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Abstract—We propose a methodology for dynamically selecting
an optimal probe-test flow which reduces test cost without
jeopardizing test quality. The granularity of this decision is at
the wafer-level and is made before the wafer reaches the probe
station, based on an e-test signature which reflects how process
variations have affected this particular wafer. The proposed
method offers flexibility by optimizing test flow per process
signature, and its implementation is simple and compatible with
most commonly used Automatic Test Equipment. Furthermore,
unlike static test elimination approaches, whose agility is limited
by the relative importance of the permanently dropped tests,
the proposed method is capable of exploring test cost reduction
solutions which achieve very low test escape rates. Decisions are
made by an intelligent system which maps every point in the
e-test signature space to the most appropriate probe-test flow.
Training of the system seeks to optimize the test flow of each
process signature in order to maximize test cost reduction for
a given target of test escapes, thereby enabling exploration of
the trade-off between test cost reduction and test quality. The
proposed method is demonstrated on an industrial dataset of a
million devices from a 65nm Texas Instruments RF transceiver.

I. INTRODUCTION

Continuous pressure for superior performance, along with
intensified process variations and non-idealities in the latest
semiconductor manufacturing technology nodes, have resulted
in stringent limitations in the cost that can be devoted to
testing each die, in order to ensure that it functions correctly
before it is shipped to a customer. Especially in the analog/RF
domain, where industrial practice still relies largely on lengthy
test procedures and expensive instrumentation to explicitly
measure the performances of a device and compare them to
its specifications, test cost reduction has become a crucial
requirement for maintaining profitability. Among the various
directions which have been explored towards reducing test
cost, significant effort has been invested in challenging the
practice of subjecting every die in production to the exact
same set of tests. Generally termed “adaptive test”, methods
in this category seek to customize the test process to the needs
of a target die, wafer, or lot, anticipating that the benefits from
a reduced test flow will outweigh the effort and expenditure
required for such customization.

A very simple and commonly practiced approach to test cost
reduction is to monitor the relative effectiveness of each test
and drop the ones which contribute little or not at all to the
overall test effectiveness [1]-[3]. Such decisions are usually
static and are easy to implement on the ATE by exclusion of
the relevant portion of the test program. However, the agility of
such methods is insufficient to support solutions which offer
savings yet maintain very low test escapes; essentially, they

are bound by the percentage of faulty die that the dropped
tests uniquely detect. Advanced versions of this idea, wherein
statistical correlation between the dropped and retained tests
is leveraged to predict the outcome of the former, have
also been proposed [2], [4]-[6]. While additional ATE or
external support is required to run the statistical models on-
the-fly during test, these methods have demonstrated marked
improvement in test quality. Still, the decision models remain
static or only infrequently retrained to account for major events
which can change the statistical profile of the production.

In [7], we proposed a new methodology for establishing
an adaptive test flow which is deployable with minimum test
operation support. For each wafer, this approach provides a
decision as to whether to test it through the complete probe-
test flow or a reduced test flow, in which some of the test
groups are eliminated. This decision is made at an early stage,
before the wafer reaches the probe station, driven through e-
test' measurements.

Figure 1 (a) depicts this adaptive method: a statistically
trained entity examines the e-test data of a wafer and, de-
pending on the extracted signature, it selects the appropriate
test flow code. The test flow code is a vector, wherein each
test group corresponds to a bit, with value ‘1’ signifying
inclusion and value ‘0’ signifying exclusion of that test group.
In the work described in [7], one of the choices of test flow
code is the all ‘1’ vector while the other choice is a single
carefully selected subset of test groups which maximizes test
cost reduction for a target test escape rate.

However, a single reduced test flow (i.e., subset of all test
groups) which is optimized across all process signatures is a
restrictive and sub-optimal choice. Indeed, depending on how
a wafer has been impacted by process variations, a different
reduced test flow may offer the best option. Therefore, in this
work we seek to investigate the utility of test flow optimization
per process signature, towards achieving higher test cost
reduction. To accomplish this, an optimization algorithm is
employed to statistically select the best test flow for each
signature such that test cost reduction is maximized while
the required test quality is achieved. Figure 1 (b) depicts
the proposed approach. Similar to [7], the decision is made
before the wafer reaches the probe station and is driven by
e-test measurements. The trained test flow selection engine
processes the e-test measurements of a wafer, extract its
process signature, and accordingly selects the most appropriate

IBy the term e-test we refer to electrical measurements, which are typically
performed on a few select locations across the wafer, using process control
monitors (PCMs) included on the wafer scribe lines.
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(a) Adaptive method with two test flows [7].
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(b) Adaptive test flow selection per process signature (this work)
Fig. 1: Wafer-level probe-test flow selection

test flow for that signature during probe testing of this wafer.
We note that the complete test flow remains one of the
possible choices, especially for outlier wafers, i.e., those e-
test signatures have not been encountered in the past.

II. PREPROCESSING

Before we address the problem of deciding an appropriate
test flow for a wafer, we discuss the initial elements which are
required prior to such a decision. These two elements are: (i)
identifying an appropriate subset of test groups which could
potentially be applied to a wafer, and (ii) crafting a wafer
signature from its e-test measurement vector. In the following
sections, we provide details of these two components.

A. Reduced Test Flow Selection

A reduced test flow is a subset of the complete flow, wherein
one or more test groups are eliminated. The first challenge
that naturally arises is the selection of the test groups which
should be omitted in a reduced flow, such that the attained
test cost reduction does not compromise test quality beyond
a target level of acceptable test escapes. Since the granularity
of elimination is at the test group rather than at the test item
level, it may be possible to exhaustively search the space of
solutions. For example, in our experiments we dealt with a set
of 10 test groups, thus exhaustively searching in the power-set
of 210 subsets of the complete test flow to find the optimum
subset was feasible and chosen due to its simplicity.

B. Wafer Signature Extraction from E-tests

E-test data contain many types of parameters, mainly fo-
cusing on simple physical/electrical characteristics reflecting
the position of a wafer in the process space. For some of
these measurements, there is no physical connection or reason
why they should be correlated with probe-test outcomes or
the necessity thereof. Accordingly, to avoid spurious autocor-
relations and to gain better insight from our e-test data, prior
to crafting a wafer signature based on the e-tests we apply

a dimensionality reduction algorithm to transform the data
onto a lower count of dimensions. Specifically, we use the #-
Distributed Stochastic Neighbor Embedding (t-SNE) technique
[8] which is the state-of-the-art non-linear transformation
approach and is widely used in many applications for unsu-
pervised dimensionality reduction. In general, t-SNE embeds
wafers with similar signatures close to each other on a 2-
dimensional map.

III. TEST FLOW OPTIMIZATION

In Section II, we described the process of generating all
potential reduced test flows as well as extracting a process
signature from the e-test data of a wafer. Now, our objective
is to assign the most appropriate reduced test flow to each
process signature, such that we maximize test cost reduction
while retaining the test escape rate below a target Defective
Parts Per Million (DPPM) level.

A. Bi-Flow Method

This technique was proposed in [7] as an adaptive solution
to reduce probe-test cost during wafer-level testing. In this
approach, the objective was to subject a subset of wafers to
a reduced probe-test flow in which some test groups were
eliminated from the complete test flow. In summary, this
approach comprises the following steps:

« First, the e-test space is partitioned into k clusters using
the k-means clustering method.

e Then, a reduced test flow is selected from the list of all
possible reduced flows which are generated as described
in Section II-A. Subsequently, all the training wafers in
every cluster are tested by the selected reduced test flow
and the total test escapes of the cluster, te;, which is
the sum of test escapes of all wafer in the cluster, is
computed.

o Finally, the last step is to decide for each cluster of
wafers (i.e., based on their process signatures) whether
to perform the complete or the reduced test flow, such
that the test cost reduction is maximized while the total
test escape rate is kept below a given DPPM level. To
solve this optimization problem, a binary Integer Linear
Program (ILP) is formulated. The ILP solution assigns a
label to each cluster, indicating the appropriate probe-test
flow for the wafers in that cluster.

« The above-mentioned procedure is repeated for all possi-
ble reduced test flows and the best candidate is selected,
based on the criterion of maximizing test cost reduction
while meeting the required test quality.

For a new wafer, the distance of its e-test signature from
the centers of the clusters is first computed and the wafer is
assigned to the nearest cluster. If the decision for this cluster is
to apply the reduced test flow, the wafer will undergo only the
preselected subset of test groups, otherwise it will be tested
by complete test flow. For the sake of simplicity, in the rest
of the paper we refer to this approach as the Bi-Flow method.



B. Dynamic Test Flow Generation

We now proceed to elaborate on how to optimize the test
flow per cluster. Our methodology consists of two steps: (i)
finding the best reduced test flow for each cluster individually
for any target DPPM level, and (ii) determining the maximum
test escape rate of each cluster through an optimization algo-
rithm. Below we provide details of these two steps.

1) Test Flow Generation per Cluster: Let us consider clus-
ter C;, which includes a set of wafers, and let us assume that
we are interested in finding the best reduced test flow among
all n candidates which are generated using exhaustive search.
Let TE; = [te1, - ,te,] and TTR; = [ttry,--- ,ttry,]
denote the test escape rate and test cost reduction vectors of
the ¢-th cluster, where te; and ttr; denote the number of test
escapes and the amount of test cost reduction when all wafers
in this cluster are tested by the j-th reduced test flow. For
any DPPM level in the range [0, DPPM,|, where DPPM,
is the target DPPM level, a reduced test flow is selected such
that its test escape rate for cluster C; is lower than the DPPM
level, while maximizing the test cost reduction. At the end
of this step, each cluster has associated with it a table with
multiple rows and three columns. Each row corresponds to a
specific DPPM level and the three columns correspond to the
test escape rate, test cost reduction and index of selected test
flow, respectively.

2) Optimization Algorithm: The second part of our pro-
posed method is an optimization algorithm, which selects
the best probe-test flow for all k£ clusters while meeting
the required test quality. Let TE = [T'Ey,---,TE;]" and
TTR=[TTRy,---,TTR;]T denote the test escape rate and
test cost reduction matrices, where T'E; and TT R, represent
the test escape rate and test cost reduction vectors for the -
th cluster, and te;; denotes the test escape rate for the i-th
cluster for the j-th DPPM level. Our objective is to distribute
the target DPPM level among k clusters so as to maximize
test cost reduction. Looked at from a different angle, we
need to determine the maximum acceptable test escape rate
for each cluster. To do so, we formulate this problem as an
integer linear program (ILP). An ILP consists of a set of
variables, which can only assume integer values, a set of linear
constraints on these variables, and a cost function which is to
be maximized or minimized. In our problem, our constraint is
on the total number of test escapes, and our cost function is to
maximize test cost reduction. Our ILP is actually a binary (0-
1) version, where the value of each integer variable can only
be either O or 1.

IV. EXPERIMENTAL RESULTS

In order to experimentally evaluate the effectiveness of the
proposed methodology, we use actual production data from a
65nm analog/RF transceiver currently in high volume manu-
facturing (HVM) production by Texas Instruments. The dataset
comes from 400 wafers, each of which contains approximately
2500 die. E-test is performed on 9 sites across the wafers, with
250 measurements obtained from each site. On each die, 380
parametric probe-test measurements are obtained, organized in
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Fig. 2: Test cost reduction vs. test accuracy for static test
elimination and Bi-Flow method for various DPPM levels

10 groups. The percentage by which each group contributes
to the total test cost is also provided.

Using this dataset, our experiments seek to:

o Demonstrate that the effectiveness of the Bi-Flow
method, which provides per wafer decision between a
complete and a reduced test flow, is rather limited, thus a
dynamic test flow generation with wafer-level granularity
is required to optimize the test flow per process signature.

o Demonstrate that dynamic test flow generation per wafer
based on e-test data can yield significant test cost reduc-
tion at realistic low DPPM levels.

A. Results of Bi-Flow Technique

Figure 2 demonstrates the test cost vs. test quality trade-
off for various DPPM levels. The two curves on this graph
reflect solutions achievable by the static test elimination and
an adaptive approach, which selects between the complete test
flow and a single reduced test flow [7], respectively. Evidently,
this Bi-Flow method outperforms static test elimination across
the board. More importantly, it allows higher fidelity in the
selection of a desirable point on this trade-off, starting from
solutions with very low DPPM and small test cost reduction,
and progressing at very fine-grained steps towards higher test
cost reduction with higher test escape rates. Figure 3 depicts
the outcome of the Bi-Flow approach in which the complete
test flow assigned to a set of clusters (i.e., clusters with circle
marker in red) and a reduced flow is selected for the remaining
clusters, when target test escape rate is set to DPP M.

B. Dynamic Test Flow Optimization

Figure 4 depicts the outcome of the proposed dynamic test
flow optimization technique when the target test escape rate
is set to DPPM,,;,. In this graph, clusters with identical
probe-test flow are represented by the same color; for example,
clusters in blue such as Cy, require the complete test flow. On
the bottom right of this graph, we present the optimized test
flow code for clusters C; — Cy. In comparison to Figure 3,
which shows the outcome of the Bi-Flow method for the same
target DPPM level, the new method provides more flexibility
for test cost savings.

The ability of the proposed dynamic test flow generation
method to explore the trade-off between test cost reduction
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Fig. 3: Test flow assignment (either complete or reduced flow)
for each cluster in the e-test space
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Fig. 4: Final assignment of the optimized probe-test flow code
for each cluster (process signature)

and test quality, even in the region of very low DPPM, is
demonstrated in Figure 5. The three curves on this graph reflect
solutions achievable by static test elimination (blue curve),
the Bi-Flow method (gray curve), and the proposed dynamic
test flow generation (dotted black line) for various target
DPPM levels. It is evident that the proposed dynamic test flow
optimization approach significantly outperforms the other two
approaches for any DPPM level. This is expected, since our
dynamic approach successfully generates an optimized probe-
test flow for each process signature.

V. CONCLUSION

Judicious harnessing of process variations in optimizing
probe-test flow demonstrates great promise towards test cost
reduction in analog/RF ICs. As we presented herein, each

signature in the process space may require its own optimized

test flow. The signature of a wafer can be obtained at early
stage through e-test, reflecting how process variations have
affected a given wafer. Deployment of the proposed method
requires minimal test infrastructure support, yet is capable of
identifying solutions with very low test escape rates, which
is not possible through static test elimination. Experimental
results using a large dataset of actual test measurements from a
65nm Texas Instruments RF transceiver confirmed the aptitude
of the proposed method in effectively exploring the trade-off
space between test quality and test cost.
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Fig. 5: Test cost reduction vs. test accuracy of three approaches
for various DPPM levels
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