
Reducing Underkill Using Unsupervised
Machine-Learning Based Method in Analog/RF IC

Testing

Vineeth Amritur Niranjan∗, Deepika Neethirajan∗, Dallas Webster†, Amit Nahar† and Yiorgos Makris∗
∗Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX USA, 75080

†Texas Instruments Inc., 12500 TI Boulevard, MS 8741, Dallas, TX 75243

Abstract—Semiconductor manufacturers strive to main-
tain a balance between the reliability expectations of
System On Chips (SOCs) and ensuring the overall cost
of testing is low. Amongst manufacturers, there exists
a strong desire to achieve minimal Defective Parts Per
Billion (DPPB) as loss of yield is often exacerbated by
the exponentially increasing complexity of devices in cur-
rent technology nodes.Most semiconductor manufacturers
balance the need for extensive testing and the additive
overhead of test cost and test time associated with it,
resulting in manufacturers having exceedingly optimistic
device binning or insufficiently elaborate test programs.
The aforementioned issues in high-volume manufacturing
testing cause faulty or failure-prone ICs to be shipped
out and increase the number of customer returns. We
term this unfavorable test outcome as Underkill. To this
end, we propose an unsupervised machine learning-based
methodology to identify potential customer returns and
thus reduce Underkill. Specifically, the proposed machine
learning model captures any deviations in device behavior
across different test insertions. Leveraging unsupervised
machine learning models, we extract unique signatures
from these devices and use Gaussian methods to learn
from the distribution and identify one or more devices
that may be a potential customer return(s). We employ
our proposed approach on an industrial dataset provided
to us by Texas Instruments. Our experimentation with
the industrial dataset establishes effectiveness in correctly
identifying devices with a higher probability of failure on-
site.

Index Terms—post-silicon calibration, adaptive, alter-
nate testing, outlier detection

I. INTRODUCTION

The complexity of semiconductor devices has been
growing exponential over the years, the increased in-
tegration and the functionality of devices necessitate
comprehensive post-silicon testing. Semiconductor man-

ufacturers design comprehensive test programs to ensure
customer expectation of Defective Parts Per Million
(DPPM) are met. The test procedures are often con-
strained by test time and test cost during High vol-
ume manufacturing, optimistic testing thresholds, and
insufficient test coverage. This results in test escapes
(Underkill). Additionally, several other factors such as
process variations and environmental factors also con-
tribute to test escapes, for our preliminary analysis we
do not investigate these external factors. Semiconduc-
tor manufacturers intuitively implement advance process
control techniques to alleviate process variation and
environmental factors.

Figure 1: Device Classification Based on Test Outcome

Figure 1 shows the classification of devices based
on their performance. The table categorizes devices
depending on their performance in the manufacturer’s
test program and their actual performance on-site. The
table classifies devices into the following four labels. If
the devices pass the manufacturer’s tests and it actually
performs as per the design specification, the device is
labeled as a “truly passing” device. Conversely, if the
device fails the manufacturer’s tests and does not perform



Figure 2: Machine Learning Based Approach

as per the design specification, the device is labeled as
a “true failure” and is thus discarded. When the device
fails the manufacturer’s tests, its actual performance is as
per the design specification, then such a device is termed
yield loss. Finally, if the device passes the manufacturer’s
tests but fails to function as per design specification on-
site, then the device is labeled as test escape caused due
to Underkill.

Underkill is a rare unfavorable outcome for semicon-
ductor manufacturers as this can damage their reputation,
require extensive root cause analysis, and expensive
retooling to modify the manufacturing and testing pro-
cess. We perform statistical analysis on customer return
devices or test escapes and alleviate Underkill.

II. RELATED WORK

There are several efforts to reduce the instances of
Underkill. In safety-critical chips, such as automotive IC,
failure on-site can have a catastrophic impact. Ideally,
semiconductor manufacturers want to achieve a zero
customer return in order to cater to the strict demands
of supplying automotive customers. To this end, most
automotive device manufacturers include Dynamic Part
Average Testing (DPAT) [1] in their test programs.
Dynamic part average testing is derived from the concept
of the six sigma test, where a given device is labeled
as an outlier if the test measurements of the device
are six standard deviations away from the mean test
measurements. The prior works are broadly classified
into univariate or multivariate machine learning models.
Univariate machine learning models such as DPAT [1]
or IDDQ tests [12] [8] to reject yield based on sta-
tistical thresholds. Multivariate methods such as outlier
detection using Principal Component Analysis (PCA) [6]
[13] leverage the use of Principal Components from a
high dimensional test measurement space to screen for

defective chips. Other multivariate models include the
use of a decision tree [2] to build predictive models
to identify failing chips using test data from multiple
test insertions and using a subset of tests that highly
correlates with customer returns to identify potential
failing devices [10].

In this work, we find the optimal feature space
amongst the test measurements from different test in-
sertions(measured at different temperatures) to isolate
potential failures and extract device signatures. Once we
extract this signature, we use unsupervised clustering as
an extension of previously researched methods in [5]
[13]. The novelty of our proposed approach is in the
feature-space exploration without the loss of device in-
formation in conjecture with an unsupervised clustering
technique.

III. PROPOSED METHODOLOGY

Our proposed methodology shown in figure 2 aims
to identify devices that are statistically similar to faulty
devices/customer returns and are distinct from passing
devices. To this end, the test measurement data from test
insertion recorded at high and room temperature is used
as input to the two-stage unsupervised machine learning
model.

The proposed machine learning model consists of the
following two-stage :

• First, we explore the test measurements to generate
an optimal feature space in order to separate a
potential faulty chip from nominal device data

• We cluster devices using Gaussian Mixture Model
(GMM) [7] based on the device measurements in
the feature space obtained in the previous stage

A. Feature Space Exploration
The objective of the proposed step is to search for an

n-dimensional feature space amongst the given test data,



wherein a faulty device is isolated from the distribution
of “truly passing’ devices in the above-defined feature
space. The use of temperature cycle testing to perform
device characterization is well documented, especially
in analog/RF ICs [9]. The variations in a device’s test
performance at high temperature and room temperature
can help one infer the device’s individual performance
signatures. The aforementioned signatures can be em-
ployed in grouping identically performing devices. Any
anomalous variation in the performance measurements
of devices at different temperature test insertions can
indicate that they are probably marginal devices and are
thus failure-prone. The above inference is leveraged in
our methodology to obtain a feature space to isolate
the faulty devices from the ”truly passing“ ones. We
compute the test measurements’ deferential recorded
across the test insertion at different temperatures. The
above computed deltas, across all the test measurements,
are our chosen n-dimensional feature space.

Figure 3: PCA and t-SNE Plots of Devices in the
Selected Feature Space

B. Unsupervised Clustering
In the above n-dimensional feature space, we perform

unsupervised clustering. Unsupervised clustering meth-
ods are often used to detect anomalies. These anomalies
are points that fall outside of known good clusters or
belong to clusters that are known to be associated with
faults. The objective of clustering in our context is to
identify the clusters of ”truly passing“ devices to separate
them from faulty device distribution. The devices’ test
measurements form a Gaussian distribution. Due to the
Gaussian nature of our feature space, we chose Gaussian
Mixture Model [7] to perform unsupervised clustering.
GMM is a distribution-based clustering model. GMM
assumes that a given distribution consists of several
Gaussian distributions, and these distributions represent
a cluster. Hence, GMM groups data points belonging to
a single distribution together. The Gaussian cluster of the
faulty device is statistically dissimilar with respect to the
cluster of ”truly passing“ devices and hence, by using
GMM clustering we seek to identify future customer
returns.

Figure 4: Wafer Heat Map of GMM Cluster Mean

Finally, in the last step, devices are screened using a
confidence estimator that reverses or accepts the ”passing
label“ assigned by the test program. The confidence
estimator informs the test engineer of the probability
of a device passing or failing on-site. The further a
given device is from the center of ’truly passing’ devices
distribution, the higher possibility of failure on-site.
Devices belonging to a cluster associated with a known
faulty device/customer return have a higher probability
of failure. The confidence estimator builds on the above-
mentioned theory.

IV. RESULTS

To evaluate our proposed Overkill reduction method-
ology, we experimented with a dataset provided by
our industrial collaborators at Texas Instruments. The
following two sections will elaborate more on the dataset
and the results obtained from our experimentation.

Figure 5: Analysis of Devices Belonging to Fault ID-1



A. Dataset Descriptions
The dataset provided by TI consists of test measure-

ments of 24,000+ devices across two different test in-
sertions. There are 19 wafers in the dataset that contains
relevant wafer information such as wafer-id, die-id, and
X-Y location of devices. There are 19 customer returns
in our dataset, coincidentally one on every wafer. Fur-
ther, the customer returns are analyzed upon return and
categorized by the manufacturer into six unique fault-
id types. Preliminary analysis of the dataset indicates
that the occurrence of customer returns is rare, and
subsequent categorization of customer returns gives us
a limited number of devices to perform our statistical
analysis. The first three fault-ids have sufficient customer
returns to perform our analysis. We conduct our ex-
perimentation with the aforementioned fault-ids and use
a resampling technique to generate additional customer
returns using Adaptive synthetic sampling to build our
confidence estimator. However, we record similar trends
in customer return devices belonging to the remaining
fault-ids and a simple extension.

Figure 6: Analysis of Devices Belonging to Fault ID-2

B. Experimental Results
Our experiment starts with extracting the 711 test

measurement from the test insertion data collected at
high and room temperature. These test measurements
are used to perform our feature space exploration and
unsupervised clustering.
Feature Space Exploration: In this first step, we
compute the difference in test measurements across the
hot/room temperature test insertion. The resulting delta
measurement is our chosen n-dimensional feature space
where n=711. We observe that the n-dimensional feature
space can effectively isolate the customer return devices
from the ”truly passing“ device distribution. To visualize
the isolation of customer return devices; all the devices
for a given wafer are plotted in our chosen n-dimensional
feature space. We compress our n-dimensional feature
space to enable plotting in three dimensions. We use

dimensionality reduction techniques such as PCA [4]
and t-SNE [11] for our Visualization. For representation
purposes the plot of a wafer is shown in figure 3.Similar
patterns are seen across the 19 wafer with variability in
degree of isolation. These results validate the effective-
ness of our feature space.
Unsupervised Clustering using Gaussian Mixture
Model: Next, we perform unsupervised clustering using
GMM. The GMM clustering is performed on the n-
dimensional feature space obtained in the previous stage.
The number of Gaussian clusters is selected using the
Bayesian Information Criterion (BIC) [3]. The clusters
and their cluster means are obtained and recorded. The
plot in figure 4 shows the clusters obtained from GMM
clustering. A wafer heat map is generated based on
the cluster mean values to evaluate our hypothesis. The
cluster containing the customer return is highlighted, and
we observe that the cluster is outlying with respect to
the ”truly passing“ devices. Since we have sufficient

Figure 7: Analysis of Devices Belonging to Fault ID-3

customer return devices from three ”Fault-IDs“ in our
dataset, we perform our analysis on them. The first two
Fault-IDs have six customer return devices, and the last
Fault-ID has four customer returns. We use adaptive
synthetic (ADASYN) data generation to capture the
distribution of customer returns and replicate them. This
step creates sufficient samples to evaluate our proposed
approach. We use the distribution of customer returns
(actual and sampled) to build our GMM clusters. The
results of our experimentation for the three fault-id types
are presented in figures 5, 6 and 7. The left plot in the
figures illustrates the distribution of devices from the
wafer that contains customer returns of respective fault-
id. The right plot shows the location of the faulty cluster
in a wafer for each fault-id. To evaluate the effective-
ness of clustering, we train the GMM with resampled
customer returns and observe that the actual customer
return belongs to the faulty cluster. We further validate
the proposed methodology using leave one out validation
using the resampled customer returns to observe that the



outlying cluster contains the actual customer return.

V. CONCLUSION

The proposed methodology explored the ability to
reduce the instances of test escapes (underkill) in ana-
log/RF IC testing using multi-variate unsupervised ma-
chine learning models. The model extracts device signa-
tures from its test measurements in high temperature and
room temperature conditions, based on these signatures
unsupervised clustering is performed to group devices
that are statistically similar. The clusters that are outlying
with respect to the distribution of passing device clusters
have a higher probability of failure on-site. The model
is evaluated using an industrial dataset provided to us
by our collaborators at Texas Instruments. The results
of our experimentation on the aforementioned dataset
correctly identify the clusters of devices that contain
known customer returns and establish that these devices
are at the edges of passing device distribution.
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