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Abstract—Ensuring high reliability in modern integrated cir-
cuits (ICs) requires the employment of several die screening
methodologies. One such technique, commonly referred to as die
inking, aims to discard devices that are likely to fail, based on
their proximity to known failed devices on the wafer. Die inking
is traditionally performed manually by visually inspecting each
manufactured wafer and thus it is very time-consuming. Towards
reducing this cost, we introduce a novel machine learning-based
methodology to learn and automatically generate the inking pat-
terns from the failure maps, thus eliminating the need for human
intervention. Effectiveness is demonstrated on an industrial set
of manually inked wafers.

Index Terms—Inking, die screening, automation.

I. INTRODUCTION

AS THE complexity of contemporary Integrated Circuits
(ICs) and the volume of their deployment in reliability-

stringent domains (e.g., automotive, health, aerospace, finan-
cial) increase, the need for more efficient and dependable
testing solutions becomes paramount. To this end, several
techniques have been introduced in all stages of the IC
manufacturing process. While these techniques significantly
improve manufacturability, testing, and production yield, the
detection of latent defects remains a mounting challenge [1],
both in terms of complexity and in terms of cost.

A common practice for identifying latent defects is burn-
in testing, during which the chips are subjected to higher
frequencies, voltages, and temperatures. The goal of these
stress conditions is to accelerate the manifestation of any
imminent, but latent defects. Although burn-in tests are effec-
tive in identifying the majority of such manufacturing imper-
fections, this incurs increased complexity of test-floor logistics
and significant cost overhead [2], [3], which can be prohibitive
for high-volume manufacturing. Aside from the cost, burn-in
testing sometimes suffers from low coverage, meaning that the
stress testing conditions do not exercise the entirety of an IC,
resulting in defective devices escaping testing.
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To complement, or sometimes eliminate burn-in testing,
depending on the reliability requirements of the product, sev-
eral screening techniques [4], [5] are often used, each based on
different criteria. The general premise behind these techniques
is that any significant abnormality can be an indication of the
presence of latent defects and, therefore, proactive screening
is justified. Techniques such as Dynamic Part Average Testing
(DPAT) [6] aim to identify the passing die that exhibit marginal
test measurements relative to the main distribution of each
wafer. A more static screening technique aims to filter out die
based on their wafer location, commonly their distance to the
edge of the wafer. This is based on the observation that die
near the edge of a wafer are more likely to be defective and
can be discarded even prior to probe testing. Another set of
techniques aims to alter the test process according to character-
istics of the silicon under test, in order to better identify outlier
devices that are likely to fail during deployment. These tech-
niques belong to a more broad category of techniques called
adaptive testing [7], that can target other manufacturing goals,
such as cost reduction, and yield improvement.

Manual inking, a popular screening technique based on the
observation that manufacturing defects are spatially correlated
on the wafer surface [8], is also being used to filter out the
devices that are likely to exhibit latent defects. In other words,
the assumption behind this common practice is that clusters of
failing die on a wafer suggest a systematic local discrepancy
that can lead to an early-life failure. Figure 1 shows the flow
of the manual inking process as it is currently performed. For
every newly manufactured wafer, once the specification testing
is completed and wafer-level failure patterns have been gen-
erated, a reliability expert visually inspects the failure map
of each wafer and manually marks any die locations that are
likely to be defective. This decision is based on the proximity
of each die to neighboring failed die, and the types of failure
in that cluster. Figure 2 shows inking examples for the three
most common failure pattern types, namely, edge, scratch, and
blob type. Dark blue and red-colored die denote passing and
failing die correspondingly, while the light blue colored die
indicate the manual inked locations. Edge type patterns are
indicated by clusters of failing die near the edge of the wafer.
Scratch patterns are identified by streaks of failing die along
the surface of the wafer and are usually caused by human error;
therefore, they are far rarer than the other two types. Lastly,
wafers exhibiting blob type failure patterns contain patches
of failing die at several locations on the wafer but not solely
on the edge. Although inking is a cost-effective solution, as
compared to the expensive burn-in testing, it is nevertheless a
manual process that requires human intervention. This entails
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Fig. 1. Current inking process.

Fig. 2. Examples of each failure pattern types.

added time, cost, and often subjective discrepancies between
inking decisions. As a result, manual inking is inconsistently
performed between different engineers, and often with minor
discrepancies between inspections by the same engineer.

In this work, we propose a pattern recognition-based
approach for eliminating or limiting the degree of human inter-
vention required for inking a manufactured wafer. Our method
relies on the testing results (i.e., pass or fail) generated from
Automatic Test Equipment (ATE), to predict the wafer loca-
tions that are likely to contain defective die. To achieve this,
a number of features reflecting the defect proximity of each
die is extracted, and a classification model is trained based
on them. The dependent variable of the classification model
originates from the manually inked failing die patterns. This
machine learning-based approach, when compared to static
solutions that use simple statistics and image processing tech-
niques, has the advantage of being data-driven. Therefore,

readily applicable with minimal modifications to all existent
products where manual inking is currently performed. The
proposed methodology follows the online-learning paradigm
which compared to batch learning-based approaches, allows
for a small initial dataset to be used for training and can
also adapt to future inking policy changes without requiring a
complete, thus time-consuming re-training of the model.

It is important to emphasize that all of the above device
screening methods reduce the number of marketable devices,
without failing any of their specifications tests. This naturally
reduces the overall manufacturing yield but also posses a cru-
cial trade-off between the screening aggressiveness and yield
loss. When any of the methods above is performed overly
aggressively, resulting in the screening of devices that are
unlikely to contain any latent defects, yield loss becomes the
primary driver of increased manufacturing cost. Especially in
the case of manual inking, where the degree of inking is driven
only by the customer quality incidents (CQI), product engi-
neers are often incentivized to overly ink, thus significantly
increasing the yield loss. In this work, our main focus was
to automate the current manual process, and not to elimi-
nate all of its drawbacks. Since our proposed method relies
on the manual inking decisions to train the proposed clas-
sification model, it is consequently expected to result in an
aggressive automated inking, when the manual inking was
performed aggressively. To mitigate the effects of this phe-
nomenon, our proposed methodology requires the training to
be performed using a dataset of manually inked wafers, gen-
erated by multiple product engineers. This requirement will
allow the model to extract a strategy that is closer to the
consensus between the engineers, resulting in less aggressive
inking of the wafers. Moreover, a knob is being proposed that
enables adjustments of the inking degree without requiring
complete retraining of the model.

The remainder of this paper is organized as follows. In
Section II, we discuss in detail prior work on statistical-based
and automated approaches to inking. In Section III, we intro-
duce the proposed approach for automating the manual inking
process. Experimental results that demonstrate the effective-
ness of the proposed method using industrial data are presented
in Section IV, and conclusions are drawn in Section V.

II. PRIOR WORK

Identification of outlier devices with the goal of dimin-
ishing the number of test escapes or customer returns has
been a longstanding topic of research. Various methods have
been proposed that can be grouped into three main categories
i) adaptive testing-based ii) statistical-based, and iii) spatial-
based outlier screening.

A. Adaptive Testing-Based Outlier Screening

The first category of die-screening techniques relies on the
alteration of the test process in order to identify devices that
are likely to fail during deployment. Often a common trade-
off is the associated cost when a large number of tests are
being performed to identify devices that exhibit latent defects.
In High Volume Manufacturing (HVM), such trade-off drives
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the elimination of tests that have low die fallout rates. Several
studies focus on the selection of the minimum number of tests
capable of detecting defects while keeping the test cost min-
imal. In [9], [10], the authors demonstrated a technique for
selecting tests targeting specific defect mechanisms based on
the wafer-level e-test measurements or a list of mandatorily
performed tests. Towards the same goals of cost reduction and
test quality, the authors of [11] presented a machine learning-
based methodology for adaptively selecting groups of probe
tests according to the e-test signature of each tested wafer.

B. Statistical-Based Outlier Screening

The second category includes screening methods that take
into account the distribution of specific die-level test measure-
ments to decide whether a particular passing device is likely
to contain latent defects. Dynamic Part Averaging Testing
(DPAT) is a statistical methodology that was introduced as a
guideline by the Automotive Electronics Council (AEC) [6] in
order to improve the reliability of electronic products used in
the automotive industry. In contrast to the traditionally applied
testing in which a lower and upper limit for every test is
defined and applied for all manufactured wafers, DPAT adapts
the limits according to the test distribution of each wafer. In
detail, once a wafer has completed wafer sort, the wafer-level
distribution of all test measurements is known, and several
statistics can be calculated. These statistics are subsequently
used to identify any passing outliers which are then discarded
or marked for further testing. In its purest form the DPAT
limits are adjusted as follow:

DLLi = Mean(xi) − k × Std(xi)

DULi = Mean(xi) + k × Std(xi)

where DLL and DUL stand for Dynamic Lower Limit and
Dynamic Upper Limit respectively, k denotes the threshold
parameter, and xi the ith test measurements of a given wafer.
Other variations of DPAT, use robust statistics [12] in order
to eliminate the effects of outlier measurements. In [13] the
authors presented the effectiveness of DPAT when performed
at final testing with the use die tracing tools.

All the above techniques have the benefit of being auto-
mated, thus easily integrated into the production flow, as
well as, of providing control over the level of screening
performed, by adjusting their corresponding threshold param-
eters. Unfortunately, many practical limitations hinder the
performance of the techniques mentioned above. These lim-
itations include the multimodality of the test measurement
distribution and the distribution shifts due to post-silicon
calibration. Multimodality often occurs in high volume manu-
facturing (HVM) and can be best observed through wafermap
plots where similarly-colored groups of die locations manifest.
Those groups correspond to devices that have been affected
similarly by one or more discrete processes. Examples of such
processes are the multi-site testing where discrepancies in the
measurement equipment between sites occur often, or due to
reticle shot dissimilarities. If the effects of multimodality are
not taken into account when applying DPAT, many statistics
will be skewed, and as a result, the outlier screening will be

invalid. Several techniques have been industrially adopted to
address the issue of multimodality, that rely on the application
of corresponding statistics on disjoint sets of die locations [14].
The selection of those sets is made in accordance with the
source of multimodality. For example, if the only known
source of multimodality is site-to-site variation, DPAT can be
performed per site, thus obtaining robust statistics for calcu-
lating unique test limits for each site. On the other hand, when
several multimodality sources affect the test distribution such
that no disjoint sets of die can be determined a priori, the
effectiveness of DPAT gets diminished. Post-silicon calibra-
tion also affects the underlying distribution of specific test
measurements by tuning marginal devices within the adapted
passing limits, possibly concealing potential latent defects.
Despite the limitations above, statistical-based outlier screen-
ing methods are used universally but often are complemented
by other methods, which we will describe below.

Other statistical-based die-screening techniques perform
their analysis on a multivariate space instead of per-test basis.
An example of such technique uses Principal Component
Analysis (PCA) to identify the devices whose principal com-
ponents are not sufficient to reconstruct the original test mea-
surements [15]. In [16] the authors used PCA in combination
with a Support Vector Machine (SVM), one-class-classifier to
detect devices with latent defects, both preemptively as well
as reactively after CQIs have occurred. Authors in [17] used a
combination of the moving limits and correlation testing tech-
niques in order to identify outliers when the ICs structurally
similar blocks and whose tests are highly correlated.

C. Spatial Outlier Screening

In this category of screening techniques, the main criterion
is the proximity and density of failures to a given die. Their
utilization in production is to resolve some of the limitations
statistical-based methods exhibit. The underlying premise for
this family of methods is that die located close to a cluster
of failing are more likely to contain latent defects, despite
the value and relative position in the distribution of their
test measurements. For this reason, spatial outlier screening
complements the statistical-based methods and is often used
complementarily.

Several attempts to automate the manual inking process
have been made by extracting neighborhood failure statis-
tics and using hard-coded rule-based decision algorithms. One
such approach is the Good Die in a Bad Cluster (GDBC) [12]
that inks a device as failing if the number of failed devices
surrounding it exceeds a specific threshold. A variation of this
is the Good Die in a Bad Cluster with Specific Bins (GDBC
SB) [12] that takes into account the type of failure of each die
as denoted by the assigned bin number. This means that each
failure bin will be associated with a threshold, indicating the
number of surrounding failed die of that bin are needed for a
passing die to be inked. A more aggressive technique called
Bad Bin in a Bad Cluster (BBBC) [12], inks the surround-
ing die of a cluster if the number of failed die in that cluster
is above a given threshold. In [18] have proposed a different
approach, called Nearest Neighbor Residuals (NNR), which

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 02,2020 at 22:18:05 UTC from IEEE Xplore.  Restrictions apply. 



298 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 20, NO. 2, JUNE 2020

Fig. 3. Overview of the proposed on-line learning automated inking method.

performs a statistical analysis of tests after calculating residu-
als based on the die neighborhood. Variations of this technique
have been used successfully in the industry to detect burn-in
failures [19].

Although automation of the inking process can be achieved
by developing a rule-based system that utilizes the failure maps
as those described above, designing, maintaining and adapting
such system to new products can be a mounting challenge.
This system would require a series of rules to be defined
and coded, avoiding conflicts, and taking into account sev-
eral parameters such as the location, topology, density, and
failure type of each failed die. Moreover, adaptation of these
methodologies for existing products requires the reverse engi-
neering of the current manual inking practices, to be reflected
by the algorithms parameters.

III. PROPOSED APPROACH

To address the limitations of the rule-based spatial screen-
ing methods and automate the manual inking process, in this
work, we introduce an online classification modeling based
methodology. We seek to emulate the decision process that
is usually performed manually by an engineer, using either
previously inked wafers or by integrating the model learn-
ing in the production flow. Figure 3 shows an overview of
the proposed approach. After specification testing, the failure
maps are used to extract useful features which in turn, are uti-
lized for training or predicting the inked die locations. Once
these wafers have been automatically inked, an evaluation step
for assessing the effectiveness of the automated inking system
follows. During this step, product engineers (PEs) have the
ability to visually inspect the inked wafer and adjust the pre-
dicted ink patterns by marking additional die or unmarking
inked ones. Any potential corrections by the product engineers

are then used to update the inking model. This online learning
flow is closer to the current manual inking paradigm, which
often includes the evaluation of the screening decisions by a
committee of engineers. At the same time, it allows for model
initialization through batch learning when a historical dataset
is available. In other words, the online learning schema enables
the training and improvement of the model to be performed
either iteratively or by using previously collected datasets. At
the same time, once the confidence in the model is high, inking
becomes fully automated and does not require any intervention
by the product engineers.

A. Feature Extraction

To simplify the test-floor logistics, one of the constraints
for developing a solution was to rely only on the pass/fail
decisions of the specification test and avoid the use of the
actual test measurements. As a result of this, our classifica-
tion model must be trained by features that can be extracted
from the map of failed die locations for each wafer. These
features must be selected so that they can portray the failing
conditions in the neighborhood of each die. Similar to the spa-
tial outlier screening methods GDBC and BBBC, to enhance
the prediction accuracy of our model, rather relying only on
the pass/fail status of each die, the different binning groups
were also considered. Usually, the binning groups denote dif-
ferent types of defects or performance characteristics of each
chip, and a different identification number, commonly termed
bin number, gets assigned by the test program.

The feature extraction algorithm shown in Algorithm 1
works as follows. Since our goal is to capture the local failing
conditions of each non-failing die, we calculate the number of
failing neighbors for each bin number. This process is repeated
for distances up to a predefined maximum neighborhood size.
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Algorithm 1: Feature Extraction

1 for d in passing die do
2 for b in failing bins do
3 for k in max_k ; // max_k: The maximum

considered distance for a
neighborhood

4 do
5 features = GetNumberOfNeighbors(d, b, k);

// Function that returns the
number of neighbors within k
distance of die d that belong
to bin b

6 end
7 end
8 features += GetDistanceToEdge(d); // Function

that returns the distance of die d
to the nearest edge of the wafer

9 features += GetLotFailureRate(d); // Function
that returns the failure rate of die
d across the wafers in a lot

10 end

Fig. 4. Feature extraction example for a maximum die distance of three.

In contrast to the static methodologies presented in Section II,
the significance of each bin, does not have to be taken into
account during the feature extraction since the importance of
each feature will be evaluated by the model training process.

Figure 4 summarizes the failure density-based feature
extraction for a 9×9 die segment of a wafer. Blue and red col-
ored boxes correspond to failing die of different failure types,
which would have been expressed by different bin numbers in
the probe-test report. The feature extraction process counts the
number of failures at certain distances away from the target
die, as shown by the count row in Figure 4, for a maximum
die distance of three. Generating these counts separately for
each different bin number is essential as it allows the model

to infer the significance of each failure type for the inking
decision.

The implementation of the above-mentioned
GetNumberOfNeighbors function was based on the
K-Dimensional Trees [20] algorithm to avoid the high
computational complexities of the brute force approach. This
algorithm works by eliminating areas of the search space
based on the already calculated distances, thus avoiding
unnecessary calculations for very distant die locations. The
parameter that is used for this elimination is the radius
(k), which in our implementation is iteratively increased
until a predefined maximum distance is reached. With this
technique, we aim to increase the granularity of the various
levels of proximity to defective die, which is an essential
factor in our application. In other words, extracting features
for different neighborhood sizes, allows the model to weight
failure density proximate to the target die higher compared
to a more distant one. As it will be shown in Section IV, the
evaluation of the maximum neighborhood distance is done
by comparing the accuracy of the generated models while
increasing the max_k.

As proposed in [21] and shown in line 8 of Algorithm 1,
we append the distance of the die to the nearest edge of
the wafer, in order to assist the modeling of the commonly
occurring wafer edge defects. With this feature, the model is
able to accentuate clusters of failures that are near the edge
compared to ones closer to the center even if they consist of
identical bins.

In this work, we propose the addition of one more fea-
ture, called lot-stack, that represents the failure sensitivity of
a die location according to the failure rate across all wafers
in the same lot. Once the internal loop for each failing bin
is completed, and the corresponding number of failing neigh-
bors has been determined, another feature is appended to the
feature vector. This feature is simply the failure rate of each
passing die location across the remaining wafers in the same
lot, taking values within [0,

cx,y
N−1 ], where cx,y is the number

of failing die in the lot for die coordinates x, y and N is the
number of wafers in a lot. A high intra-lot failure rate for
a die location can indicate a systematic cause across wafers
in the same lot. This is often the result of a flaw in one or
more of the manufacturing procedures that are common for
all wafers in a lot. This addition of a single feature allows
the model to ink areas across all wafers in a lot, and it imi-
tates the manual process performed by engineers that use
the same metric in order to enhance their inking decisions.
An alternative approach would be to ink the die locations in
a post-prediction step by simply using a single hard-coded
threshold, instead of relying on the model to utilize the lot-
stack feature. The benefit of entrusting the model for making
this decision is twofold. First, we can utilize existing histor-
ical inking data to help the model identify the appropriate
threshold per product as well as to adjust it based on the
future corrections made by the product engineers. The sec-
ond benefit is that the final decision becomes a function of
the remaining features allowing for a more dynamic threshold
according to the location of the die (i.e., as the lot-stack fea-
ture interacts with the distance from the edge feature) or the
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types of failures (i.e., interacting with the bin failure density
features).

B. Classification Modeling

The goal of our proposed approach is to predict the inking
decision which takes two states, namely, ink and no-action,
for each non-failing die on a given wafer, based on the fea-
ture vector explained in the previous section. This task is best
achieved by the utilization of a multivariate binary classifier,
which goal is to learn a hypothesis h(X) to better separate
the two classes, as a function of the feature vector X. The
selected classifier, as well as the produced hypothesis, must
satisfy several practical requirements.

• Given the nature of the extracted features, the decision
boundary will most likely be non-linear; thus, the selected
classifier must be capable of producing such boundaries.

• The classifier must support online learning to allow for
seamless integration to current production flows.

• Prediction and model updating must be computationally
efficient to minimize the time required for a wafer to be
inked, especially for products whose wafers consist of
thousands of devices.

Batch learning, which is the most common classification
learning paradigm, requires the availability of multiple input-
output pairs (xi, yi), to learn the separation boundary. This
approach, although technically possible [21], is not suitable
for automating the manual inking process in a production envi-
ronment. This is due to the characteristics of the training data;
specifically, that input data arrive continually as each wafer
lot is being manufactured and tested. Another characteristic is
that the output inking decision requires human feedback mak-
ing the solution less fitting to the batch learning approach.
The alternative approach, referred to as online learning, can
process a single input-output pair and the size of the training
population of pairs does not have to be known a priori. One
of the main benefits of online learning is that it is incremental
and does not require data to remain available after its ini-
tial utilization. In contrast, updating a batch learning-based
model requires access to data from all previously utilized
wafers along with data from the new wafers. Although stor-
ing the failure wafermaps is already a common industrial
practice, the re-training of the model in the batch learn-
ing scheme would be prohibitively expensive, given the long
time required to access large sets of data and re-run the fea-
ture extraction process. Another benefit of the batch learning
scheme is the ability to revert to previously trained models,
provided that before each model update, the model objects
are serialized and stored. Several models [22] support online
learning, some of which include Multilayer Perceptron [23],
On-line Random Forests [24], Incremental Support Vector
Machines [25], Naive Bayes [26], and Learn++ [27]. In this
work, we use a Multilayer Perceptron (MLP) classifier with
Stochastic Gradient Descent (SDG) [28], [29].

An MLP is a feed-forward artificial neural network consist-
ing of at least three layers, namely an input, an output, and
a hidden layer in between. The number of hidden layers and
their connectivity affects the level of functional complexity

the network is able to approximate. The hidden and output
layers consist of neurons that implement a non-linear activa-
tion function, usually a sigmoid or unit step function. Each
layer is connected to its neighboring ones through synapses,
which are assigned weights and serve the purpose of adjusting
the strength of the carrying signal. Due to the multiple lay-
ers and the use of non-linear activation functions, MLPs are
universal approximators capable of learning non-linear sepa-
ration boundaries when used for classification. Moreover, it is
important to note that the architecture of the artificial neural-
network described here might not be optimal for other devices
and other wafer sizes, as the corresponding complexity of the
inking strategy changes. To identify the proper architecture, an
early set of wafers can be used to determine the various hyper-
parameters (e.g., number of hidden layers) using well-known
tuning methods. Alternatively, the proposed architecture could
be used initially, and once a sufficient number of manually or
semi-automated (automatically inked, but manually corrected)
wafers have been collected, it can be updated, through a similar
hyperparameter tuning process.

A multilayer perceptron is trained using backpropagation
which allows the weights of all the layers to be adjusted by dis-
tributing the output error to all previous layers. Traditionally,
during backpropagation batch gradient descent optimizers are
used to adjust the weights of the neurons. Unfortunately, while
the classic gradient descent algorithm is efficient for relatively
small datasets, it has the added disadvantage of requiring all
training samples in order to minimize the error. Alternatively,
the Stochastic Gradient Descent (SGD) algorithm perturbs the
weights at each iteration by taking into account a single train-
ing sample at a time. This property of SGD not only allows
training of the MLP when large training datasets are used but
also enables the transition from batch learning to the online
learning paradigm.

C. Post-Prediction Processing

Certain operations are better performed after prediction that
enhance the automated inking. In this work, we propose two
such post-prediction techniques, namely inking degree tuning
and scratch correction.

1) Inking Degree Tuning: Due to the subjectivity of man-
ual inking, models have to distinguish the noise (i.e., overly
aggressively inked die locations) from the correctly inked loca-
tions. Although failure density is the primary criterion that
drives the inking decision, in the interest of time product
engineers often use inking tools with regular shape brushes
(e.g., square or circle shaped), instead of inking one die at a
time. Based on the above, the automated inking model usu-
ally performs a less conservative inking, marking fewer die
locations compared to the manual approach. Although this
is desirable in most cases, as it reduces unnecessary yield
loss, sometimes a more aggressive inking is preferable. To
enable such post-prediction calibration, an image-processing-
based step was introduced in [21]. During that step, the size
of the automatically inked areas was reduced or increased by
a pre-determined and hard-coded degree.
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In this work, we propose an alternative approach for post-
prediction tuning of the inking result based on the confidence
estimation of the inking prediction. In a multilayer perceptron,
the activation value of the output layer can be used as a reliable
prediction confidence metric [30]. This technique allows for a
dynamic adaptation of the degree of inking performed by the
proposed methodology by adjusting the decision threshold (t).
If pi denotes the probability estimate for die i to be inked, the
default classification is performed by evaluating the [pi ≥ 0.5]
Iverson bracket for all die locations. By generalizing the above
to [pi ≥ t], we can adjust the degree of inking by increasing
or reducing t ∈ [0, 1]. When t ∈ [0, 0.5) a more aggressive
inking is performed. On the other hand, when t ∈ (0.5, 1] the
prediction is less aggressively adjusted, thereby resulting in
fewer inked die locations.

2) Prediction Confidence Monitoring: Another advantage
of using the probability estimations instead of the binary ink-
ing decision is to allow for the integration of a monitoring
routine. Such a routine can be used during production to notify
the product engineers that the inking model has low confi-
dence for a provided input failure map, thus initiate a manual
review of the input pattern and the automated inking deci-
sion. Such automated monitoring capability is essential in an
industrial setting as it eliminates the need for constant super-
vision. This is especially the case during the mature phase of
the model in our proposed automated inking solution, where
no human intervention is needed, and all inking is performed
automatically.

To achieve this, the monitoring routine has to calculate
wafer-level statistics based on the distribution of the probabil-
ity estimates. For example, a routine that periodically checks
newly inked wafers can evaluate the Brier Score (BS) [31] of
the probability estimates (pi). When BS is above a predefined
monitoring threshold tm, a notification can be sent to the prod-
uct engineers to evaluate the wafer manually and, if needed,
provide the model with the corrected inked wafermap in order
to update its weights.

3) Scratch/Line Correction: The main strength of the
proposed machine learning-based methodology is the iden-
tification of blob and edge-type clusters on the wafer, that
are more likely to be inked. In contrast, the proposed model
has limited performance against scratch-type ink patterns.
Specifically, when there are multiple co-linear blobs of fail-
ures, the model can identify their neighborhood as one that
requires inking, but it cannot interpolate between the blobs to
form a line. This limitation is by design as we seek to maintain
the simplicity and interpretability of the feature vector and any
attempt to model scratch-type inking patterns would require
the addition of more complex features. Instead, to address this,
we propose an image processing post-prediction correction
methodology, capable of identifying any commonly occurring
scratch type inking pattern, thus improving the automated die
inking result.

Our proposed methodology uses the failure maps as inputs
and includes the following steps:

1) Image transformation of the failure map
2) Filtering to remove sole failures and keep only clusters
3) Skeletonization of the remaining clusters

Fig. 5. An example of the proposed scratch correction algorithm with the
intermediate steps and final inking result.

4) Skeleton filtering based on hard-coded shape parameters
5) Line interpolation for each group of co-linear line-

segments. Optionally, extrapolation can be used to
extend the inked area to the edge of the wafer.

The first step above is required in order to subsequently
apply image processing filters and transformations. It involves
converting the failure wafermaps to binary images where
colors indicate passing and failing devices. Once the image
representation of a wafer is available, it is essential to remove
any individual die or small clusters of die as those are unlikely
to be part of any scratch patterns. This operation is performed
using the common mathematical morphology called opening,
which is a succession of the erosion and dilation operations.
Figure 5 shows the result after every step of the proposed
scratch detection automated inking algorithm. Figure 5(a)
shows the result of the binary image transformation for a wafer
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rectangular slice. Each black square represents a failed die,
while white color squares represent the passing ones. After
the second step of the proposed algorithm, namely the opening
operation, all the small-sized clusters are removed, as shown
in Figure 5(b).

The resulting image is then passed through skeletonization
transformation [32], which reduces every cluster to a 1-die
wide representation, thus better-highlighting clusters whose
shape is closer to lines, as shown in Figure 5(c). During the
skeleton analysis, which follows skeletonization, every line
segment is filtered based on its co-linearity with other line
segments and its size. Small line segments are removed as
they represent failure clusters that are not line-shaped, while
any long co-linear segments are kept. Figure 5(d) shows the
result of filtering and Figures 5(e-f) show the final inking
results, where the green-colored squares represent the die that
will be automatically inked as they are likely to be affected
by a scratch-type wafer defect. The option to extrapolate the
detected line to the edge of the wafer allows product engineers
to select whether they want to ink die outside the detected
line segment. Figure 5(e) shows the result without extrapo-
lation while Figure 5(f) shows how extrapolation would ink
the devices that fall on the best fit line. Provided that this
option can be enabled on an ad-hoc basis, it can allow product
engineers to select the wafers that need to be more aggres-
sively inked, beyond the starting ending points of the detected
line. Although this feature can be enabled permanently, its
use should be limited only on scratches whose detected length
already covers a major portion of the wafer or their true shape,
as indicated by failing die, matches the predicted curve. For
example, the extrapolated line shown in Figure 5(f), although
it represents the best-fitted curve for the two detected clus-
ters, the inking confidence outside the two clusters should be
considered low given the extrapolated ink pattern only covers
two known failures, which are unlikely caused by a systematic
wafer-level scratch defect.

IV. EXPERIMENTAL RESULTS

A. Dataset Overview

To evaluate the effectiveness of the proposed methodol-
ogy a dataset of several hundred thousand devices across 120
industrial wafers was used. After specification testing, whereby
all failing devices were identified, each wafer was manually
inked by product engineers and the locations of the inked die
were indicated in the dataset by a specific bin number. Bin
numbers corresponding to different failure types were also pro-
vided, allowing the proposed model to infer the significance
of each failure type with respect to the inking decisions, as
summarized in Section III-A.

B. Automated Inking Accuracy

To assess the overall ability of the proposed methodology
in correctly identifying the areas on the wafer that require
inking, a leave-one-out cross-validation experiment was per-
formed. For this, each wafer was removed from the training
dataset and the remaining wafers were used to train the
model. Each column of Figure 6 shows the predictions of

the automated inking methodology for one of three repre-
sentative wafers of the dataset. The first row of wafermaps
depicts the probability estimates for the positive inking deci-
sion. Gray represents 0% probability for those die locations
to require inking, while other colors represent probability val-
ues in (0, 100] as shown in the colormap on the right side.
In the second row, corresponding prediction results are shown
for the above three wafers, where passing die are depicted
with gray color and blue colored die are the failing ones, with
all bins been represented by one color.1 Moreover, green indi-
cates agreement between product engineers and the automated
inking model (i.e., true positive predictions) and red repre-
sents manually inked die locations that weren’t inked by the
proposed methodology (i.e., false negatives). Purple colored
die represent locations that were only marked as inked by
the methodology but not by the product engineers (i.e., false
positives).

As can be observed in Figure 6(a), certain clusters of die
locations are selected by the proposed model, based on the
failure density and their distance from the edge of the wafer.
High probability, as represented by the red colored die, is in
the center of every die cluster and decreases progressively the
further away a die is located from that center. One of the major
benefits of the post-prediction tuning approach using proba-
bility estimates is that it allows product engineers to tweak
the degree of inking with a simple knob while evaluating the
results. This implies that, even during the early stages of indus-
trial integration of the proposed methodology, when the model
is still learning, product engineers would save time by being
able to quickly adjust the aggressiveness of the model or to
use the predicted locations as suggestions, before making any
manual alterations to the ink maps.

Figure 6(b) shows how the automated inking compares to
the manual inking performed on these wafers. In order to
match the aggressiveness of the manual inking, a threshold
probability of 10% was chosen for the complete set of wafers.
Wafer A included a single cluster at the bottom side of the
wafer, which was manually inked by the product engineers,
and which was correctly identified by the machine learning-
based algorithm. At this level of aggressiveness, the algorithm
also identified a smaller cluster of die near the center of the
wafer. On the other hand, Wafers B and C exhibit multiple
failure-dense clusters. Similarly to the previous wafer, the
proposed model was able to identify the overall location and
size of those clusters with minimal disagreement. By contrast-
ing the probability estimates of these wafers in Figure 6(a),
one can observe that a higher threshold would have produced a
better matching inking pattern. Specifically, a threshold value
of 30% for Wafer B would have accurately inked the top-right
cluster, which was aggressively inked with a 10% threshold,
but would have likely missed the smaller cluster on the right.
This example illustrates a possible trade-off between different
threshold values, which is best addressed by manually cor-
recting any wrong inking decision, instead of merely relying
on the inking-degree tuning. In other words, by adjusting the

1Detailed binning information may not be released due to an NDA under
which the data has been provided to us.
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Fig. 6. Probability estimates and predictions for three sample wafers.

threshold, the product engineers affect the degree of inking
performed by the proposed automated inking methodology,
and not the decision function itself, that needs to be adjusted
to eliminate the trade-off.

C. On-Line Machine Learning-Based Modeling

To accurately simulate the actual sequence of wafer arrival,
the process of inking prediction, and the training of the
proposed inking model, the wafers were sorted based on their
manufacturing order, as reflected by their wafer and lot ID. For
each wafer in the ordered dataset, the feature extraction step
was first performed, using the locations and bins of each failing
device. For the initial training of the model, we used only the
first wafer. This allows us to better evaluate the learning rate
of the proposed model, as it starts with the minimal available
information. In practical cases, the model would have been
trained with wafers from at least one lot, the wafers of which
would have been manually inked. For all remaining wafers,
feature extraction was performed in order to predict the inked
locations accordingly. Following prediction, the known man-
ual inked locations of the wafer under processing were used
to update the proposed online model.

1) Learning Progression: As shown from the previous
experiment, the proposed model can learn the inking strat-
egy effectively when provided with all 119 training wafers.
To evaluate the progress and the number of wafers needed
for the model to produce useful inking decisions, a differ-
ent experiment was performed, reflecting the proposed on-line
learning algorithm. In this experiment, a single sample wafer
was chosen as the target, while the algorithm was progres-
sively trained using the remaining wafers. In other words, the
selected wafer represents an unseen newly manufactured wafer
at different learning iterations. At each iteration, the trained

model was used to predict the target wafer and was updated
with the next wafer from the dataset.

Figure 7 shows the comparison between the automated and
manual inking decisions of the target wafer at different learn-
ing iterations. The first wafermap shows the initial prediction
when only one wafer was used to train the model. As expected,
the model has only learned that not inking any die location is
a preferable strategy in terms of overall accuracy, as the num-
ber of non-inked die is significantly larger than the number
of inked ones. After 21 wafers, it appears that the model has
already learned that specific failure density related features,
as well as the distance from the edge, are essential; thus, it
correctly inks some of the die on the left and right sides of
the wafer. This remains true and even shows minor improve-
ments after a total of 34 wafers have been incrementally used
for training. Although the size and location of the two die
clusters that were selected by the product engineers have been
correctly identified, the model appears to have weighted the
distance from the edge more than it should, resulting in some
false positive predictions shown on the left. Finally, after incre-
mental learning has been performed with a total of either 70 or
114 wafers, the model has very accurately learned the manual
inking strategy employed by the engineers for this product.
Table I show the false positive false negative rates of the ink-
ing decision, when all test wafers have been processed and
no adjustment has been made to the inking aggressiveness.
As it can be observed, the overall accuracy of the model is
very high, and it is more likely to over-ink a wafer com-
pared to the manual inking results, the degree of which can
be easily reduced using the post-prediction tuning explained
in Section III-C.

Alternatively, the F1-score can be used to summarize the
progression of the proposed incremental learning methodology
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Fig. 7. Training progress as demonstrated on an unseen sample wafer at different learning iterations.

Fig. 8. F1-score improvement during incremental learning.

TABLE I
ERROR RATES

at each iteration step. The F1-score is defined as the har-
monic mean of precision and recall, as shown in Equation 1.
Precision, in a classification context, is defined as the propor-
tion of positive identifications that were correctly classified,
while recall is the proportion of actual positive classifications,
in our case inked devices, that are correctly identified. Figure 8
shows how the F1-score changes when predicting the target
wafer during the execution of the proposed on-line learning
methodology. As demonstrated, the F1-score remains zero for
the first few wafers, yet within the first lot it increases to
above 0.8. Then, for two lots there is no significant improve-
ment until there is a sudden decrease when the fourth lot is
processed. This sudden fluctuation is caused by a low recall

Fig. 9. Model accuracy comparison between batch and on-line learning.

score, due to less conservative inking, which is then quickly
corrected with the arrival of more wafers that provide a more
robust understanding of the significance of the model fea-
tures. With a relatively small number of wafers (less than
four lots), the model is capable of learning the inking strategy
and can be used to reduce the need for manual inking sig-
nificantly. Furthermore, to avoid any previously unobserved
patterns affecting the reliability of the devices sold, the moni-
toring technique explained in Section III-C2 can guarantee that
a manual review will occur, and the model will get updated.

F1 = 2 · precision ∗ recall

precision + recall
. (1)

2) Comparison to Batch Machine Learning-Based
Modeling: Ideally, to effectively compare the proposed
approach with the current state-of-the-art batch learning
approach, a dataset containing multiple distinct inking
strategies should have been used. These dissimilar strategies
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Fig. 10. Examples of Scratch correction for different simulated scratch
shapes.

would showcase the primary benefit of the proposed approach
to incrementally learn and accommodate them, compared
to the static batch learning-based method. To simulate such
a dataset, we re-ordered the industrial dataset described
before, so that wafers exhibiting significant edge defects are
pushed last. Assuming that this was the wafer manufacturing
order, we compare the performance of the two approaches in
predicting the last 15 wafers. In this experiment, both models
have been initially trained using the same set of 105 wafers.
The proposed model continues to be trained incrementally
with every new wafer. Figure 9 shows the F1-score for the
two methods for each new wafer. As expected, the F1-score
for the first predicted wafer is the same for both methods,
since they have been trained using the same wafers. After the
ink maps for the first and second wafers are corrected, the
on-line learning model learns that the edge-distance-based
feature bears more significance and weighs it accordingly. For

all remaining wafers, the on-line learning based model either
outperforms or matches the accuracy of the batch learning
model.

D. Scratch Correction

Figure 10 shows three more simulated examples of scratch
correction without the intermediate steps, to illustrate the capa-
bilities of the proposed methodology. The first pair of images
shows another example of a straight scratch with a larger
empty space between the two co-linear clusters and at a differ-
ent angle, compared to the one used in Figure 5. The pair in
Figure 10(b) shows that the algorithm presented has the abil-
ity to detect and ink more than one scratches by interpolating
the filtered skeletons by groups according to their co-linearity.
Finally, in Figure 10(c), the example of a more rare curved
scratch is demonstrated, where in the fourth and fifth step of or
proposed algorithm, the two skeletons generated are within the
definitions of a line-shaped cluster and are co-linear enough to
be considered part of the same scratch and have them properly
inked.

V. CONCLUSION

Wafer-level failing patterns have been shown to be sig-
nificant indicators for the existence of systematic defects
and process shifts. Although research has been focused on
automatically identifying and classifying such patterns, most
decisions are still performed manually by product engineers.
Marking of the devices that have a high probability for early-
life defect manifestation remains a wearisome non-automatic
procedure. In this work, we introduced an online learning-
based methodology for predicting the inking patterns, by only
utilizing the failure wafermaps. Using industrial data, the
methodology was able to generate inking patterns matching
those produced manually by product engineers but with greater
consistency. Moreover, the proposed methodology allows the
inking of systematic patterns at the lot level, as well as the
post-prediction inking degree tuning and inking of scratch-type
patterns, covering all the needs for its industrial integration.
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