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Continuous technology scaling and the introduction of 

advanced technology nodes in Integrated Circuit (IC) fabrication 

has exposed new manufacturability issues. Lithographic hotspots 

are one of such problems which are a result of complex process 

interactions. These hotspots are known to vary from design to 

design and foundries expect such hotspots to be predicted early and 

corrected in the design stage itself, as compared to a process fix for 

every hotspot, which would be intractable. Various efforts have 

been made in the past to address this issue by using a known 

database of hotspots as a source of information. Most of these 

works use either Machine Learning (ML) or pattern matching 

techniques to identify and predict hotspots in new incoming 

designs. Most of these methods suffer from high false alarm rates 

and some of the main reasons for this are: these methods are 

oblivious to the root cause of the hotspots and there is a lack of 

availability of a large hotspot database to learn from. In this work, 

we try to address these issues by using novel hotspot Design Of 

Experiments (DOE) and synthetic hotspot generation approaches. 

We analyze the effectiveness of proposed methods against the state-

of-the-art on a 45nm process, using industry standard tools and 

designs. 

I. INTRODUCTION  

Continued technology scaling and the introduction of every 
advanced technology node in Integrated Circuit (IC) 
fabrication brings in new challenges for foundries. Lithography 
is one such major challenge during technology development. 
As shown in figure 1, in early technology nodes, the 
wavelength of light used in lithography was much smaller than 
the features being printed. It is vice-versa in the latest nodes. 
While in the above wavelength region, patterning was 
relatively easier as shown in figure 2a. In the sub-wavelength 
region, patterning is extremely challenging due to complex 
light interactions, depicted in figure 2b. To mitigate some of 
the patterning related issues and ensure reliable manufacturing, 
various Resolution Enhancement Techniques (RETs) like 
Optical Proximity Correction (OPC), Multi-patterning, Phase-
shifting masks etc., are used. In spite of employing RETs, 
complex designs from different designers give rise to various 
issues during fabrication which are often not foreseen by the 
foundry. One such issue is lithographic hotspots. Certain areas 
in the design which show abnormal and unexplained variation 
despite passing Design Rule Check (DRC) and complying 
Design For Manufacturability Guidelines (DFMGs), are 
termed as hotspots. The cause of these hotspots is mostly 
attributed to the neighborhood of design patterns which causes 
complex interaction of light during the lithography process. 

Since these hotspots vary from design to design, the process of 
identifying the root cause of such abnormal effects of light and 
finding a fix for all such hotspots through changes in the 
process is extremely difficult, time consuming and expensive. 
Thus, in most cases, foundries create a database of such known 
hotspots and restrict their presence in incoming customer 
designs. Foundries usually populate such a database through 
either Failure Analysis (FA) data, Inline inspections, through 
Lithographic simulations using well calibrated lithographic 
models [1] etc. If a design pattern turns out to be a hotspot in a 
later stage of fabrication, especially, if after the mask set has 
been fabricated, it may result in a huge loss to the foundry. 
Hence, there is a great need to identify these problematic 
patterns (hotspots) early, and correct them in the design stages 
itself. 

Figure 1: Comparison of light wavelengths with silicon 

feature sizes [11] 

Figure 2: (a) Pattering in above wavelength region (b) 

Sub-wavelength region [2] 



Many researchers have suggested various techniques to 
identify and predict hotspots in new incoming designs. Authors 
of [2] use pattern matching techniques, where, a new design is 
compared to a database of previously seen hotspots and any 
potential hotspots are flagged. While these techniques do a 
good job in identifying known hotspots, they often fail in 
predicting unknown hotspots. To address this issue, machine 
learning techniques using Support Vector Machines [3], 
Artificial Neural Networks [4], multiple classifiers [5] etc. 
were proposed which essentially ‘learn’ from a database of 
known hotspots and classify new patterns as either a hotspot or 
a non-hotspot. 

Over time, various flavors of these techniques have been 
proposed which have provided better accuracy, lesser false-
alarms, faster runtimes etc., [6][7]. However, most of 
techniques suffer from two main issues which cause increased 
false-alarms: (a) the ML models only try to learn the difference 
between hotspots and non-hotspots and do not try to learn more 
about the actual feature(s) of hotspots which really makes them 
hotspots. (b) Lack of availability of a large database of hotspots 
which limits the learning capabilities. Often the existing 
hotspots are replicated to match the non-hotspot sample 
numbers [2] [3]. 

We propose a novel approach to address these problems 
through synthetic hotspot generation and design of 
experiments, which enables the Machine Learning entity to 
train effectively by learning more about the actual geometries 
causing the hotspot. 

The rest of the paper is organized as the following: The 
problem (source of false alarms) and proposed methods are 
explained in detail in section II. The complete flow 
incorporating these techniques is presented in section III. 
Experimental results are discussed in section IV and section V 
concludes the paper. 

II. PROBLEM DEFINITION AND PROPOSED METHODOLOGY 

A. Source of false-alarms 

The state-of-the-art machine learning based techniques for 
hotspot detection suffer from high false-alarm rates. The source 
of these false alarms can be understood using figure 3. Figure 
3a shows a hotspot pattern, where, the contours (PV bands) 
obtained from litho simulations indicate a short between two 
different polygons.  Figures 3b-d show patterns which are 
slightly different from the pattern shown in figure 3a. 

Scenario 1 - Let us assume that, a machine learning based 
classifier was trained to detect hotspots and among the patterns 
shown in figure 3, only pattern (a) was part of its training 
dataset. During testing, if pattern (b) is presented to the 
classifier, it tends to classify it as a hotspot due of its close 
similarity to pattern (a). But, the litho simulation of pattern (b) 
shows that it is not a hotspot, thanks to the relaxed spacing 
‘S1’. The classifier fails to recognize the importance of this 
feature.  

Scenario 2 - Let us assume that the classifier’s training dataset 
included both the patterns 3a and 3b. In that case, the classifier 
would easily understand that the constrained space ‘S1’ for 
such a pattern would make it a hotspot and a relaxed space 
would make it a non-hotspot. Then, if pattern (c), which is very 
similar to patterns (a & b), while having a constrained space 
‘S1’, is presented to the classifier, the classifier tends to 
classify it as a hotspot. But, the litho simulation of pattern (c) 
shows that it is not a hotspot, thanks to the relaxed width ‘W1’.  
The cause of this error is the fact that, during training, the 
classifier had only recognized ‘S1’ as an important feature, but 
not ‘W1’. Similarly, the feature ‘W2’ is also responsible in 
turning a pattern into a hotspot or a non-hotspot. 

From the above scenarios, we can clearly see that, unless 
otherwise trained with many variants of a known hotspot, the 
ML entity assumes that all shapes and their positions in a 
hotspot pattern equally contribute towards making it a hotspot. 
It remains oblivious to the features of the pattern which 
increase or decrease the variation (drive the pattern more 
towards being a hotspot or a non-hotspot). Lacking this 
information, the trained model might classify some of the 
testing patterns shown in figure 3b-d as hotspots, resulting in 
false-alarms. 

To address this issue we propose to enrich the hotspot database 
through design of experiments and synthetic hotspot 
generation. 

B. Synthetic hotspot generation and DOEs 

A known hotspot is taken from the database and multiple 
variations of the same hotspot are created by changing one or 
more features at a time. Figure 6(a) shows one such hotspot 
and figures 6(b-h) show some of its variations. Various 
features which could possibly create variation in a pattern, such 
as (a) corner to corner distances (b) jogs (c) line end positions 
(d) metal spacing (e) metal area etc., are varied to produce 
multiple variations of a known hotspot. A time efficient 

(d) (a) (b) (c) 

S1 

W1 

W2 

(d) 

Figure 3: (a) A hotspot pattern (b-d) variations of pattern (a) which are non-hotspots 



method for varying these features relies on perpendicularly 
moving the edges of a given polygon in each snippet by a 
random distance. This approach allows the fast generation of 
multiple variants whose variance can be easily controlled by 
two parameters. The first parameter is the probability of any 
given edge to move or remain stationary. By increasing this 
probability, we effectively increase the number of polygons 
and their edges in the input snippets that will be altered. The 
second parameter is a distribution of distances which is 
sampled for every polygon edge selected by the first parameter 
and the sampled value denotes the distance by which the edge 
will be displaced. A simple change to this distribution of 
distances changes the amount of variation between generated 
patterns. 

As we can expect, the above mentioned procedure results in 
a plethora of variants, many of which might not even pass the 
design rule check. To ensure that these are valid layout 
topologies that can provide meaningful information for training 
a classifier, a minimal Design Rule Check (DRC) engine is 
implemented and executed after each variant generation. 
Design rule clean, synthetic hotspot variants are subjected to 
lithographic simulations. Run-time of these simulations, on 
small layout snippets is negligible and is a one-time procedure. 
Hotspot variants along with their litho simulation results are 
added into the hotspot database to obtain an enhanced 

database. 

C. Feature extraction 

     In all proposed machine learning based hotspot detection 

schemes, hotspot and non-hotspot patterns are stored in the 

form of layout snippets which are subjected to feature 

extraction, where, the image snippet is transformed into a 

feature vector which can be used as a training/testing vector. 

Various feature extraction methods like density based [2], 

bounded rectangle region based [4], fragment based [3], etc. 

have been proposed. We have used density based feature 

extraction for our analysis. In this method, as shown in figure 

5, an n*n grid is overlapped on a pattern and the density of the 

metal within each block of the grid is computed. The ordered 

vector of such densities is used as the feature vector. While 

density captures information about the presence of a material, 

the vector ordering captures the location information. The size 

of the grid is a parameter decided through experimentation. A 

very fine grid results in a large number of features which leads 

to over-fitting and vice-versa.  

 

III. THE OVERALL FLOW 

     The complete flow is shown in figure 4. The database of 
hotspot patterns is initially populated through full chip 
lithographic simulations on a wide variety of layouts [1]. 
Considering that this is a one-time effort, the more the merrier. 
This step is not necessary if the foundry already has an initial 
hotspot database from prior learning. The hotspot database is 
enriched as described in section II(b). Hotspots from the 
enriched hotspot database and some non-hotspots sampled 
from placed & routed layouts are used as the training dataset. 
The training patterns are subjected to feature extraction and the 
resultant feature vectors are used to train a two-class classifier.  

     Subsequently, whenever the foundry receives a new 
customer design/Intellectual Property (IP) for fabrication, the 
entire layout is scanned layer by layer and each layer is 
converted into image snippets of a pre-determined size. All 
such snippets are converted into feature vectors and are then 
tested for hotspots. For those patterns/feature-vectors flagged 
as hotspots, their corresponding locations in the layout are 
inspected and design fixes are requested if necessary. Hence, 

This research has been partially supported by the Semiconductor 
Research Corporation (SRC) Task 2709.001. 

Figure 4: Complete flow of machine learning based hotspot detection using synthetic hotspot generation 

Figure 5: Density based feature extraction [2] 



this methodology enables effective hotspot detection before 
fabrication.  

IV. RESULTS 

     A set of Register-Transfer-Level (RTL) benchmarks are 

placed and routed using the Nangate open cell library [8], 

which was developed based on a 45nm Product Design Kit 

(PDK) [9]. Patterns are captured from layouts using Calibre 

Pattern Match tool and Lithographic simulations are 

performed using Calibre Litho-Friendly-Design (LFD) tool-kit 

[10], using the litho models provided with the PDK. 

Lithographic simulations are necessary to find the ground 

truth about the captured patterns. Half of the dataset obtained 

from litho simulations is used for training and the other half is 

used for testing. A Support Vector Machine (SVM) with a 

Radial Basis Function (RBF) kernel is trained and used for 

classification. The testing dataset is presented to the trained 

classifier. Initial experiments show a reduction in False-alarms 

by about 50% in comparison to generic ML based hotspot 

detection methods. Large scale experiments are underway. 

 

V. CONCLUSION 

     We have discussed the problem of lithographic hotspots in 

advanced technology nodes, analyzed the state-of-the-art in 

this domain and highlighted that they suffer from high false 

alarm rates. We have shown that this is partly due to these 

methods being oblivious to the root cause of the hotspots and 

the lack of availability of a large hotspot database to learn 

from. We have tried to address these issues by using novel 

hotspot Design Of Experiments (DOE) and synthetic hotspot 

generation approaches. Our initial evaluation of the 

effectiveness of the proposed methods using industry standard 

tools and designs on a 45nm process has shown promising 

results. 
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Figure 6: (a) Hotspot pattern obtained from a benchmark layout, (b-h) Synthetic patterns generated using pattern 

‘a’ as the initial pattern. Blue markers indicate the subtle changes in them, in comparison to pattern ‘a’  
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