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Abstract—As a result of technology scaling, power density
of multi-core chips increases and leads to temperature hot-
spots which accelerate device aging and chip failure. Moreover
tremendous efforts to reduce power consumption by employing
low-power techniques decreases the reliability of new design
generation. In this work, we first discuss the state-of-the-art
methods for predicting workload dynamics and we compare their
performance. We, then, introduce a prediction method based
on Support Vector Regression (SVR), which accurately predicts
the workload behavior several steps ahead. To evaluate the
effectiveness of our approach, we use UltraSPARC T1 processor
along with Sun Solaris operating system. We incorporate OS and
architectural level sensors and knobs and our preliminary results
show our predictive method achieve higher accuracy.

I. INTRODUCTION

Due to technology scaling, power density of multi-core
chips increases which leads to temperature hot-spots causing
device to age faster. On the other hand, aggressive design
techniques which tend to lower power consumption result
in vulnerable devices and decrease reliability of new design
generations. Researchers have introduced proactive thermal
management approaches to prevent the thermal problem before
is arises. In a proactive system, various forecasting methods
are used to predict the dynamics of the workload through
operating system-level or architectural-level information. The
main engine of such proactive methods is prediction, which
needs to provide accurate forecasting of parameters of interest
multiple steps ahead into the future.

In this work, we use Support Vector Machines (SVM) to
forecast workload characteristics based on past and current
measurements. We experiment with a multi-core UltraSPARC
T1 processor, running workload from the PARSEC benchmark
suite and collecting available performance counter values. Our
results show that the SVM-based technique outperforms other
prediction models which have been widely used.

The remainder of this paper is organized as follows: we start
by reviewing related work in section II. Then we discuss exist-
ing predictors in section III followed by elaborate discussion of
our proposed prediction technique in section IV. In section V,
we show experimental results demonstrating the effectiveness
of the proposed method and conclusions are drawn in section
VL

II. PREVIOUS WORK

In this section, we discuss prior work in proactive multi-core
power and thermal management. [1] shows in multi-core sys-
tems, with reasonable performance degradation, temperature-
aware job scheduling is effective for thermal management.
Similarly, by profiling a set of different frequencies for various
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Fig. 1: History Table overview

temperatures during an off-line phase, Murali, et al. [2] pro-
posed a technique to assign different operating frequencies to
various cores in order to meet thermal constraints. In [3], the
authors proposed a proactive thermal-aware scheduling tech-
nique. There they reduced the impact of performance overhead
due to temperature variation. In [4], the authors proposed
predictive scheduling and power management techniques by
profiling the workload, predicting its future characteristics
using the ARMA predictor and dynamically scheduling new
workload.

III. PREDICTION TECHNIQUES

In this section, we briefly go over current state-of-the-art
prediction techniques which have been used in the literature
for predicting workload characteristics. Our main focus is on
techniques that can be used in proactive systems for power or
thermal management.

A. History Table Predictor

This simple table based predictor technique keeps track of
the patterns to generate next sample result. This approach
relies on repetitive application execution characteristics to
produce a model for future behavior. An example of this
predictor, called global phase history table [5], is depicted in
Figure 1. It consists of a global register that tracks the last n
observed samples, where n is the depth of table. The content
of this register is used to index the pattern history table (HT).
HT holds a certain number of previously encountered patterns,
with their corresponding next sample prediction based on
former experience. In case the content of the global register
does not hit the HT, the last observed sample is predicted as
the next sample (in this case HT predictor behaves like a last
value predictor).

B. Autoregressive-Moving Average Predictor

We use Autoregressive-Moving-average (ARMA) mathe-
matical model for identifying autocorrelation in time series
data. This is widely used for time series prediction in var-
ious fields. One subset of ARMA models are the so-called



autoregressive (AR) models which expresses a time series as
a linear function of its past values. The order of the AR model
reflects how many lagged past values are included. P-order
autoregressive or AR(p) is shown in Equation-1:
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where uy is the value of series at time t, «; is the lag i
autoregressive coefficient and e is called residual or noise.
The residuals are assumed to be random (not autocorrelated)
and normally distributed. By incorporating a linear regression
of previous noise terms in the AR model we can build an
ARMA model which is expressed in the following form:

p q
ug + Z QiU = e + Z Ci-€j 2
i—1 i1

where the terms c; are the moving average coefficients, and p
and q represent the orders of the AR and the moving average
(MA) parts of the model, respectively. The assumption of the
ARMA model is that the modeled time series is stationary and
has serial correlation in the data. In stationary process, change
of probability distribution over time is negligible and the
mean and variance are stable. The performance of the model
is reduced significantly when the stationarity assumption is
violated. In [6], the authors used adaptive ARMA model to
predict some characteristics of workload and temperature for
their proactive system.

IV. PROPOSED PREDICTION APPROACH

In this work, we use Support Vector Machines (SVM) as a
regression technique to predict workload characteristics.

A. Support Vector Machine

SVM has two major applications, classification and regres-
sion. The SVM used as a regression predictor is called Support
Vector Regression (SVR). One of the main characteristics of
SVR is that instead of minimizing the training error, it attempts
to minimize the generalized error bound so as to achieve good
generalization performance.

In the time series forecasting problem (workload charac-
teristic prediction is a form of time series forecasting), the
objective is to process the previous n observations and predict
the time series k step ahead into the future. Suppose we are
given a time series [ug,ug,...,ut_1] and we want to predict
the time series at time t. To employ SVR for this model, we
build our training set D = {(x;,¥y;)|i = 1,...,n} in following
format:
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Fig. 2: SVR model comparison.

We can predict the time series k step ahead into the future
at any time point after the SVR model is trained using the
training set D. The prediction horizon, k, depends on the
application and purpose of forecasting and typically is multi-
step ahead. For example, in [6] the authors used 5 steps
ahead prediction. For multiple steps ahead prediction, there
are generally two different modeling approaches, Recursive
and Direct SVR.

V. RESULTS
A. Experimental Setup

We ran the experiments on the UltraSPARC T1 processor
[7] running Solaris 10 operating system (OS). This processor
has 8 cores, a unified L2 cache and a shared floating-point
unit. Each core has a private data and instruction cache and a
set of performance counters (Table I). We have used cpustat
and mpstat [8] to access the information.

Precompiled scalable multi-threaded ferret, facesim and
blackscholes from the PARSEC 2.1 benchmark [9] was used
as our workload. We collected all performance counters at
intervals of 90 ms during workload execution for all eight
cores of the T1 processor.

IC_miss Number of Instruction cache misses
DC_miss Number of Data Cache misses
ITLB_miss Number of Instruction TLB misses
DTLB_miss Number of data TLB misses
L2_imiss Number of instruction misses in L2
L2_dmiss_ld Number of Load data misses in L2
FP_instr_cnt Number of Floating point instructions
SB_full Number of cycles spent due to SB full
Instr_cnt Total number of instructions completed

TABLE I: Events tracked by performance counters

B. Performance Counter Prediction

First, we examine the performance of recursive and direct
SVR models for workload characteristic prediction. Figure 2
presents the prediction of the L2-miss-ratio counter for both
the recursive and the direct approach.We assume the collected
data of each performance counter as an individual time series.
Here, we demonstrate the prediction of L2 miss ratio, which
provides an insight for power consumption. Both models are
trained using 5000 samples and predict 5 steps into the future
(k = 5).

In terms of prediction accuracy, we compare SVR with the
predictors that we described in section III. A simple and well-
known method is averaging of last n values. We use simple
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Fig. 3: Forecasting L2 miss ratio, five
existing predictors

steps ahead using

averaging (SA) and exponential averaging (EA) to forecast
L2-miss-ratio five steps ahead into the future. Figure 3(a)
shows the measured and predicted samples. Sharp variation
of the performance counter results in poor predictions and
produces significant forecasting error although the overhead
of evaluating SA and EA techniques at runtime is almost
negligible.

Next we fit an AR and an ARMA model to the training data
of the performance counter and the trained models are used for
prediction. Figure 3(b) illustrates the prediction performance
of AR(21) for L2-miss-ratio when the model is used to forecast
five steps ahead into the future. The blue line is the measured
time values for L2-miss-ratio, while the red dotted curve shows
the prediction when only a single AR(21) model is trained and
used for prediction. It is seen here that the model performs well
at the beginning but fails to keep up with the actual results
prediction later on (from hereafter we call this model AR-
single). To address this issue, The AR-single model needs to
the retrained at the beginning of every prediction horizon and
the model needs to be fitted with a data set which includes
all measured samples up to this time point. We call this
AR-adapt in the rest of the paper. The gray line in Figure
3(b) presents the prediction of the AR-adapt model which
improves the quality of prediction significantly. Figure 3(c)
shows the prediction performance of ARMA(4,2)-single and
ARMA(4,2)-adapt. Like AR, the ARMA model also requires
adaptation before forecasting. Although both AR-adapt and
ARMA-adapt capture the dynamics of a target performance
counter accurately, the overhead of adapting these models is
significant. In [6], the authors reported that for the ARMA(p,
q) model, up to the fifth order, it takes about 500 ms for
computation and validation of the model. Therefore, these
models are not appropriate candidates at runtime for a real-
time workload monitoring and forecasting.

In section III, we described the history table (HT) model for
workload characteristics prediction. Here we built 2 history
predictors, HT-767-10 (table of size 768 with depth 10) and
HT-1024-10. Figure 3(d) demonstrates the quality of predic-

tion using HT.

Figure 4 presents the distribution of prediction error for
forecasting L2-miss-ratio five steps ahead into the future. It can
be seen that the proposed SVR approach not only generates
a lower prediction error in the test data, but also results in
tighter error bars than the previous models, indicating smaller
variance of error. The mean prediction error is 10%, 11% and
13% for SVR-Direct, SVR-Recursive and AR-adapt models
respectively. Note, that the SVR model is trained earlier using
the history data and are used for prediction without adaption.
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Fig. 4: Distribution of prediction error for forecasting five steps
into the future over 400 samples.

Figure 5 shows the accuracy of our prediction algorithm.
SVR-Direct model was used to predict all the available HW
counters for all the executed workloads. It is worth mentioning,
that the model was only trained by the Facesim workload and
used to predict the counter for all the workloads.
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Fig. 5: Performance counter Prediction error for 3 workloads

C. Power and Temperature Prediction

Our ultimate goal is to improve the reliability of circuits
through intelligent workload scheduling and other circuit
techniques. With that in mind, we need to predict the power
and temperature (which reflects device aging) of the system
and use that information to the intelligent pro-active system.
Ideally, power and temperature need to be obtained directly
from the circuit. However, due to lack of sensors or limitations
in accessing them, thermal management systems in the litera-
ture typically acquire these measurements using simulators. In



this work, we utilize our SVR model to predict power using
performance counter values. We use 350 samples of averaged
performance counter values along with their corresponding
power to train a SVR model. Then the model is used to predict
power from the value of the performance counters.

MCcPAT v1.0 [10] was used to compute power consumption
of each core from its architectural trace. McPAT is modified to
generate proper power traces for the thermal simulator HotSpot
[11]. The input data for McPAT that were not generated by the
performance counters, were assumed to take the default value.
Performance counter data were averaged over a window of two
seconds and fed to McPAT to obtain the power trace. Figure
6 shows the power consumption prediction for Core-1 for all
the 3 workloads run.

Afterwards, we feed the power trace to HotSpot to obtain
the temperature trace. We modified the floor plan and thermal
characteristics to reflect the UltraSPARC T1 processor. The
temperature trace presents the effect of the reactive system
of Solaris 10, wherein thread migration is employed in an
attempt to cool down a core whose temperature has reached
the threshold. Figure 7 shows the effect of temperature as
simulated by Hotspot for the SPARC-T1 processor.
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Fig. 6: Power consumption prediction of core-1 during 3
workload execution

VI. CONCLUSION

In this paper, we have introduce the Support Vector Ma-
chines (SVM) modeling technique for accurate workload char-
acteristics predictions. We also compare the SVM technique
with different other widely used prediction engines and suc-
cessfully shown that our method outperforms the existing ones
by a decent margin. All of our experiments were run on the 8
core UltraSPARC T1 processor. The biggest advantage of the
SVR method over other techniques is, this model does not need
any retraining unlike AR-adapt or ARMA, which significantly
reduces the training overhead in real-time scenario. We have
also showed that this prediction engine can accurately predict
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Fig. 7: Temperature of core-1 during workload execution

the power consumption as simulated by the McPAT power
simulator. In future, we would like to extend this work by
predicting the thermal characteristics of each core and make
dynamic scheduling decision to increase lifetime of the system.
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