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Abstract

In analog and RF device testing, current industry
practice is to exhaustively test each device against its
specifications, labeling as faulty any devices that do
not meet those specifications. At this point, however,
nothing is done with faulty devices—they are simply dis-
carded. Although conservative design can improve yield,
increasing variation due to process scaling renders this
an insufficient solution. One promising solution is to
make analog and RF devices capable of post-production
tuning. In this work, we present recent groundwork
for implementing post-production tuning of analog and
RF devices, thereby improving yield by tuning devices
that would otherwise be discarded. Specifically, we
demonstrate a methodology for selecting the best set
of “knobs” within a design, to convert parametrically
faulty devices to working devices.

1. Introduction

Recently, there has been a great deal of research
on developing test methodologies for analog devices
that reduce the cost of specification test while main-
taining sufficient fault coverage throughout the test
process. This includes work in machine learning-based
test compaction, as well as development of analog fault
models. The work in this area is advancing rapidly,
and the performance reported in literature by machine
learning-based specification test compaction is begin-
ning to approach industry-acceptable defects-per-million
(DPM) levels [1], [2], [3], [4]. However, once we have
made pass/fail decisions on devices, whether through
specification test or an advanced test methodology, any
devices marked as failing are discarded, and no correc-
tive measures are taken.

Adopting the terminology of [5], we typically en-
counter two types of faulty analog devices. First, there
are non-recoverable catastrophic faults, where the device
has a short, open, or other failure that prevents correct
operation. In this case, the device signature is typically
well outside specification boundaries and is easily de-
tectable as failing.

The more interesting devices are those that are not

clearly separable from good devices, with so-called
parametric faults. Because of process variation, the
tail ends of the process distribution often fall outside
specification boundaries. Thus, we are left with a set of
devices that almost function correctly, but marginally
do not meet specification requirements. An example
of parametric faults is shown in Figure 1, where we
observe the tails of the process distribution fall outside
specification boundaries.

Fig. 1. Parametric Faults

If it were possible to modify the performance of these
devices after production, a large percentage of them
might be recoverable, as these devices are only slightly
outside specification requirements. To date, however, the
standard industry practice for these failing devices is to
simply discard them.

To recover these devices, we propose the introduction
of post-production tunable knobs within analog and RF
circuits. Instead of discarding devices with parametric
faults during production test, multiple test-tune iterations
could be performed within a closed-loop system, as
shown in Figure 2.

The first step in establishing this tuning system is
implementing a process for selecting knobs. Given a
arbitrary analog circuit, which tunable elements should
the design have to ensure maximum post-production
tunability? In this work, we present a machine learning-
based technique for knob selection that maximizes tun-
ability while minimizing the number of required circuit
knob elements.

2. Related Work
In [2], the genetic algorithm NSGA-II is used in

conjunction with an ontogenic neural network to achieve
specification test compaction by first eliminating redun-
dant tests, then constructing a neural network topology



Fig. 2. Tuning System

to assign a pass/fail label to each device. Furthermore,
guard bands are employed to improve performance by
tagging the most difficult boundary devices for the full
specification test suite.

The work in [4] parallels much of the prior work
with neural nets, applying some of the concepts and
lessons learned in that domain to define regression-
based methods. Using multi-variate regression in lieu
of a neural network sacrifices some performance in pre-
dicting pass/fail labels correctly, but has the advantage
of providing the predicted values of the tests excluded
during test compaction, instead of just the pass/fail label.

Biswas et. al. [6] take a different approach, employ-
ing a third machine learning technique—support vector
machines (SVMs)—to partition the test hyperspace and
isolate good devices.

In [5], several fault models are developed. Resis-
tive/capacitive elements are introduced into the circuit
to model the effect of catastrophic faults on the perfor-
mance of the device. Parametric faults are modeled as
an impulse function at a range of faulty values, testing
six parametric faults per transistor and assigning the
non-faulty parameters as normally distributed random
variables.

3. Optimal Tunability

This work aims to provide the framework for an
automated methodology for selecting a subset of knobs
to insert into a design, selected from a much larger set of
potential knobs in a given design. To frame the problem
formally, consider an arbitrary circuit with performances
P in which a set of knobs K has been implemented.

The set of performances P consists of readily-
measurable characterizations of the circuit, such as gain,
phase, linearity, and power. These performances may be

single-ended (i.e., power usage should be minimized) or
double-ended (i.e., the gain should be within a range
gmin ≤ gain ≤ gmax.)

The set of knobs K consists solely of double-ended
tunable parameters. For example, this may consist of
tunable circuit components such as resistors, capacitors,
or inductors, realized through switched-banks of those
components. Additional tuning can be realized through
adjustable voltages, such as an adjustable VDD or bias-
ing voltage.

We wish to implement a circuit with a set of knobs
K ′, where K ′ ⊆ K, such that if the circuit possesses a
parametric fault, K ′ will permit post-production tuning
and recovery of the failing device. As each additional
knob requires additional I/O, we note that cost is
proportional to |K ′|. Thus, we aim to minimize |K ′|
while maximizing the tunability we can achieve in all
performances P for our retained subset of knobs K ′.
For the purposes of this work, we define this tunability
as the change in a given performance p ∈ P for a
corresponding small change in the space defined by
K ′. Specifically, we define the compound space of
each performance with the set of retained knobs K ′ as
〈pi|K ′〉, such that the tunability metric can be written
as:

∑
i

|∇〈pi|K ′〉| (1)

This is the summed magnitude of the surface gradi-
ents for all pi at some point in the space of K ′.

Minimizing |K ′| is challenging largely due to the
size of the search space. Given |K| possible knobs
in a design, there are 2|K| possible knob subsets, as
well as a continuous tuning space for every included
knob. If all of the possible knobs introduced in a



design were independent, then knob selection would be
straightforward: the best knob for a given performance
pi is the knob kj such that | ∂pi

∂kj
| is maximized.

In a real circuit, however, knobs are likely to be
highly interdependent. For example, consider a situation
where a given knob 1 performs poorly, i.e., ∂pi

∂k1
is small

for all performances i. However, with interdependent
knobs, there can arise a configuration such that if knob
2 is adjusted, knob 1 will become substantially more
effective, as shown in Figure 3).

Fig. 3. Example of Knob Interdependence

Thus, an effective knob selection system must con-
sider the knob quiescent point while reducing the com-
binatorial selection problem.

4. Knob Subset Heuristic

To alleviate the problem of selecting from the large
number of potential subsets of K and quiescent tuning
points, we propose a genetic algorithm-based search
methodology to heuristically search the knob space K
for the best set of knobs K ′, evaluating the fitness
function of each knob subset as in Equation 1. Ge-
netic algorithms are particularly suited to this type of
optimization problem, as they dramatically reduce the
cost of search (as compared to exhaustive search) while
maintaining a high probability that an optimal solution
is found.

Genetic Algorithms work by defining a set of po-
tential solutions C, referred to as chromosomes. Each
chromosome contains a concatenated list of variables
which will be modified within boundaries specified by
the user. When the algorithm is initialized, a large
pool of chromosomes is generated. Depending on the
specific algorithm, the chromosomes then undergo a
crossover operation, where discrete chromosomes are
mixed together to form a new chromosome, which is
also subjected to mutations, or random perturbations of
the solution which help avoid local optima. Together,
crossover and mutation are referred to as a generation.
This process continues until an optimal population of
solutions is found, or at a pre-defined stopping point. At
the termination of the algorithm, these solutions form a
Pareto-optimal front in the fitness function space, from

which solutions can be selected with different trade-offs
between the fitness variables.

For this work, the NSGA-II algorithm [7] is used,
due to its demonstrated efficacy [2]. For example, if we
consider the case with two knobs and one performance,
each chromosome point is chosen by first randomly
selecting a knob tuning point a = f(xa, ya). We then
take the gradient by selecting a secondary knob tuning
point b = f(xa, ya) near a and finding:

∇f =
〈

xb − xa

xa
,
yb − ya

ya
,
b− a

a

〉
(2)

at that point, thereby uncovering the effect of inter-
dependent knobs. Note that to ensure the performances
are weighted the same, we divide each element by the
original value to give a percent change. Furthermore,
taking the magnitude of the gradient gives us a scalar
metric which we can sum across performances, giving
us a single metric m of the tunability provided by
the chosen knob subset at that quiescent point: m =
|∇p1|+|∇p2|+. . . |∇pn|. This is equivalent to Equation
1, and becomes the second objective function of our
genetic algorithm (along with |K ′|, the number of knobs
retained).

5. Experimental Validation

A simple differential amplifier, shown in Figure 4,
was employed as an example circuit for experimental
validation. The amplifier consists of a differential pair,
with current mirrors added to bias the circuit correctly.
This circuit has the advantage of being simple to un-
derstand and analyze, while still possessing interesting
specifications and performances which we can use to
evaluate a tuning method. A test bench circuit, shown
in Figure 5, was also implemented to enable simulation
of the differential amplifier.

In this circuit, a set of five knobs was introduced:
1) Rin: The supply voltage for the biasing input of

the differential amplifier.
2) VDDL: The supply voltage for the left branch of

the differential amplifier.
3) VDDR: The supply voltage for the left branch of

the differential amplifier.
4) VDDB : The supply voltage for the biasing input

of the differential amplifier.
5) VGS : The voltage from the ground node to the

source of the differential amplifier.
Four performance metrics were employed to evaluate

knob subset tunability:
1) Gain



Fig. 4. Differential Amplifier

Fig. 5. Test Bench

2) Phase
3) Power
4) 1dB Compression Point
The genetic algorithm was given control over the qui-

escent point, direction of the gradient vector (direction
to point b), and included knobs. Additionally, all changes
in the knob space were standardized to ±10%, thus
simplifying the tunability metric (Equation 1) to include
only the performance metrics. The tunability achieved
by each proposed chromosome was recorded, and the
algorithm was run with a population of 30 chromosomes
for 20 generations. This produced the tunability vs.
knobs retained tradeoff shown in Figure 6.

The results generated by the genetic algorithm indi-
cate that for this circuit, there is a sharp threshold in the
tunability, such that at least three knobs are necessary to
achieve a significant change in the circuit performances.

6. Conclusions and Future Work

In this work, we have proposed a system for selecting
tuning knobs in a simple analog circuit, a differential

Fig. 6. Experimental Results

amplifier. Although we see a sharp threshold in the
performance of knob subsets in this specific circuit, it
remains to be seen whether such a threshold exists for
larger and more complex circuits. The genetic-algorithm
based heuristic search methodology proposed here is
generally applicable and scalable to more complex cir-
cuits.

Future work will involve investigating the perfor-
mance of this knob-selection technique in these more
complex circuits, as well as a technique for post-
production tuning, once the knob subset has been se-
lected.
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