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Abstract—One of the biggest challenges in the analog and RF
test domain is the high cost of traditional specification testing. In
response, there is a great deal of interest in leveraging low-cost
test methods as a drop-in replacement for specification test. With
the correct choice of low-cost tests, substantial test cost savings
can be achieved with only marginal effects on test error metrics.
During characterization a large number of candidate tests are
considered, though retaining all of these during production test
would be impractical and inefficient. However, test selection can
be quite challenging, and consequently, systematic selection of a
low-cost test set to deploy in production is a recurring problem.
In this work, we examine and compare several different feature
selection techniques which address the test set selection problem
for low-cost testing, and present the first use of Fast Function
Extraction (FFX) in low-cost testing.

I. INTRODUCTION

During semiconductor fabrication, every manufactured de-
vice must be thoroughly tested in order to guarantee that it
meets the original design specifications. Such testing identifies
latent defects that are due to the various sources of imper-
fection and variation in the fabrication process. Defects can
present as either catastrophic or parametric. In the former case,
they lead to a complete malfunction of the IC and, typically,
can be detected by simple tests. In the latter case, they are
caused by excessive process variation that may bring some or
all of the specifications outside the allowable limits. Parametric
defects are considerably harder to detect. To guard against test
escapes, RF circuits are typically tested directly against the
performances specified in the device data sheet. Although this
approach is highly accurate, it comes at a very high cost, which
can amount up to 50% of the overall production cost according
to anecdotal evidence. Given that RF circuits typically occupy
less than 5% of the die area, there is great industrial interest
in the reduction of RF test cost [1], [2].

The high cost of RF test is due to the expense of automated
test equipment that is required, and, on the other hand, the
lengthy test times that result from a sequential measurement
approach. Recently, there has been an intensified effort to
develop alternative test approaches that relax the requirements
on test equipment and/or reduce the associated test times.
Among others, the built-in test solution is perhaps the most
promising and advantageous [3]–[6]. It relies on extracting
on-chip digital, DC or low-frequency test signatures that
carry RF information. Thereafter, these test signatures can be
transported off-chip and processed by an inexpensive tester
with minimum requirements. Other work has focused on
leveraging external DC, low-frequency, or other inexpensive
measurements to measure device functionality without explic-
itly testing against expensive specification performances. Such

low-cost tests are typically paired with learning algorithms
which are trained to predict test outcomes [7]–[9].

For both built-in and external testing, a large population
of candidate test sets can be devised to capture device perfor-
mance. However, in production, we would like to only measure
the test set that identifies device pass/fail labels as efficiently
as possible. As a result, a recurring problem in low-cost testing
is selecting appropriate test sets from the numerous possible
candidate test sets. This is essentially a specific realization of
a problem known as feature selection. Feature selection is the
technique of retaining only a subset of measurements or inde-
pendent variables from a full set of candidate measurements.
This contradicts the intuition of “the more data, the better”.
However, spurious measurements are actually quite problem-
atic, as data sparsity increases exponentially with the number
of dimensions. Therefore, we retain only the most salient
features to ensure stability of learning algorithms imposed
on the low-cost measurement space. Beyond testing, feature
selection is commonly used in many fields that attempt to
construct models in high dimensional data, e.g. bioinformatics.

There are two reasons for pursuing feature selection in the
analog and RF test space. First, test time is expensive, and
it is not economical to expend test time collecting spurious
measurements that provide little information about the device
under test. Thus, we wish to only explicitly measure the
minimal test set that properly identifies each device as passing
or failing. Second, with low-cost testing we typically want to
construct a model which employs the low-cost measurements
to identify device pass/fail labels, or predict specification
test outcomes. Limiting the number of features used in such
models is crucial, as it permits us to sidestep the so-called
“Curse of Dimensionality”, which states that the predictive
quality of a model decreases with the number of features
retained.

In this work, we present a case study which compares
various feature selection methods in the context of low-
cost testing, and construct regression models on the retained
features to evaluate the performance of each approach. Feature
selection is not new to analog and RF test, although it has
not been directly studied in this space before. In [10], the
authors employ a genetic algorithm (GA) to identify optimal
test stimuli. The work in [9] also employs a GA (specifically,
NSGA-II [11]) for feature selection. In [12], we extended this
approach to incorporate domain expert feedback directly into
the GA training process. In [13], the authors use a greedy
algorithm to retain tests. Indeed, the entire domain of test
compaction [14], [15] is, at heart, an exercise in feature
selection.



To evaluate the feature selection methods described in the
following section, we employ a candidate set of low-cost tests
from a Texas Instruments Bluetooth/Wireless LAN device.
These measurements, known as low-cost on-chip built-in RF
tests (ORBiTs) [6], form our set of candidate tests XORBiT .
We then construct regression models to predict specification
test outcomes Pi for the transceiver based on feature-selected
subsets of XORBiT .

II. FEATURE SELECTION METHODS

In this section we describe in detail each of the feature
selection methods that were evaluated. Each of the methods
has different characteristics, but ultimately the most important
evaluation critieria is the error achieved. Thus, we first describe
the error metrics we use as a basis of comparison.

A. Evaluation Criteria

To compare the various feature selection methods, we
construct regression models of the following form:

P̂i = f(X) + ε (1)

where Pi is an n× 1 vector of measurements collected on n
devices corresponding to the i-th specification performance,
X = [f1, f2, . . . , fm] is a n × m matrix of low-cost tests,
where each column fj ∈ X is a candidate low-cost test, and
f is a function mapping the low-cost tests to the specification
test space f : Rm → R. With feature selection, we aim to
replace the matrix of low-cost tests X in Equation 1 with:

X ′ = [fk, k ⊆ {1, 2, . . . ,m}] (2)

that is, X ′ is a column-wise subset of X that retains only
salient features of X .

By constructing such models for each feature selection
approach, we can compare feature selection methods on (i)
the normalized mean-square error (NMSE) achieved by each
approach, (ii) the number of features retained, and (iii) the
time required to perform the feature selection step.

B. Random Search

The most readily apparent approach to feature selection is
to randomly select a subset of features, build and evaluate a
regression model, and then use the observed NMSE to drive
the search process. That is, we choose feature subsets X ′ as
in Equation 2, with each feature subset containing m′ number
of features.

In theory, this is a poor approach, as the number of possible
feature subsets is 2m−1, where m is the total number of fea-
tures. Even for reasonable datasets and evaluation times—say,
100 features and 1 second to evaluate a candidate feature set—
exhaustive search of the entire space would take approximately
4×1022 years. In practice, if the search space is not too sparse
(e.g. many features are moderately adequate predictors) then
random search will find passable feature subsets.

C. Greedy Correlation Coefficient-Based Ranking

A more elegant approach is to employ pairwise Pearson
correlation coefficients to rank the available features, and
then choose the top-ranked features to retain as predictors in
the regression model. The principle of this approach is that
highly correlated features generally make suitable predictors.
Using the previously defined notation, the Pearson correlation
coefficients are computed as:

ρk =
cov(fk, Pi)
σfkσPi

(3)

Thus, for features [f1, f2, . . . , fm] we can compute the cor-
relation coefficients [ρ1, ρ2, . . . , ρ3] and order them according
to the induction rule:

ρ(1) = min
k
ρk, k ∈ 1, 2, . . . ,m (4)

ρ(i) ≥ ρ(i−1), ∀i (5)

Then, by defining a lower bound TL on ρ(i), we retain all
features that satisfy ρ(i) ≥ TL.

D. NSGA-II

The non-dominated sorting genetic algorithm (NSGA-II)
has become the de facto standard for GA problems. GAs,
also known as evolutionary algorithms, attempt to emulate
biological natural selection by creating seed “populations”
of feature subsets, which subsequently undergo mating and
mutation steps. These steps are repeatedly performed in phases
known as “generations”. The justification for such steps are
intuitive: by mating two solutions, we may discover a better
solution, and by perturbing our solutions via mutation we
help avoid local optima. At each generation, every member
of the population is evaluated via fitness/objective functions,
and the best solutions of each generation are recorded. A
Pareto-optimal subset of these solutions is then recorded at
the termination of the GA.

To use NSGA-II for feature selection, we typically define a
pair of minimization objectives: NMSE and number of features
retained. With these objectives, the algorithm will produce a
series of points that represent tradeoffs between NMSE and
number of features.

E. FFX

Fast Function Extraction (FFX) is a recently proposed
white-box regression method [16] which aims to perform
massive basis expansion of the original features and then use
state-of-the-art regularization methods to effectively perform
feature selection on the new bases. Traditional least-squares
regression solves the quadratic minimization problem:

β̂ = argmin
β

||y −Xβ||2 (6)

For low-dimensional problems, this formulation works fine—
indeed, this is the regression method used with the other
feature selection techniques described herein. However, feature
selection can be built directly into the regression optimization



problem by introducing regularization parameters, e.g. via
elastic net [17]:

L(λ1, λ2, β) = ||y −Xβ||2 + λ2|β|2 + λ1|β|1 (7)

β̂ = argmin
β

L(λ1, λ2, β) (8)

A very useful property of regularizing the regression problem
in this fashion is that the number of features can actually be
massively expanded, and allow the regularization to extract
the appropriate parameters. FFX leverages this by combining
elastic net regression with generalized linear models of the
form:

P̂i = β0 +

p∑
i=1

βi ·Bi(X) (9)

where the Bi(·), i ∈ [1, 2, . . . , p] are a large number of basis
functions of X , and p � m. In other words, we regress Pi
on a much larger number of features, and depend on elastic
net regularization to identify the most salient features. The
interested reader is directed to [16] for further details in the
interest of space.

III. EXPERIMENTAL RESULTS

To evaluate the feature selection techniques, we employed
a Bluetooth/Wireless LAN device fabricated by Texas In-
struments. 249 candidate low-cost tests were considered as
features, and the data from one wafer (approximately 7,000
devices) was split 50/50 as training and test sets. Identical
training and test sets were employed for all of the approaches
to ensure a fair comparison. One particularly challenging-to-
predict specification performance was selected as a target.
Each of the feature selection approaches have various param-
eters, the settings for which we outline below. All execution
times cited were achieved on a 2010 MacBook Pro.

A. Greedy Correlation Coefficient-Based Ranking

For the greedy correlation coefficient ranking, each of the
249 ORBiTs was ranked as described in Section II-C. A
series of models were constructed with successively higher
numbers of features retained, with up to 50 of the highest-
ranked features retained. For each retained set of features
X ′ORBiT , a least-squares regression model was consctructed
and the NMSE was recorded. This method required less than
30 seconds to run, and the best NMSE achieved was 0.092371
with 7 retained parameters. The predicted vs. actual of this
model is plotted in Figure 3.

B. NSGA-II

We configured NSGA-II with each chromosome C rep-
resenting a 249-dimensional set of indicator variables, e.g.
C = [I1, I2, . . . , I249], Ik ∈ {0, 1}, and Ik = 1 corresponding
to retention of the k-th ORBiT feature, e.g.: Ik = 1 → fk ∈
X ′ORBiT . A population of 256 chromosomes was employed,
and 500 generations were evolved for a total execution time
of approximately 1 hour.

Fig. 1. Greedy CC Ranking: P̂i vs. Pi

Fig. 2. NSGA-II: P̂i vs. Pi

C. FFX

FFX has comparatively few parameters that the user must
set. The elastic net pathwise learn algorithm has a maximum
number of iterations, which we set to 1,000. FFX also has
settings to enable or disable various types of basis functions,
including interaction terms, rational functions, exponents,
abs(·), log(·), and hinge functions of the form (x−b)+ similar
to Multivariate Adaptive Regression Splines (MARS). The best
NMSE achieved by FFX was 0.06198, with an execution time
of approximately 1 hour.

D. All Results

Finally, we present the complete results of the experiment
in Figure 4. Although we observed the lowest NMSE with
FFX, NSGA-II generally dominated the performance of the
other two methods, especially for small numbers of retained
features. The variance of the target specification performance
was generally explainable with a linear model, which mitigated
the benefits of FFX versus NSGA-II. For specifications where



Fig. 3. FFX: P̂i vs. Pi

the relationship is more complex/non-linear, FFX will likely
dominate NSGA-II.

Fig. 4. All Methods: NMSE vs. # Features Retained

IV. CONCLUSION AND FUTURE WORK
In this work, we have presented a case study of several fea-

ture selection methods for low-cost test. As noted previously,
feature selection is a key step in deploying low-cost testing,
and simply ad-hoc choice of features is likely inadequate to
ensure good performance. As we have demonstrated, even
ranking features based on correlation coefficients can have
poor performance.

In the future we plan to extend this case study by examining
additional feature selection methods, and include a more
detailed analysis of each approach. In particular, we would
like to establish confidence intervals on the performance of
each feature selection technique. We would also like to explore
datasets with more complex regression modeling problems, to
validate our hypothesis that FFX will outperform NSGA-II in
such cases.
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