locations containing program runtime
code mainly fall into three sections (i.e., .text section, shared
memory section and the kernel space section), while the
.text section maintains the user-level code of the program,
the shared memory section contains dynamically linked C
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shared library and the kernel space section keeps the OS
service routines. This results in an extreme bias in the hit
area in the address space of the branch target addresses.
Therefore, splitting the address space evenly leads to a
sparse feature vector and creates a lot of dummy entries,
which remain zero or insignificant number and carry no use-
ful information according to the increase of granularity. In
contrast, we apply a weighted partitioning method, whose
essential idea is to assign more partitions to the dense area
(containing more CoO), while assigning fewer partitions to
the sparse area (containing less CoO).

The partitioning problem can then be modeled as fol-
lows: given an address space AS and a target partition
number P, find a set of edges E whose size is P-1 and
which partition the AS, so that the standard deviation of
the P-size dataset after partitioning, where each partition
p contains accumulated CoO, is minimized. Essentially, this
is an optimization problem which can be solved through
gradient descent algorithm. However, since the AS can
only be split in order, we develop a computation-friendly
heuristic algorithm to fulfill the partitioning task. First, we
assume the size of the minimal dividable partition U is 212

Bytes, which match the 4K page size, in order to reduce
the computational complexity. Initially, the AS is, therefore,
evenly split into a list L consisting of 232−12 = 220 parti-
tions. Given a target P, the following iterative process runs
until the partitioning is done: (1) compute the average CoO
over the L according to P, (2) accumulate the CoO in each
ui until the sum reaches the average, (3) the accumulated ui
forms one pj , (4) exclude pj from L and go back to step (1).
Listing 1 shows the pseudocode of the partition algorithm.
Compared with gradient descent, the time complexity of
this algorithm is O(n), which is far more efficient.

4.2 Temporal Features

Essentially, the spatial features introduced in 4.1 extracts the
spatial relationship of different branch target addresses and
generates a lossy representation, i.e., the CoO after partition-
ing. However, it fails to capture the temporal relationship,
which is the order of different branch target addresses and
may also be helpful for identifying program behavior.

A popular feature extraction alternative to maintaining
the temporal information of a dataset is the n-gram model.
An n-gram is a subsequence of n items derived from a given
sequence. A feature vector can then be constructed with the
number of all the possible n-gram subsequences. When n
is greater than 2, n-gram model can, thereby, preserve the
sequential information, while such information is less lossy
with larger n. The total number of features generated by

input: L[220] and P
output: E[P-1]

total = sum(L), p_accum = 0, i = 0, P_left = P;
//iterate over each minimal dividable partition
for u in L:
mean = total/P_left;
p_accum ← p_accum + L[u];
if p_accum > mean:
//p contains only one u
if p_accum == L[u]:
E[i] ← u;
total ← total - p_accum;
p_accum ← 0;
else:
//p contains multiple u,
ensure p has the value closest to the mean
if |p_accum-mean| >= |p_accum-L[u]-mean|:
E[i] ← u - 1; //exclude current u
total ← total - (p_accum+L[u]);
p_accum ← L[u];
else:
E[i] ← u;
total ← total - p_accum;
p_accum ← 0;
i ← i + 1;
P_left ← P_left - 1;
if P_left == 1: //the left u will form the last p
break iteration;
return E;

Listing 1: Heuristic weighted partition algorithm

an n-gram model can be bound by the number of possible
elements in a given sequence m and the choice of n, i.e.
mn. The n-gram model in our scenario is then generated as
follows: (1) split the address space into arbitrary P partitions
using the algorithm in Listing 1, (2) given a n, the n-gram
model calculates the CoO of the transition combination
between any n partitions, (3) the size of the feature vector is
Pn. Due to the underlying implementation cost, herein, we
only consider the 2-gram model.

While the n-gram model compresses the temporal infor-
mation in a lossy manner, the original sequence of branch
addresses itself can be used as a feature vector in a lossless
way. Herein, we explore the feasibility of using a partition
sequence which is transformed from the original branch
address sequence where each element is substituted with
the partition it belongs to. Nevertheless, traditional machine
learning methods, which expects independent features in
the feature vector, e.g. our spatial features, cannot accept
sequential inputs. Therefore, it is necessary to employ a
more advanced machine learning algorithm, which is able
to process sequential features.

4.3 Real-time Identification
State-of-the-art program behavior modeling methods gen-
erally require a complete execution flow to perform further
analysis, which prevents a real-time response. However, as
shown in [17], program behaviors tend to deviate at an early
stage of their execution. Therefore, it may be feasible to
perform the real-time identification analysis using only a
subsequence of the branch target address sequence, which
implies more prompt response for identifying workload,
rather than the ex post facto identification analysis.

Herein, we explore the possibility of using a header
portion of the complete program execution profile in or-
der to perform real-time workload identification analysis.
Nevertheless, the header portion contains lossy information,
which may undermine the effectiveness of the classifier in
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identification. We evaluate various lengths of the branch
target addresses sequence to be used, in order to find
the minimal length of subsequence required, leading to
similar identification accuracy as the mechanism using a
complete program execution profile. Given the truncated
subsequence, spatial or temporal features introduced above
can then be extracted.

5 WORKLOAD IDENTIFICATION WITH ANOMALY
DETECTION

Upon the aforementioned extracted features, our workload
identification mechanism employs several machine learn-
ing algorithm to timely understand the workload being
executed at the granularity of a process. In particular, the
actual analysis is performed in two stages as follows. The
first-level analysis employs the machine learning algorithm
for anomaly detection in response to the attack scenario I
(defined in Section 2.1), in order to identify the unexpected
suspicious workload beyond the legitimate workload set.
The second-level analysis leverages multi-class classification
to identify if legitimate workloads are executed according
to the design specification and regulatory compliance, in
response to the attack scenario II.

Regarding the spatial features, considering the program
behavior is generally not linearly distinguishable, we ex-
perimented with two non-linear classifiers of varying com-
plexity and performance, namely Decision Tree (DT) and
Artificial Neural Network (ANN). Decision tree models a
tree-like structure from the feature space and generates a
classification rule based on probabilities, where leaf nodes
represent a class label and each branch paths from the root to
the leaf represents a classification rule. The classification can
then be done by searching for the branch with the maximum
likelihood. On the other hand, ANN exploits a layered
structure, where each layer contains multiple nodes, i.e.,
neurons, which are interconnected with nodes in adjacent
layers. Through stacked layers, ANN models an arbitrary
function which maps the input layer (feature space) to the
output layer (class labels), and thus fulfills the classification.
In our scheme, we evaluate DT from the Matlab library and
ANN from Keras [18].

With reference to the temporal features, although the
traditional machine learning algorithm can process the n-
gram model, advanced learning algorithm must be involved
in order to process the partition sequence. Herein, we em-
ploy Recurrent Neural Network (RNN), which has been
developed to accept sequential inputs. Essentially, RNN is a
variation of the traditional ANN with minor modification in
the layered structure. Specifically, in RNN, a self-feedback is
applied on each neuron so that its output relies not only on
inputs from the last layer but also on the previous compu-
tation of its own. By this mean, RNN memorizes information
of what has been calculated, and therefore, leverages the
sequential information in the input sequence. An RNN can
be converted into the traditional ANN through unfolding
the feedback of its neurons so that the conventional back-
propagation algorithm can still be applied.

Unfortunately, traditional RNN is known to suffer the
gradient vanishing problem due to its deep unfolded layered
structure, as identified in [19]. Therefore, we employ an
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Fig. 4: architectural view of the proposed framework

alternative architecture of the RNN, namely Long Short-Term
Memory (LSTM) [20]. LSTM-RNN substitutes the original
neuron with a memory cell, whose detailed structure can
be found in [21]. By this mean, LSTM maintains a more
constant error propagation during backpropagation training
so that it enables the RNN to learn over much longer steps,
thereby prevents the vanishing gradient. In our implemen-
tation, we used LSTM-RNN from Keras [18].

6 HARDWARE IMPLEMENTATION

In this section, we present the hardware implementation
of the proposed framework. Since we leverage the ARM
CoreSight to facilitate our design, a custom hardware trac-
ing module is unnecessary. Alternatively, a data decoder is
required to decode the trace collected by the ARM CoreSight
module. An architectural view of the entire framework,
which mainly consists of a trace decoder, a feature extraction
module, and a classifier to handle workload identification
and anomaly detection, is illustrated in Figure 4.

6.1 Trace Decoder
The trace decoder decodes the incoming data trace based
on the packet format and the decoding rules introduced
in the ARM CoreSight manual [14]. The decoder works at
the same frequency as the CoreSight module to synchronize
itself with the CoreSight output. Only packets related to
the current context ID value and the direct/indirect branch
address, recognized by the predefined specific headers [14],
are processed by the decoder, while the others are ignored.
Upon the decoded branch address sequence, the next-level
feature extraction can then be performed.

6.2 Feature Extraction
This component extracts the features from the received
branch address sequence for a specific context ID, in parallel
with the data stream decoder, once it detects a valid decoded
branch address. A feature vector, containing a number of
registers (which accords to the number of partitions of
integer registers, is instantiated in order to store the CoO. A
conditional check is performed on the branch address value
in order to access the correct register based on the partition
edge derived by the algorithm introduced in Listing 1. A
counter that logs the number of processed branch addresses
is incremented accordingly and send a signal to the front-
end processing unit to stop processing further incoming
branch addresses, once the number reaches the pre-defined
threshold (which is determined through the evaluation in
the following section) or a new context ID is detected.

Before the workload identification analysis is actually
performed, the feature vector is standardized using the
formula: (X−X)/∆, where X is the feature vector, and the
coefficients X and ∆ are the mean and standard variation
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vector derived from the training set. The standardization
coefficients are pre-computed and stored in the on-chip
ROMs, while the actual process is fulfilled using the Xilinx
Floating Point (FP) IP cores [22], involving an integer-to-
FP converter, an FP subtractor, and an FP divider. Conse-
quently, the standardization process can be performed in
T(Stand.) = T(conv.) + T(Sub.) + T(Div.) cycles, where T(x)
depends on the actual configuration of the IP cores. The
feature extraction for a current context ID is finalized after
the standardization and a ready signal is sent to the next-
level classifier module.

6.3 Multi-class Classifier

The classifier module implements an ANN model due to
its better scalability and flexibility than a DT model. The
ANN is designed with one hidden layer, whose number
of neurons are determined through the evaluation in the
following section. The sigmoid function is used as the ac-
tivation function. In particular, two layers of computation
are required in our implementation, i.e., an input-hidden
layer and a hidden-output layer, while the output of an
arbitrary neuron at each layer involves the sigmoid result
of the accumulation and the dot multiplication of its input
and corresponding weights as follows:

O
(j)
i = sigmoid(

N∑
i=1

W
(j)
i · I) (1)

where I is the input vector to the ith neuron at jth layer, N
is the input vector size, Oi and Wi are the corresponding
output vector and weights of the neuron. The final classifi-
cation result is, thus, based on the maximum pooling of the
output layer.

The cardinal design of an ANN is the implementation
of a neuron, which consists of (1) memory storage that
maintains weights and biases of layers and intermediate
results, (2) computational logic that fulfills the equation
1, and (3) the class prediction based on the max-pooling.
ROMs are employed to store the pre-computed weights
and bias for each layer while a RAM is employed to store
the intermediate outputs of the hidden layer which are the
inputs of the output layer. To implement the aforementioned
dot multiplication and the accumulation efficiently, we take
advantage of the Fused Multiply-Add (FMA) mode of the
Xilinx FP IP core with a feedback logic. Furthermore, to
simplify the sigmoid function design, we employ a piece-
wise linear approximation of the original function whose
maximum absolute error of approximation is 0.005 [23].
To further reduce the design overhead of the ANN, the
sigmoid function in the output layer is excluded without
affecting the class prediction due to the monotonicity of
the sigmoid function. Accordingly, the entire calculation in
a single neuron for a N-length input vector takes T(neuron)
= N × T(mul-add) [+ T(sigmoid)] cycles to finish.

Although a fully-parallel design of the ANN can pro-
duce data with optimal timing, the implementation over-
head is overwhelming and is proportional to the number of
neurons in the ANN structure, thus, may not be affordable.
In contrast, we employ a serial design, which is optimized
for minimal design overhead. As a result, our ANN consist

of one instance of the neuron, while the latency to finish-
ing the entire classification takes T(classify) = (H + C) ×
T(neuron), where H is the number of neurons at the hidden
layer and C is the number of program classes.

6.4 Anomaly Detector
To take the on-chip resource restriction for hardware design
into account, a hardware-friendly extension of the multi-
class classifier for anomaly detection is employed rather
than implementing a separate anomaly detection module.
Specifically, the conjecture of the anomaly detection is that
the maximum probability of the prediction in the ANN for
a seen, i.e., legitimate, class is consistently larger (higher
confidence level) than the maximum probability of the
(mis)prediction for an unseen, i.e., suspicious, class (lower
confidence level). Hence, a threshold can be studied for
each legitimate class, while the workload identification is
extended with the capability of anomaly detection as fol-
lows:

class =

{
suspicious, if max. prob. < th(i)
argmax, otherwise (2)

That is to say, our anomaly detection is implemented by a
value comparison between the classifier output and some
pre-learned thresholds, in order to filter out potentially
illegal program behavior. By this means, the anomaly de-
tection and classification tasks are integrated into one single
implementation of the machine learning algorithm, which
minimizes the design overhead of the classifier module.

7 EXPERIMENTAL RESULT

We assess the effectiveness of our method in correctly
identifying workloads and filtering suspicious workloads in
this section. We illustrate classification results using both
spatial features and temporal features, while the optimal
partition number P and the minimal required length of a
branch address sequence are reported, which balance the
effectiveness and the design overhead.

7.1 Data Collection
Our experiments were performed on a Linaro Linux host
running Linux kernel 4.6, which is loaded on the Zedboard,
a Xilinx Zynq-7000 series FPGA who embeds an ARM
processor and ARM CoreSight Module. We collected the
data trace generated through the CoreSight module directly
from the hardware, decoded the package and performed
our feature extraction mechanism in software for evalua-
tion. We use both common Linux commands and MiBench
[24], a free commercially representative benchmark suite
as our workloads, which include common workload cat-
egories in IoT applications, e.g., automative and industrial
control, network, security, telecommunications, etc. We eval-
uate 25 program families, summarized in Table 3, while
each family is executed with different arguments, creating
multiple variations for classification in order to boost the
resilience of our framework. For example, program qsort
sorts different sequences in various length, while program
ls displayed contents of different directories with multiple
options. In total, we collect approximately 400 variations for
each program family, which were split randomly in half for
training and testing.
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TABLE 3: Summary of workload dataset

Class Description Benchmark

Automotive
/Industrial

programs used in embed-
ded control system, including
math abilities, bit manipula-
tion, sorting, and shape recog-
nition algorithms

basicmath,
bitcnts,
qsort,
susan

Server programs used most
frequently on the server
side

ls, ps, whoami, id,
echo, cat, ifconfig

Telecomm. programs used in wireless
communication, including
voice encoding/decoding,
frequency analysis, and
checksum algorithm

crc, fft,
rawdaudio,
rawcaudio,
toast, untoast

Network programs used in network de-
vices, including shortest path
calculations, tree and table
lookups

patricia,
dijkstra

Security programs used for data
encryption/decryption and
hashing

sha,
bf

Consumer programs used in consumer
multimedia devices, includ-
ing image encoding/decoding
and audio encoding/decoding

cjpeg,
djpeg,
lout,
search

7.2 Effectiveness

7.2.1 Partition number P

We first evaluate the impact on the effectiveness of the
workload identification of our partitioning methodology
and different choices of partition numbers. Both the even
partitioning method and the heuristic weighted partitioning
method was evaluated while the former was considered as
a baseline design to compare with. We examined possible
partition number ranging from 4 to 50, where the interval
was 2. Figure 5 summarized the average identification accu-
racy over all the program classes, using both DT and ANN,
corresponding to different partitioning solutions. As may be
observed, the even partitioning method led to no favorable
result (the green and the maple line in Figure 5) in workload
identification, which reached an identification accuracy of
approximately 83% for DT and 65% for ANN. Furthermore,
the identification accuracy does not change significantly
with the increase in the partition number, which implies
that the finer-grain granularity in the even partitioning does
not produce a deeper view of program execution.

On the other hand, the DT and ANN perform well
with the heuristic weighted partitioning method in work-
load identification. As shown in Figure 5, the average
identification accuracy in both cases (the red and the blue
line) increases monotonically according to the partitioning
granularity. In particular, the DT obtained an approximately
10% gain in the average identification accuracy with finer-
grained weighted partitioning, while the ANN obtained an
approximately 20% gain in the accuracy. Compared with
the even partitioning scenario, the DT ultimately surpassed
the baseline with approximately 13% in performance, while
the ANN surpassed the baseline with approximately 30%
in performance. This observation implies that the weighted
partitioning algorithm is able to break those biased areas,
from which more significant information can be revealed.

Optimal 
partition 
number

Fig. 5: Average workload identification accuracy according
to different partitioning method and partition number

A detailed distribution of counts of occurrence (in log)
for multiple partition number choice for the two partition-
ing methods was illustrated in Figure 6, which confirmed
the aforementioned implication. Specifically, the distribu-
tion corresponding to the even partitioning is illustrated in
Figure 6a, 6c, and 6e (left column), while the distribution
corresponding to the weighted partitioning is illustrated in
Figure 6b, 6d, and 6f (right column). As figures in the left
column show, the even partitioning leads to a bias distribu-
tion, where a majority of the occurrence hits some specific
areas. Indeed, as illustrated in Figure 3, most program
instructions are expected to reside within the .text section,
shared memory section and the kernel space section. These
sections are narrowly small portion of the entire address
space, while they are deemed to provide more constructive
information. Unfortunately, with even partitioning, most
newly-added partitions are assigned to the insignificant
area, unrelated to program instructions, since every portion
in the address space is treated equally. As a result, more
partitions may not reveal additional information within the
three critical sections of the address space, hence, contribute
less in workload identification.

In contrast, the weighted partitioning takes the afore-
mentioned fact into account. As shown in the right column
of the Figure 6, an uniform distribution is generated, which
indicates that the critical areas in an address space are bro-
ken further as the partition number increases. By this means,
more partitions can convey more information, and, thereby,
improves the distinguishability of program behavior.

Moreover, the identification accuracy in the weighted
partitioning scenario is observed to reach a stability after
a knee, while the increase in the partitioning granularity no
longer has significant impact on the identification efficacy.
This may be explained by the fact that the significance of
the different portion of the address space has been well
balanced, and thus, more partitions cannot bring additional
information to distinguish program behavior. Therefore, we
select the knee – in this case, 26 – as the optimal partition
number, which balances the feature space size and the
effectiveness of the classifier. Accordingly, we achieved an
average identification accuracy of 96.68% and 95.57% for
DT and ANN respectively.

7.2.2 Length of branch address sequence
Assuming the optimal partition number being used, we next
evaluate how the different length of the branch address
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(a) Occurrence (log scale)
in different partitions when
partition P = 15, even parti-
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(b) Occurrence (log scale)
in different partitions when
partition P = 15, weighted
partitioning
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(c) Occurrence (log scale)
in different partitions when
partition P = 26, even parti-
tioning
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(d) Occurrence (log scale)
in different partitions when
partition P = 26, weighted
partitioning
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in different partitions when
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tioning
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(f) Occurrence (log scale)
in different partitions when
partition P = 35, weighted
partitioning

Fig. 6: Distribution of counts of occurrence in the partitions
according to even partitioning vs. weighted partitioning
with different partition size. Weighted partitioning method
leads to a uniform distribution. More partitions generate
a more informative feature space, hence, results in more
accurate classification result.

sequence under evaluation influences the workload identifi-
cation result. We evaluated the length of the branch address
sequence varying from 1000 to 50000, where the interval
was 1000. The identification accuracy, using both DT and
ANN, according to different lengths of the sequence under
evaluation was illustrated in Figure 7. As may be observed,
workloads may not be distinguishable at the initial stage of
their execution, since, generally, workload execution starts
with some common initialization process. Along with the
increase in sequence length under evaluation, however, the
identification accuracy steadily rises. Similar to the partition
number case, herein, we notice a knee as well, after which
the workload identification accuracy stays stable, without
affected by the sequence length under evaluation. As a
result, we select 42000 as the optimal length of the branch
address sequence when performing identification, in order
to enable the real-time identification and maintain the bal-
ance between the response time and the effectiveness of the
classifiers. A deeper view of the capability of our real-time
identification is illustrated in Figure 8. Specifically, we report
the percentage of the optimal length within the average
length of the original branch address sequences for each

Optimal 
sequence 

length

Fig. 7: The average workload identification accuracy accord-
ing to different sequence length
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Fig. 8: The optimal sequence length proportional to the full-
size sequence length

program class. As may be observed, we are able to identify
workloads using 49.21% of their complete branch address
sequence on average, while the best case is 20.9% and
the worst case is 89.76%. Accordingly, with both partition
number and sequence length under evaluation optimized,
an average identification accuracy of 95.52% and 96.37% can
be reached for DT and ANN respectively.

7.2.3 Using temporal features
Finally, we evaluate the effectiveness of our method us-
ing temporal features. The experiments were performed
based on the optimization derived from the analysis in
Section 7.2.1 and Section 7.2.2, while the performance of the
counterparts using spatial features was considered as the
benchmark performance. We first evaluate the effectiveness
of the 2-gram model. Given the optimal partition number
and the length of the branch address sequence, both DT
and ANN achieved similar results as the benchmark, which
is 95.45% for DT and 96.59% for ANN. However, the size of
the feature space is squared, introducing a dramatic increase
in design overhead. We also explored the the 2-gram model
with the same size of feature space, i.e., we experimented
with a choice of 5 partitions, resulting in 25 features in total.
Unfortunately, an average identification accuracy of 90.23%
and 91.98% was achieved for DT and ANN, respectively,
which does not surpass or reach the similar level of the
benchmark performance. Nevertheless, compared with the
identification result upon the spatial features with 5 parti-
tions, an approximately 3% gain in identification accuracy
was obtained. Table 4 summarized the comparison.

The partition sequence feature is evaluated next. Simi-
larly, we use the optimal partition setting in this experiment,
i.e., 26 weighted partitions. Due to the limit in the computa-
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TABLE 4: Effectiveness of 2-gram model vs. spatial features

spatial features 26
partitions

spatial features 5
partitions

DT ANN DT ANN

95.52% 96.37% 88.58% 87.62%

2-gram 26 partitions 2-gram 5 partitions

DT ANN DT ANN

95.45% 96.59% 90.23% 91.98%

TABLE 5: Effectiveness of partition sequence vs. spatial
features

spatial features optimal setting

DT ANN

95.52% 96.37%

spatial features
len. 1000

p. seq. len. 1000 p. seq. len. 1000
(no repeat)

DT ANN LSTM-RNN LSTM-RNN

40.58% 34.95% 35.14% 44.98%

tion complexity, the maximum sequence length that can be
fed to our LSTM-RNN model is 1000, rather than 42000. Ac-
cordingly, an average identification accuracy of 35.14% was
achieved under such setting, which is similar to the result
using spatial features with the branch address sequence of
length 1000, as shown in Figure 7. Apparently, The length of
the partition sequence under evaluation limits the capability
of the classifier to distinguish different workloads.

Nevertheless, a deeper view of the partition sequence
reveals that the partition sequence consists of repeated pat-
terns (e.g., prolonged repeated access in the same partition),
which may be another source of ambiguity. Hence, we ex-
perimented with a variant of the original partition sequence
feature, which maintained the same length but eliminated
the repeated pattern. This enables capturing more temporal
information in longer partition sequence within a 1000-
length window. As a result, an average identification accu-
racy of 44.98% was reached, which achieved approximately
10% improvement in the accuracy and surpassed the iden-
tification accuracy under scenarios of using spatial features
as well as original partition sequence with the same length.
Table 5 summarized the comparison. Consequently, we con-
clude that the temporal features are able to carry additional
information to assist in distinguishing program behavior in
certain scenarios, yet, with the cost of a dramatic increase in
the design overhead, which limits their practicality. On the
other hand, the spatial features remain the dominant factor
in general in identifying different workloads.

To summarize our experimental results, the effectiveness
of the workload identification based on spatial features is
advantageous to the mechanism using temporal features,
considering the trade-off between the identification accu-
racy and the design complexity. Through experiments, we
select 26 as the optimal partition number, while the length of
the branch address sequence is selected to be 42000 in order
to enable real-time identification. As a result, our workload
forensics framework is implemented based on the spatial
features with the optimal setting as well as the ANN model.

TABLE 6: Summary of effectiveness of hardware design

Classification sigmoid at output layer

accuracy inclusion exclusion

FP width
32-bit 56.12% 96.37%

16-bit 56.12% 96.37%

7.2.4 Anomaly Detection
The effectiveness of the extension for anomaly detection
was evaluated through experiments that selected arbitrary
legitimate program classes as suspicious. The multi-class
classifier was then trained with the remaining classes only
while the unknown classes were included in the testing set
only. The configuration of the machine learning algorithm
(i.e., the features, partition size, sequence length, etc.) corre-
sponds to the optimal setting concluded in the experiments
for workload identification. Figure 9 illustrates the false
negative (i.e., suspicious process classified as legitimate) rate
as well as the false positive (i.e., legitimate process clas-
sified as suspicious) rate of identifying suspicious process
classes according to different threshold settings. As may be
observed, the hardware-friendly extension performed fairly
well in filtering suspicious programs, reach an average FN
rate of 4.5% and FP rate of 2% respectively, which con-
firms our conjecture. We note that although more advanced
anomaly detection algorithms may potentially improve the
results, significant design overhead may be introduced. On
the other hand, the incurred overhead of our current solu-
tion, which extends the original design with the threshold
comparison, is negligible. Nevertheless, the trade-off can be
balanced in a different favor according to the specification
and the available resources.

8 HARDWARE DESIGN EVALUATION

In this section, we evaluate the effectiveness and the design
overhead of the hardware design of the proposed frame-
work, according to the optimal configuration derived from
the simulation results. The framework was implemented on
Zedboard and was integrated with an ARM Cortex-A9 core.
The processor operated at 333 MHz, while the ARM Core-
Sight Core and our framework were configured to operate at
100 MHz. The ANN is configured with 26 input features and
one hidden layer with 10 neurons, which provides the best
identification performance with minimal implementation
overhead in our experiments. Two different instances, which
employ the IEEE 754 half precision FP (16-bit) as well as
the single precision FP (32-bit), were developed to evaluate
the impact of the FP precision on the effectiveness of the
framework. Furthermore, the inclusion and the exclusion of
the sigmoid function at the output layer were evaluated as
well to elaborate the impact of the function approximation
on the effectiveness. Hence, four different implementations
were evaluated accordingly.

8.1 Effectiveness
The classification accuracy of the four implementations of
the proposed framework is shown in Table 6, respectively.
The best-case result matched the results obtained in the
software simulation, which corroborates the effectiveness of
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Fig. 9: False negative rate vs. false positive rate according to the threshold for different program classes (subset)

TABLE 7: Summary of design overhead

Processor &
peripheral

Framework

LUT util(%) 12.67% 1.84%

BRAM util(%) 2.14% 1.79%

DSP util(%) 4.09% 0.91%

IO util(%) 32.5% 2.5%

Power (W) 2.072% 0.044%

our design. On the other hand, as may be observed, the
selection of different FP precision has no impact on the
effectiveness while the inclusion of the sigmoid at the output
layer dramatically decreases the classification accuracy for
both precisions. This can be explained by the use of the
max-pooling mechanism by an ANN-based classifier in
predicting. In particular, given arbitrary input vectors, an
ANN generates its prediction based on the arguments of
the maxima, or arg max, rather than the absolute values. As
a result, as long as the ordering in the output vectors is
retained, the slight error introduced by different FP preci-
sion can be ignored. On the other hand, the approximation
of the sigmoid function applied in our design corrupts the
original ordering (e.g., ”A is greater than B” is approximated
to ”A equals B” when both A and B are larger or smaller
than a threshold), and thus, leads to erroneous results in
prediction. In a nutshell, it is observed that the exclusion of
the approximated sigmoid function is necessary while the FP
precision is insignificant, leading to a final design with half
precision FP associated with the exclusion of the sigmoid at
the output layer.

8.2 Overhead Estimation
We evaluate the design overhead of the proposed frame-
work with the implementation derived from Section 8.1 in
two aspects as follows: (1) the area and power overhead in-
troduced by our framework compared with an ARM proces-

sor and, (2) The estimated average latency, which measures
the timing from the start of the workload execution to the
point when framework outputs the identification result.

As shown in Table 7, the entire framework introduced
additional use of 1.84% LUTs and 0.91% DSP, most of which
are contributed by the FP arithmetic components. The addi-
tional BRAM utilization, on the other hand, is contributed
by the neural network weights and bias ROMs. Moreover,
an additional 2% overhead is introduced in the power
consumption. Whereas our framework is non-intrusive to
the processor execution flow, there is a delay between the
start of a program execution and the identification outcome.
Such latency depends on the average branch frequency BF
(in percents) in a program profile. As a result, the average
latency to identify a workload will be T(identify) = T(feat.
gen.) + T(Stand.) + T(classify) = 42000 ÷ BF × CPI + 234 +
2250 cycles (calculated by the equations defined in Section
6.2 and Section 6.3). Assuming the average BF to be 15%
(according to the statistics in [24]) and CPI to be 1 to simplify
the calculation, the proposed framework takes 865.68 µs to
identify a workload at a 333 MHz processor clock with a 100
MHz framework clock.

9 DISCUSSION

9.1 Configuration Setup and Update

While a hardware-based solution is advantageous in a
prompt response and intrinsic security against the software-
based counterpart, it lacks the flexibility in reconfiguration.
As illustrated in Figure 5 and 7, the selection of the sequence
length and the partition number in our scheme has great
effect on the classification accuracy and potential overhead.
However, the optimal values vary case by case, thus, no
theoretical optimal value can be studied. The same fact
applies to the weights and bias in the neural network
design. As a result, these uncertainties leads to difficulties
in specifying the underlying hardware design. Nonetheless,
our evaluation suggested an empirically good start point,
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e.g., 42000 of the sequence length that needs a 16-bit register.
Such a register, in fact, is able to support a maximum
sequence length of up to 65536. Reprogrammability can be
introduced further to enable adaptability to different use
cases. Practical solutions may include reprogramming the
configuration through a secure physical channel or firmware
update through secure network, etc. The serial-based neu-
ral network design employed in the proposed framework
alleviates the difficulty of modifying the neural network
structure as well since the number of neurons at each layer
can be parameterized and reprogrammed. Nevertheless, the
enhancement in the flexibility of hardware-based solutions
remains an open question.

9.2 Potential Attack Model

Theoretically, a successful attack to the proposed framework
may be launched through contaminating the system func-
tionality or spoofing the detection algorithm. Due to the
nature of our hardware-based solution, the former type of
attack may assume the access to tamper with the hardware
design, or assume the physical access to contaminate the
system configuration after the deployment. On the other
hand, the latter type of attack requires reverse-engineering
of the machine learning algorithm, and proficiency in devel-
oping software which is able to spoof the reverse-engineered
algorithm while carrying malicious payload. In fact, both
attack scenarios have to make relatively strong assumptions
about the capability of the adversary, which result in lower
probability of real-world attacks.

9.3 ASIC Design

Unfortunately, an IoT system may not always leverage an
ARM core embedded with the CoreSight module (or similar
hardware tracking module). In such case, as mentioned in
Section 3, a custom, CoreSight-equivalent, data tracer is
required for data collection. Similar to an In-Target Probe
device, the custom tracer needs to be allowed to probe
some control registers (e.g., context ID register in ARM
architecture or CR3 in Intel architecture) and the program
counter of the underlying CPU. A data transmission unit
with the probing capability can then become the alternative
of the CoreSight module in our scheme and work seamlessly
with the other components.

10 RELATED WORK

10.1 Hardware Tracing

The ARM CoreSight hardware tracing module has been
involved in various security-oriented research. For example,
ARMHEx implements a hardware-based Dynamic Informa-
tion Flow Trace (DIFT) method based on the ARM Core-
Sight, which achieves a dramatic reduction in instrument
time overhead compared with its software-based counter-
part [25]. On the other hand, Ninja develops a malware
analysis framework on the ARM processor, which employs
the ARM CoreSight to implement the underlying tracing
and debugging system [26]. Furthermore, due to its feature
of the control flow tracing, the CoreSight module naturally
benefits defense solutions to detect control flow hijacking
attack, e.g., Code Reuse Attack (CRA) [27].

10.2 Hardware-based System Security
State-of-the-art system security research tends to employ
dedicated hardware components due to its innate immu-
nity to software attacks. For instance, a workload forensics
method has been proposed in [28], utilizing instructions
raising iTLB miss, collected through the hardware, to model
the program behavior in order to perform workload forensic
analysis. While their work involves knowledge dedicated
to x86 instruction set, our proposed methodology, although
it leverages ARM CoreSight module in an ARM-based en-
vironment, is assumed to be generic since we model the
program behavior using architecture-agnostic data.

The possibility of the hardware-assisted malware detec-
tion was explored as well, while similar methodologies can
be shared. For example, performance counters have been
widely adopted to model program behavior, upon which 2-
class classification algorithms (rather than multi-class clas-
sification) are applied in order to detect malware [29], [30],
[31], [32]. Alternative architectural-level information, e.g.,
instruction opcodes, memory address references, the binary
code of system call routines, etc., can also be leveraged to
perform the similar analysis [33], [34], [35], [36].

11 CONCLUSION

We proposed a hardware-based workload forensics frame-
work for IoT system, facilitated by the CoreSight module.
Compared with the software-based solutions, our proposed
framework maintains immunity to software tampering and
enables non-intrusive real-time analysis. We extensively ex-
plored the potential features that can be extracted from the
trace generated by CoreSight module, upon which several
machine learning models were evaluated. The parameters
used for feature generation (i.e., the partition number and
the sequence length) were optimized, leading to an average
identification accuracy of 96.37%. The hardware implemen-
tation was evaluated on the Zedboard FPGA, integrated
with an ARM processor, which incurred insignificant design
overhead and identification latency.
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