
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012 25

Proof-Carrying Hardware Intellectual Property:
A Pathway to Trusted Module Acquisition

Eric Love, Member, IEEE, Yier Jin, Student Member, IEEE, and Yiorgos Makris, Senior Member, IEEE

Abstract—We present a novel framework for facilitating the ac-
quisition of provably trustworthy hardware intellectual property
(IP). The proposed framework draws upon research in the field of
proof-carrying code (PCC) to allow for formal yet computationally
straightforward validation of security-related properties by the IP
consumer. These security-related properties, agreed upon a priori
by the IP vendor and consumer and codified in a temporal logic,
outline the boundaries of trusted operation, without necessarily
specifying the exact IP functionality. A formal proof of these prop-
erties is then crafted by the vendor and presented to the consumer
alongside the hardware IP. The consumer, in turn, can easily and
automatically check the correctness of the proof and, thereby, val-
idate compliance of the hardware IP with the agreed-upon proper-
ties. We implement the proposed framework using a synthesizable
subset of Verilog and a series of pertinent definitions in theCoq the-
orem-proving language. Finally, we demonstrate the application of
this framework on a simple IP acquisition scenario, including spec-
ification of security-related properties, Verilog code for two alter-
native circuit implementations, as well as proofs of their security
compliance.

Index Terms—Hardware intellectual property (IP), hardware
security, proof-carrying code (PCC), proof-carrying hardware
(PCH), trusted integrated circuit.

I. INTRODUCTION

T HE problem of hardware security has grown more im-
portant and more difficult with the emergence of an in-

creasingly globalized design process. The tight control manu-
facturers once exerted over their devices is no longer possible
when more complicated systems now employ hardware com-
ponents from a variety of different suppliers whose trustworth-
iness is unknown [1], [2]. Researchers have, accordingly, de-
vised techniques to ensure trusted designs by diffusing the threat
of malicious circuitry (a.k.a. hardware Trojans) being inserted

Manuscript received January 20, 2011; revised May 10, 2011; accepted June
13, 2011. Date of publication June 27, 2011; date of current version January 13,
2012. The work of E. Love was supported by the National Science Foundation
under a Research Experience for Undergraduates (REU) Grant, NSF 1132205.
The work of Y. Jin and Y. Makris was supported by the National Science Foun-
dation under Grant NSF 1017719. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Kouichi Itoh.
E. Love is with the Department of Electrical Engineering and Computer Sci-

ence, University of California at Berkeley, Berkeley, CA 94720 USA (e-mail:
ericlove@eecs.berkeley.edu).
Y. Jin is with the Department of Electrical Engineering, Yale University, New

Haven, CT 06520 USA (e-mail: yier.jin@yale.edu).
Y.Makris is with the Department of Electrical Engineering, TheUniversity of

Texas at Dallas, Richardson, TX 75080 USA (e-mail: yiorgos.makris@utdallas.
edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIFS.2011.2160627

into the supply chain, relying variously on physical, behavioral,
and formal methods both in postsilicon designs [3]–[10] and
presilicon designs [11], [12]. The key assumption behind these
methods is that any trusted designs should be exactly the same as
golden models and the mismatches between designs-under-test
(DUTs) and golden models will be used to differentiate Trojan-
infested chips from genuine chips.
However, our scheme is different from all previous ap-

proaches to the domain of trusted designs in two respects. First,
we focus on the security of third-party Intellectual Property
(3PIP) modules which are commonly used in contemporary
designs. Second, no golden models are required in our method-
ology while security properties, which we will discuss later,
are developed to ensure the trustworthiness of IP modules.
We imagine an attacker who makes malicious modifications
to a module’s HDL code in order to introduce the potential
for undesired behavior. This module may then be sold for use
in a larger system which, with the inclusion of tampered IP,
becomes itself vulnerable to attack.
If, however, we can guarantee that certain carefully specified

properties hold across the outputs of components from untrusted
IP vendors, then we may be able to guard against certain types
of undesirable or insecure behavior. These can include disrup-
tion of operation, manipulation of signals, or misuse of sensi-
tive data. Each case requires different kinds of properties, but
a strong specification can render many modes of attack signifi-
cantly more difficult to implement. If these safeguards become
integrated into the design process, then when an IP consumer
asks for some module to be constructed, he will provide the
vendor with not only a functional specification, but also a list
of specific security-related properties that the desired module
must obey. It is then the vendor’s task to construct a formal proof
demonstrating adherence to these properties.
The goal of this paper is thus to propose a new IP acquisition

and delivery protocol which can help IP consumers to quickly
validate the trustworthiness of 3PIP they purchased from IP ven-
dors. Fig. 1 outlines our proposed interaction between IP ven-
dors and consumers.
A similar idea has been proposed for software as proof-car-

rying code (PCC) [13]. In its original form, PCC required the
acceptance of a large, unverified code base at its core. As a so-
lution to this problem, researchers have developed foundational
PCC (FPCC) which uses a universal logic framework to model
the semantics of all possible assembly language instructions and
is written in the same logical inference language used to write
correctness proofs, thereby subjecting the entire system to val-
idation by the proof checker [14]–[16]. Further work has led
to the creation of a certified assembly programming language

1556-6013/$26.00 © 2011 IEEE

26 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

Fig. 1. IP acquisition and delivery protocol.

(CAP) [17], [18], upon whose construction and application we
model our reformulation of PCC for use with hardware IP.
A parallel concept of proof-carrying hardware (PCH) was

first proposed in [19], but the authors showed only that correct-
ness proofs could be generated for FPGA bit streams in order to
provide assurance that the given gate configuration implements
a specific boolean logic function, and therefore they did not
allow for true functional variation. Furthermore, their method
relied on an SAT solver rather than a formal high-level proof
assistant tool, and thus more closely resembles formal verifi-
cation than PCC. We, however, shift our analysis from post-
synthesis FPGA bit streams up to presynthesis register-transfer
level (RTL) IP cores, expanding the domain of provable specifi-
cations to include more complicated behavioral properties given
in a temporal logic, achieving for hardware the same level of
flexibility offered for software by PCC.
While there is no clear analogue to the machine assembly lan-

guage in the domain of hardware circuit representations, we feel
that our choice of RTL IP as the semantic model for proof con-
struction is nevertheless quite sensible. Much hardware is now
designed and shipped in this form, and the widespread use of
HDL-coded circuits in FPGA applications means that demand
is high for methods of managing the rapid deployment of such
IP. When designing for reconfigurability, a means of instanta-
neously verifying the trustworthiness of newly acquired hard-
ware is certainly advantageous.
In our system, proofs are written in the Coq proof assistant

language and are, therefore, easy to validate automatically, al-
lowing the consumer to know very quickly whether or not the
HDL code conforms to a given set of security-related proper-
ties.1 Just as with PCC and PCH, the computational burden of
verification falls on the IP vendor, not the consumer. The vendor

1We note that the Coq proof assistant language, or any other proof assistant
languages, do not ensure the security of IP modules nor can they create proofs
automatically. The Coq proof assistant language is only chosen to represent IP
modules, security properties, and proofs in a uniform way and has been proved
effective in software PCC [15], [17], [18]. The Coq proof assistant platform
can interpret the Coq language and check the proofs against security properties
automatically. Any other platformwhich can provide similar functionality could
be selected instead Coq in our scheme.

must make a significant investment of time in the construction of
a proof, but the consumer’s task of verifying it is trivial in com-
parison. Of course, this is not to say that the task of constructing
security compliance proofs is necessarily onerous. Many soft-
ware PCC systems are now beginning to support automated
proof writing, and there is no reason to believe the same could
not be done for hardware [20].
One novel contribution is to create a set of definitions in the

Coq [21] language (Section IV) that models the behavior of all
possible statements in a domain-specific Verilog we specify in
Section III. We also describe, in Sections IV and V, a set of
rules to automatically generate the Coq representation of any
given Verilog module for use in security compliance proofs.
We then illustrate the usefulness of our framework by way of
a contrived design scenario in Section VI. We present a model
consumer with need for a specific component and imagine what
sort of security requirements this consumer would have. The ex-
ample covers formulation of security properties, translation into
the temporal logic model we have implemented in Coq, sample
HDL implementations, and the construction of proofs.

II. DESIGN PROCESS AND UTILITY OF PCH IP

If the consumer wishes to order a component from the IP
vendor, our design framework requires that he decide upon a set
of security properties in addition to the standard functional spec-
ification. Both parties must then agree upon a fixed translation
of these properties into a formal mathematical codification in
the theorem-proving language. As the vendor writes HDL code
for the final product he also produces a formal proof as shown
in Fig. 1. This is not a type of testing procedure, but rather a
new stage of the hardware design process to be carried out in
addition to standard verification and debugging. Although we
will see that the temporal logic used to specify security-related
properties does resemble the syntax of many hardware assertion
languages, the verification of these properties is not an asser-
tion-based process. It is not at all necessary to test the module
in simulation or emulate it on an FPGA to see that the proper-
ties are obeyed. Instead, the vendor need only construct a valid
formal proof to show that these properties hold under all oper-
ational conditions.
This proof, once constructed, becomes a part of the finished

package delivered to the IP consumer who, in turn, may then
easily check the proof by running it through the Coq language
interpreter. If the proof is valid, then he can accept the design,
knowing that its operation stays within the functional bound-
aries set by the security property list. If the consumer is, say, a
government or military organization, then he will have a strong
reason to negotiate the production of such assurances. But it is
also true that the vendor, too, will be able to assure himself that
no inhouse manipulations of the design have introduced func-
tionality in violation of these safety rules.
The proposed IP acquisition and delivery protocol overcomes

the limitations of conventional IP security assurance methods.
Previously proposed IP core checking methods are all based on
the assumption that IP module providers are trusted. In order to
prevent man-in-the-middle attacks, the IP vendors would also
deliver test benches and simulation results which the IP con-
sumers can use to check the genuineness of the delivered IP

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 27

module. If, however, the IP vendors are untrusted or they lack
methods to monitor inhouse manipulations, test benches them-
selves could be manipulated not to cover those malicious mod-
ifications. Furthermore, whether test benches can ensure the
trustworthiness of IP cores is still controversial [12], [22]. Under
the proposed framework, IP consumers switch their role from
passive users to active IP protection proposers. That is, their in-
volvement in defining the set of security properties constrains
the room for inhousemanipulation as well as man-in-the-middle
attacks. Since the security guarantees provided by this protocol
are determined by the predefined properties, we should admit
that an inappropriate set of security properties may leave the
proof and delivered IP modules vulnerable. Security property
libraries can be constructed beforehand to solve this problem,
but this is out of the scope of this paper and will be elaborated
in our future work.
The IP modules delivered by the vendor to the consumer

will often be incorporated into a larger system. In such cases,
it may be worthwhile to consider, at the beginning of the de-
sign cycle, whether having some additional properties proven
about lower-level modules could simplify the construction of
similar proofs for the larger design into which these subcom-
ponents are integrated. As a continuation of that idea, we fully
expect proofs to eventually be constructed modularly, much in
the same fashion as IP cores themselves. As smaller components
become embedded in larger systems, so too may the proofs of
their respective security properties be used to demonstrate that
the higher-level device is also subject to certain constraints in its
operation. As some devices become standardized, and general
consensus is reached on the sorts of relevant properties, a li-
brary of code-proof combinations will slowly be built. This will
significantly simplify the task of proof construction while still
maintaining the integrity of the framework. Additionally, some
design teams may wish to engage a third-party proof-writer to
construct a separate correctness proof in a strategy resembling
-version programming.
Moreover, we believe that the increasing use of FPGAs

and other reprogrammable hardware means that an automatic
system for establishing trust will take on growing importance
in years to come. When HDL code is frequently recompiled
for instant-update of deployed hardware systems, the ability to
quickly establish the safety of that code is paramount.

III. PROVABLE PROPERTIES AT THE RT-LEVEL: A VERILOG
FORMULATION FOR SAFE HARDWARE

Because every statement in a module’s HDL code must trans-
late into a corresponding declaration in the theorem-proving
language, it is necessary to specify this HDL and describe how
such a translation might be carried out.We choose Verilog as our
HDL for this paper, and give a precise definition of the syntax
allowed under the current model.
This definition has three main components: combinational

logic, sequential logic, and module declaration and instantia-
tion. The combinational logic component consists of assign
statements incorporating any of the standard bitwise logical and

conditional operators, as shown in the complete syntactic spec-
ification below:

<sig-dec-block> ::= <sig-dec>
<sig-dec> <sig-dec-block>

<sig-dec> ::= <in-out-reg> <id-list> “;”
<in-out> <bus> <id-list> “;”

<in-out-reg> ::= <in-out> “reg”
<in-out> “reg” “wire”

<in-out> ::= “input” “output”

<id-list> ::= <id> <id> “,” <id-list>

<bus> ::= “[” <num> “:” <num> “]”

<assign-block>

<assign-stmt> ::= <id> “=” <assign-right>

<assign-right> ::= <expression>
<expression> “?” <expression> “:”

<expression>

<expression> ::= <id>
<expression> “ ” <expression>
<expression> “&” <expression>
“” <expression> “(” <expression> “)”.

The grammar below specifies our handling of sequential be-
havior. In our current formulation, we support only synchronous
sequential circuits, which should be sufficient for most applica-
tions. This is necessary because the notion of clock cycle as a
discrete unit of time is used by our induction-based approach to
proof construction; we rely on the countable set of synchronous
clock cycles to assert predicates on signals and then prove in-
ductively that these predicates hold over all points in time

<always-block> ::=
“always @ (posedge clk)” <body>

<non-block-assign> ::= <id> “<=” <expr>

<body> ::= <stmt>
“begin” <block> “end”

<block> ::= <stmt> <stmt> <block>

<stmt> ::= <non-block-assign> “;”
“if” <cond> <body> [<elseif>]+ [<else>]

<elseif> ::= “else if” <cond> <body>

<else> ::= “else” <body>

<expr> ::= <id> “∼” <expr> “(” <expr> “)”
<expr> “&” <expr> <expr> “ ” <expr>
<expr> “+” <expr> <expr> “-” <expr>

<cond> ::= <expr> “==” <expr>
<expr> “<” <expr> <expr> “<=” <expr>
<expr> “>” <expr> <expr> “>=” <expr>
<cond> “ ” <cond> <cond> “&&” <cond>
“!” <cond> “(” <cond> “)”.

28 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

Within the sequential logic, we have if/else statements
(with the same logical and control operators as in combinational
assign statements) and nonblocking assignment statements.
As for the declaration of signals themselves, we have defined
the wire and reg statements for both single-bit signals and
bus lines. We also allow for module instantiations and defini-
tions

<module-dec>::=“module”<id>“(”<id-list>“)”“;”
<sig-dec-block>
<assign-block>
<always-block>
“endmodule”

<module> ::= <id> <id> “(” <id-list> “)” “;”.

IV. PROOF FRAMEWORK IN COQ

Given the HDL specification presented in Section III, we de-
rive a corresponding set of definitions in the Coq theorem lan-
guage to model the functionality of circuits at the RT-level. This
approach parallels [17]’s formulation of inference rules for the
instruction set of CAP. An overview of the Coq proof assistant
platform and the syntax of Coq language can be found in [21].

A. Combinational Logic

We first define a value as an inductive set with two con-
structors, called lo and hi, and a signal as a mapping of
time, specified in clock cycles and given as a natural number,
onto a value. To handle the case of bus lines carrying multiple
bits of information, we also define the type bus to represent an
equivalent mapping of time onto a natural number:

Inductive value := lo hi.
Definition signal := nat value.
Definition bus := nat nat.

On top of these we build “expressions” consisting of combi-
national logic and control operations on sets of signals. Also de-
fined as an inductive set, these expressions are essentially equiv-
alent to the parse tree generated by a Verilog compiler, repre-
senting logical and arithmetic operations as a network of sym-
bols:

(* expr represents syntax of possible *)
(* operations on signals/bus values in Coq *)
Inductive expr :=

econs : signal expr
and : expr expr expr
or: expr expr expr
not : expr expr
cond : expr expr expr expr
bus_eq : bus bus expr
bus_gt : bus bus expr
bus_lt : bus bus expr.

Each of these constructors defines an expression as some
combination of other expressions or bus signals under a logical
operator. Thus, the and constructor takes two expressions and
returns one as a result. When evaluated by the semantic model
we define shortly, this result will be interpreted as a logical AND

of two signals. The or and not constructors behave in a simi-
larly straightforward manner, and cond takes a control expres-
sion to select between two result expressions. A simple signal
is converted to an expression with econs.
Expressions constructed from the recursive expr type are in-

terpreted by the evaluate function evalwhichmaps the expres-
sion tree onto the values of its signals at the specified time. We
may thus say, for example, that the logical AND of two signals
causes first one signal to be evaluated, followed by the second
only if the first is hi. In this way, the eval function defines
the operational semantics of expressions and is used to model
the assign statement. Similarly, the cmp_eq, cmp_gt, and
cmp_lt functions provide this definition recursively for bus
values constructed with the inductive nat type in Coq

(* eval function defines semantics of expr’s *)
Fixpoint eval (e:expr)(t:nat) {struct e} :=

match e with
(econs sig) => (sig t)
(and ex1 ex2) => match (eval ex1 t) with
lo => lo hi => (eval ex2 t) end

(or ex1 ex2) => match (eval ex1 t) with
hi => hi lo => (eval ex2 t) end

(not ex) => match (eval ex t) with
hi => lo lo => hi end

(cond cex ex1 ex2) =>
match (eval cex t) with

hi => (eval ex1 t)
lo => (eval ex2 t) end

(bus_eq b1 b2) => (cmp_eq (b1 t) (b2 t))
(bus_gt b1 b2) => (cmp_gt (b1 t) (b2 t))
(bus_lt b1 b2) => (cmp_lt (b1 t) (b2 t))

end.

Fixpoint cmp_eq (a b:nat) {struct b} :=
match b with
O => match a with O => hi

_ => lo end
S n => match a with O => lo

S m => cmp_eq m n end
end.

Fixpoint cmp_gt (a b:nat) {struct b} :=
match b with
O => match a with O => lo

_ => hi end
S n => match a with O => lo

S m => cmp_gt m n end
end.

Fixpoint cmp_lt (a b:nat) {struct b} :=
match b with
O => lo
S n => match a with O => hi

S m => cmp_gt m n end
end.

The definition of eval provides the proof-writer (the IP
vendor) with a sufficiently precise definition of combinational
logic functionality to prove useful theorems about the behavior
of signals. To prove, for example, that a signal assigned to the
logical AND of two other signals is low at a given clock cycle,
he need only show that at least one input signal is also low at
this time and then “unfold” the definition in Coq to reveal the
underlying structural relationship between inputs and outputs.
For each Verilog assign we generate a corresponding

proposition with the assign function we have written in Coq

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 29

and express that proposition as a Hypothesis statement so
that the code vendor may refer to it in his proof:

Definition assign : signal expr Prop :=
fun (a:signal)(e:expr) =>

forall (t:nat), (a t) = (eval e t).

This yields a proposition that the value of the assigned signal
is equal to the value returned by calling eval on the expression
to the right of the assignment operator, for which it also provides
a Coq definition according to the rules outlined above. Assign-
ment statements for bus signals are modeled with separate but
analogous functions:

Definition bus_assign :=
fun (y x:bus) =>

forall t:nat, y t = x t.

Definition bus_cond_assign :=
fun (y a b:bus)(e:expr) =>

forall t:nat, y t = match (eval e t) with
hi => (a t)
lo => (b t) end.

Definition add_assign :=
fun (y a b: bus) =>

forall t:nat, y t = plus (a t) (b t).

Definition sub_assign :=
fun (y a b:bus) =>

forall t:nat, y t = minus (a t) (b t).

Note that special functions are necessary for conditional as-
signment and addition/subtraction. Their use is clear, but this is
one aspect of our current formulation that could be streamlined
in future work.

B. Sequential Logic

The fundamental inductive structure used to define sequential
logic in Coq is what we have called the updateblock. Like
the expression definition for combinational logic, update-
blocks are constructed as trees of operations on signals and
bus lines. In this case, the permitted operations are nonblocking
assignment (to an expression), and conditional assignment for
bus lines, as shown below:

Inductive updateblock :=
upd : signal expr nat updateblock
upd_bus : bus bus nat updateblock
upd_bus_cond : expr bus bus
bus nat updateblock
upd_bus_add : bus bus bus
nat updateblock
upd_bus_sub : bus bus bus
nat updateblock
updcons : updateblock
updateblock updateblock.

Every block which appears within a Verilog always state-
ment generates a corresponding hypothesis in our Coq model
to capture the meaning of nonblocking assignment. As an ex-
ample, suppose the following assignment is to take place, as a
result of some condition, in clock cycle :

x x + 1;

This expression would be represented as an updateblock
using the upd constructor which takes as parameters a signal
(in this case, x), an expression (x+1), and a clock cycle (type
nat). When processed by the semantic model for sequential
logic (defined later in this section), this results in a proposition
that the value of x in cycle is equal to (note that (x
n) represents the value of at cycle):

(x (S n)) (x n) + 1.

The use of the other constructors is similar to that of upd.
For assignment to bus signals, we have defined upd_bus,
which is equivalent to upd with the signal and expression
parameters both replaced by the bus type. Conditional non-
blocking assignment for bus signals is accomplished with the
upd_bus_cond constructor whose syntax resembles that of
cond for combinational expressions. Conditional nonblocking
assignment for other signals is handled with a different con-
struction, the ifblock, which we describe later in this section.
The updateblock type also includes upd_bus_add and
upd_bus_sub to support addition and subtraction, respec-
tively, on bus signals. The last constructor, updcons, links
update blocks together to form a list of successive assignments.
This semantic value of these blocks is generated by the recur-

sive definition update. Just as eval captured the semantics of
combinational assignment, the update function provides the
semantics of updateblock:

Fixpoint update (u:updateblock) {struct u} :=
match u with

(upd sig exp t) => (sig (S t)) = (eval
exp t)
(upd_bus y x t) => (y (S t)) = (x t)
(upd_bus_cond cex y a b t) =>
(y (S t)) = match (eval cex t) with

hi => a t
lo => b t end

(upd_bus_add y a b t) =>
(y (S t)) = (plus (a t) (b t))

(upd_bus_sub y a b t) =>
(y (S t)) = (minus (a t) (b t))
(updcons block1 block2) =>
(update block1) / (update block2)

end.

Finally, we represent Verilog if statements in always
blocks through the inductive ifblock definition. This is the
highest level of the sequential logic representation tree, and it
includes updateblocks within its structure. An ifblock
may be either a simple assignment list (constructed with if-
simple from an updateblock), an if statement with no
else (constructed with ifelse from a control expression and
another ifblock so as to allow for nesting), or an ifelse
statement (constructed with ifelse from a control expression
and two ifblocks). As with update and eval, we have
again provided a recursive definition of ifblock semantics
using a function called doif

Inductive ifblock :=
noif : updateblock ifblock
ifsimple : expr ifblock ifblock
ifelse : expr ifblock ifblock ifblock.

Fixpoint doif (i : ifblock)(t : nat)
{struct i} :=

30 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

Fig. 2. If-else statement tree representation.

match i with
(noif up) => (update up)
(ifsimple exp ifb) =>
match (eval exp t) with

hi => (doif ifb t)
lo => True

end
(ifelse exp ifb1 ifb2) =>
match (eval exp t) with

hi => (doif ifb1 t)
lo => (doif ifb2 t)

end
end.

For the sake of simplicity, we have also assumed that no reg-
ister may be updated more than once during a single clock cycle
as this would lead to a potential reasoning error. In our example
formulation, we state that an error would be raised by the Coq
generator when this is the case, but a commercial implementa-
tion might choose to simply accept the last-declared assignment
or follow some other reasonable scheme.

C. Modeling the Behavior of Stored Values

This semantic model is sufficient to describe the assignment
of new values to registers, but does not specify the retention of
previously stored values in the case that no update occurs. It is,
therefore, necessary to introduce a series of Coq propositions
asserting that a register signal, when not assigned a new value
during a given clock cycle, keeps the same value it had during
the previous clock cycle. This behavior is implicit in Verilog,
but we must make it explicit in our semantic representation so
that it may be referenced in proofs.
Propositions about the maintenance of register values are

generated by recursively examining the branches of each
ifblock abstract syntax tree. Fig. 2 shows an example. For
each register declared inside of a module, we look through that
module’s ifblocks and find all leaves at which the variable
in question is updated. The path from the root to leaf represents
one condition under which the variable receives a new value;
by taking the union of all such paths we obtain a logical propo-
sition that is true if an update occurs. By issuing an assertion
that no update takes places if the negation of this proposition
is true, we can specify that a register retains its value from one
clock cycle to the next. Fig. 3 illustrates this approach for the
variable c in the tree given in Fig. 2, resulting in the condition

for the retention of a stored value
in c.

V. AUTOMATIC PROOF VALIDATION

Fig. 4 shows the procedure for proof checking and module
validation by the consumer upon receipt of the product from
the vendor. The proof is first stripped of any circuit definitions

Fig. 3. If-block path traversal: For each variable that occurs in the left-hand
side of a nonblocking assignment, traverse the if-tree and record all paths ter-
minating in leaves where that variable is updated. Use the negation of the union
of these paths to define condition for that variable retaining its previous value.

Fig. 4. Automated verification.

declared with the Hypothesis statement in Coq to produce
a “clean” version of the proof. The removed Hypothesis
statements are the generated Verification Hypotheses (a.k.a. IP
modules’ Coq translation) used to model Verilog code based on
the semantic representation described in Section IV. These hy-
potheses, once declared, admit a proposition as true so that it
may be used as a precondition for a proof. They must, therefore,
be deleted at the start of proof checking and then regenerated
automatically from the provided HDL code. This is a necessary
step because otherwise there is no guarantee that the circuit be-
havior defined in the IP vendor’s proof actually matches that of
the coded circuit. Although it is not necessary for IP vendors to
provide Verification Hypotheses with proofs and IP cores, they
are likely to do so, as often happens in software PCC domain,
because IP vendors will need to check the proof anyway before
delivering the whole package. The removal of Verification Hy-
potheses is required only when the proof is to be checked by a
party who does not yet trust it. Note that this extra step does not
increase the burden on IP consumers at all because the whole
process is integrated into the automatic proof checking mecha-
nism with very light computation workload. We also reject any
lines containing the keyword admit which tells the Coq inter-
preter to accept a proposition as true without proof.
Upon receiving untrusted HDL code, then, IP consumers

need to regenerate the Coq circuit model (Verification Hy-
potheses). This process is quite straightforward and is based on
the HDL-Coq conversion rules developed in Section III. Fig. 4
illustrates these steps. The regenerated verification hypotheses
are combined with the “clean” version of the proof as well the

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 31

framework of definitions in Coq as described previously. At
this point, the entire assemblage of Coq code is given to the
interpreter to be checked. The consumer simply executes the
Coq interpreter program, and if execution passes through to the
end of the proof, then the proof is valid and the code obeys the
security-related properties. The whole proof checking process
is performed in an automatic and fast way on the Coq proof
assistant platform so that IP consumer can quickly check the
trustworthiness of the delivered IP modules. After passing the
proof checking, the IP modules can be synthesized for ASIC or
FPGA but IP module synthesis is not part of our protocol.

VI. EXAMPLE DESIGN SCENARIO

In order to demonstrate the capabilities of our proposed
methodology, we describe a sample design scenario where an
assurance of trustworthiness is desired. By way of this ex-
ample, we will show how intelligently selected security-related
properties can prevent certain kinds of malicious behavior,
how these properties are translated into a formal logic, how the
vendor of code that conforms to these properties can construct
a correctness proof, and, finally, how the consumer can check
this proof against the code.
Of particular noteworthiness in this example is the relative

freedom granted to the HDL coder in deciding how to imple-
ment the desired circuit, following as a consequence of the
higher level of sophistication allowed in our property specifi-
cation model as compared to others. We develop an abstract
notion of a “protocol” which delimits a range of acceptable
behaviors. This is in contrast to [19]’s proposal for PCH which
allowed only for proofs that an FPGA layout implements a spe-
cific boolean logic function, requiring a level of specificity that
precludes any functional differences between implementations
and does not really bring the full potential of software PCC into
the hardware domain.

A. Register File Copy Controller

Our example is the following: suppose that the client needs
a circuit which controls access to two register-files. Moreover,
suppose that this controller is required to have a special mode
called “copy” which, when activated by a special flag signal,CF,
causes the controller to transfer the contents of one register file
into the other. The sequence of reads and writes is not important,
and neither are the addresses at which any individual value is
stored; it is only required that each value in the first register
file be copied, unchanged, to some location in the second. The
illustration in Fig. 5 shows how such a component appears in
block form.
A possible application for this module could be in an au-

tomatic teller machine (ATM) where it will be used to create
and maintain two lists of account numbers for transaction pro-
cessing. Such a setting provides ample motivation for strength-
ening security, since a nefarious hardware coder could exploit
his control of the circuitry for financial gain or to obtain access
to otherwise confidential information.

B. Choosing Security-Related Properties

One can easily imagine several types of behavior a malevo-
lent supplier might introduce into his implementation of this cir-

Fig. 5. Register file duplication system and the controller module.

cuit; he could scan incoming data for a specific trigger value to
activate a special mode, selectively block certain registers from
being copied, enter an infinite loop on yet another trigger, and
so on. With carefully crafted security properties, however, the
consumer can successfully safeguard against each of these.
Being aware of these possible modes of attack, the consumer

will probably choose a set of properties such as the following:
1) Stability: do not enter copy mode unless the copy flag has
been raised; 2) Transparency: when not in copy mode, simply
pass control signals through to both RFs; and 3) Termina-
tion-Transfer: when the copy flag is raised, enter copy mode,
transfer all values, unmodified from RF1 to RF2, and then exit
copy mode within a certain predefined number of cycles.
These properties outline the limits of acceptable circuit

behavior, and so a proof of compliance with them will guard
against the kinds of attacks enumerated in the previous section;
any circuit engaging in such behavior clearly breaks the rules.
Wewill now see how these properties may be translated into a

formal mathematical logic. Below is our rendering of the spec-
ification into a set of Coq theorems (the bodies of each proof
are blank initially—these are to be filled in by the vendor). Sta-
bility is easily expressed as a proposition that we must remain
outside of copy-mode in all cycles for which the controller is
not already in copy mode and for which the copy flag is low:

Theorem stable_c : forall t:nat, t > 0
c t = lo cf t = lo c (S t) = lo.

The definition of Transparency is similarly straightforward in
that it simply asserts an equality of the input and output control
signals:

Theorem transparency : forall t:nat,
t > 0 c t = lo
a1 t = a1_in t / d1 t = d1_in t /
we1 t = we1_in t /
a2 t = a2_in t / d2 t = d2_in t /
we2 t = we2_in t.

The last property exhibits significantly greater complexity, re-
vealing where our framework can be most versatile. We define
Termination-Transfer—which contains the bulk of our specifi-
cation—as a hierarchy of subproperties. For example, to define
the operation of reading from an address , we create a property
called readwhich asserts that the value sent on the address line
to RF1 during the stated clock cycle is equal to . We also pass

32 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

a variable to capture the value returned from RF1, allowing
us to refer to this value when we show that it is written to RF2:

Definition read := fun (a n t X : nat) =>
(a1 (t+n)) = a / (q1 (t + n)) = X.

The write operation is defined in a similar fashion, stipu-
lating that write-enable is high during cycle and that the
value sent on the data line to RF2 is equal to some value .
In defining the complete transfer operation predicate, we link
the read and write properties together, asserting that the read
is also the to be written. But before we can describe the

top-level transfer property, we complete the write definition
by specifying write-uniqueness. Given as the unique property,
this asserts that a value, once stored, will not be overwritten.
That is, there exists no index in the current copy at
which write-enable is high and the same address is sent to RF2:

Definition unique := fun (n t nf : nat) =>
forall nm:nat, nm > 0 nm < nf nm > n

(we2 (t+nm)) = hi (a2 (t+nm)) <> (a2
(t+n)).

Definition write := fun (X n t nf : nat) =>
(we2 (t+n)) = hi / (d2 (t+n)) = X /
(unique n t nf).

Finally, transfer is defined to indicate a counter index
by which all possible addresses have been read from RF1 and
written to RF2. We make this assertion with a universal quanti-
fier over all addresses , requiring the existence of some index
such that at time we read the value from address

and for which there also exists some other index at which
we write to RF2:

Definition transfer := fun (t nf : nat) =>
forall a:nat, a <= regs exists n:nat,

n > 0 / n < nf / exists X:nat,
(read a n t X) / exists nw:nat, nw > 0
/ nw < nf / (write X nw t nf).

In specifying the security properties as we have done with a
multilevel property tree, we have paralleled the work presented
in [17], which also constructs an elaborate series of quantified
predicates in order to define a “valid free list” for a memory allo-
cator. We claim that this structural similarity provides evidence
for our framework’s unique success in porting the flexibility of
PCC into the hardware domain.

C. Sample Implementation

To see what might constitute an acceptable implementation of
the Register File Copy Controller circuit, we have crafted two
security-compliant examples. The first performs the copy oper-
ation by sequentially reading register values from RF1, saving
them for one clock cycle, and then writing them to the register
at the same address in RF2. The second completes this task in
reverse order, counting down from the highest register address
to the lowest. Between these two examples, we demonstrate
that our model allows for security-related properties that do not
necessarily specify all details of operation, but which instead
merely provide the boundaries for acceptable operation:

(*Verilogcodeforfirstsamplesafety-compliant*)
(* RF-controllermodule *)

module controller1 (clk, reset, a1_in,
d1_in, we1_in, a2_in, d2_in,
we2_in, q1, cf, a1, d1, we1, a2, d2, we2,
c);

(* Inputs: clock andreset signals, aswell *)
(* asinput addresses, dataand write-enable *)
(* signalsfor RF1 andRF2. q1is the value *)
(* readback from RF1during copy, andcf is *)
(* thecopy flag, whichmust be assertedto *)
(* entercopy mode. *)
input clk, reset;
input [4:0] a1_in, a2_in;
input [31:0] d1_in, d2_in, q1;
input we1_in, we2_in, cf;

output [4:0] a1, a2;
output [31:0] d1, d2;
output we1, we2;
output reg c;

(* Registers:cur_read and cur_writecontain *)
(* addressesof the currentread/write loop *)
(* countersrespectively, and stored_value *)
(* isused to storeread data duringa copy. *)
(* cprevis the valueof c inthe previous *)
(* cycle. *)
reg [4:0] cur_read, cur_write;
reg [31:0] stored_value;
reg cprev;

(* Combinationalassignment: set theaddress *)
(* ofRF1 to eithercur_read or thecurrent *)
(* inputaddress depending onwhether we are *)
(* incopy mode. For a2 wechoose between *)
(* theinput address andcur_write for the *)
(* samereason. Thewe1 signal isalways *)
(* disabledin copy mode,and we2 isalways *)
(* hiafter the firstcycle of copymode. *)
assign a1 = (c) ? cur_read : a1_in;
assign d1 = d1_in;
assign we1 = (c) ? 1’b0 : we1_in;

assign a2 = (c) ? cur_write : a2_in;
assign d2 = (c) ? stored_value : d2_in;
assign we2 = (cprev & c) ? 1’b1 :

(c ? 1’b0 : we2_in);

(* Sequentiallogic section: wehave a reset *)
(* signalthat clears theregisters at start. *)
(* Whennot in reset,check for endof copy *)
(* wherecur_write is 31,and end copymode *)
(* ifit is. Otherwise, increment cur_read *)
(* andcur_write if copying,or reset tozero *)
(* ifentering copy mode. *)
always @ (posedge clk) begin

if (reset) begin
cur_write <= 5’b00000;
cur_read <= 5’b00000;
c <= 1’b0;
cprev <= 1’b0;
stored_value <= 32’d0;

end
else begin

if (cur_write == 5’b11111 & cf) begin
cur_write <= 5’b00000;
cur_read <= 5’b00000;
c <= 1’b0;
cprev <= 1’b0;
stored_value <= 32’d0;

end
else begin

cur_read <= (cf & c) ? 5’b00000 :
cur_read + 5’b00001;

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 33

cur_write <= (cf & c) ? 5’b00000 :
cur_read;

stored_value <= q1;
c <= (cf c);
cprev <= c;

end
end

end
endmodule

(* Examplecontroller #2: weomit everything *)
(* butthe always block,since it isthe same *)
(* asin example #1. In thiscase, we count *)
(* backwardsto 0 inthe address read/writes *)

(* *)
always @ (posedge clk) begin

if (reset) begin
cur_write <= 5’b00000;
cur_read <= 5’b00000;
c <= 1’b0;

cprev <= 1’b0;
stored_value <= 32’d0;

end
else begin

if (cur_write == 5’b00000 & cf) begin
cur_write <= 5’b00000;
cur_read <= 5’b00000;
c <= 1’b0;
cprev <= 1’b0;
stored_value <= 32’d0;

end
else begin

cur_read <= (cf & c) ? 5’b11111 :
cur_read - 5’b00001;

cur_write <= (cf & c) ? 5’b11111 :
cur_read;

stored_value <= q1;
c <= (cf c);
cprev <= c;

end
end

end
(* *).

We do not present code for a negative example (i.e., one
which fails to obey the rules), but it is easy to see how the
code for either sample circuit could be modified to behave mali-
ciously. One could, for instance, simply introduce a conditional
operator into the read/write loop to exit when a specific trigger
value is read. For such a circuit, it would not be possible to con-
struct a proof, and the proofs later presented for our security-safe
examples would certainly not be valid for this malicious variant.

D. Proving Security Compliance

Once the circuit has been coded, the first step of any proof
construction is the generation of Verification Hypotheses. These
are the Coq propositions described in Section IV and used to
represent HDL statements in a formal proof. They are gener-
ated automatically from Verilog code according to the previ-
ously outlined rules. The following Coq code, then, represents
the example controller1 from above:

(* what hypotheses & proof for controller1 *)
(* circuit would look like *)
Section controller1.

(* inputs and outputs *)
Variable reset : signal.
Variables a1_in d1_in a2_in d2_in a1 a2 d1 d2
q1: bus.
Variables we1_in we2_in we1 we2 : signal.
Variables cf c : signal.

(* internal signals *)
Variables cur_read cur_write stored_value : bus.
Variable cprev : signal.

(* Addressof highest register—weuse a variable *)
(* ratherthan “31” inorder to makekeep the *)
(* proof clean.
Variable regs : nat.
Hypothesis rmin : regs > 5.
Lemma rno : cmp_eq 0 regs = lo.

assert(regs <> 0). omega.
rewrite cmp_neq_neg.
trivial. omega.

Qed.

(* hypotheses—theserepresent the semanticsof *)
(* eachVerilog statement aswritten in the *)
(* examplecode *)

Hypothesis initial_c : (c O) = lo.

Hypothesis assign_a1 :
(bus_cond_assign a1 cur_read a1_in (econs c)).

Hypothesis assign_d1 : (bus_assign d1 d1_in).

Hypothesis assign_we1 :
(assign we1

(cond (econs c) (econs Gnd) (econs we1_in))).

Hypothesis assign_a2 :
(bus_cond_assign a2 cur_write a2_in (econsc)).

Hypothesis assign_d2 :
(bus_cond_assign d2 stored_value

d2_in (econs c)).

Hypothesis assign_we2 : (assign we2
(cond (and (econs cprev) (econs c))

(econs Vdd)
(cond (econs c)

(econs Gnd)
(econs we2_in)))).

(* automaticallydefined for systemswith a *)
(* “reset”signal *)
Hypothesis initial_reset : reset 0 = lo.
Hypothesis reset_hi :

forall t : nat, t > 0 reset t = hi.

(* whenever the
Definition sum_cur_read_1 :=

fun t:nat => cur_read t + 1.

Hypothesis if_not_reset : forall t:nat,
(doif (ifelse (not (econs reset))

(noif (updcons
(updcons
(updcons

(upd_bus cur_read (const 0) t)
(upd_bus cur_write (const 0) t))

(updcons
(upd c (econs Gnd) t)
(upd cprev (econs Gnd) t)))

(upd_bus stored_value (const 0) t)))

34 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

(ifelse (and (bus_eq cur_write
(const regs)) (not (econs cf)))

(noif (updcons
(updcons
(updcons

(upd_bus cur_read (const 0) t)
(upd_bus cur_write (const 0) t))

(updcons
(upd c (econs Gnd) t)
(upd cprev (econs Gnd) t)))

(upd_bus stored_value (const 0) t)))

(noif (updcons
(updcons
(updcons

(upd_bus_cond (and (econs cf)
(not (econs c)))

cur_read (const 0) sum_cur_read_1 t)
(upd_bus_cond (and (econs cf)

(not (econs c)))
cur_write (const 0) cur_read t))

(updcons
(upd c (or (econs cf) (econs c)) t)
(upd cprev (econs c) t)))

(upd_bus stored_value q1 t)))))
t).

With this generation having been completed, we may now
begin construction of a proof. The first two required proper-
ties are trivial, so we will not describe their proofs here. For
the more complex Termination-Transfer rule, however, we are
forced to adopt a more elaborate plan of attack; just as the prop-
erty itself was stated as a combination of smaller definitions, so
too will the proof be constructed from a set of more primitive
lemmas. The full proof for the first example circuit may be seen
in Appendix A, but an outline of its construction is given below.
The method of induction on clock cycle informs our general

technique. Most lemmas rely on a “transition cycle” which
marks the transition into copy-mode, and an index which
counts a certain number of cycles after this transition. Thus, if
the transition occurs at time 15, then time 18 could be repre-
sented as and .
At the center of these proofs is the count_all lemma,

showing inductively that the circuit remains in copy mode until
the current write address reaches its highest possible value, and
that this write address is always two less than the count index :

Lemma count_all : forall t:nat, t>0
cf t = hi c t = lo forall n:nat,
n < S regs cur_read(t + S n) = n /
cur_write(t+S(S n)) = n /
c (t+S(S n)) = hi / cprev (t+S(S n)) = hi.

With this fact in place, the lemma read_eq easily follows,
establishing that the current read address remains one less than
the write address for the duration of copying. Other lemmas are
then constructed on top of these, proving for example that the
uniqueness subproperty holds on all writes and that the sequence
of operations performed in copy mode is a complete transfer.
It is easy to imagine a parallel proof for the second circuit

and, indeed, we have constructed one using the same structure of
lemmas. To do this, we simply rewrote most of the lemmas in a
manner consistent with the new direction of operation, changing
definitions too where appropriate.

VII. CONCLUSION

While traditional approaches to hardware security have fo-
cused on leveraging assertion-based testing and formal verifi-
cation methods, we have shown that work done by computer
science researchers on PCC can be successfully translated to the
domain of hardware trustworthiness in order to provide a defin-
itive guarantee that HDL code obeys a set of security-related
properties.
By assigning vendors the task of constructing compliance

proofs for their hardware IP, we allow consumers to know
quickly and easily that the hardware they purchase operates
within the parameters they have chosen as provable security
properties. With a set of well-formulated and proven properties,
the consumer will know that he cannot be the victim of certain
varieties of attack, as it will be impossible to prove adherence
to the rules for any module that engages in the undesired
behavior. We should note that IP vendors may also recruit third
parties to write proofs rather than do it themselves. Again,
whether the third party is trusted or not does not really matter
under the proposed IP acquisition and delivery protocol as long
as the security properties are predefined. In fact, the proposed
protocol does not include any constraints on the origin of the
proof codes. Any party (but usually the IP vendors) can provide
the proof with which IP consumers can quickly validate the
trustworthiness of the delivered IP modules.
Our example design scenario shows how a set of compli-

cated security properties can be constructed for a given module
and proven for valid implementations. It also demonstrates how
these properties, when proven, will not allow for the inclusion
of anticipated malicious behaviors. In this case, these might in-
clude an if-statement that looks for a specific read address and
deliberately blocks its corresponding memory cell from being
transferred, or yet another which locks the controller up in an
infinite loop when it detects a special trigger value.
Having anticipated these varieties of attack, the IP consumer

formulated a set of security-properties which, if proven, would
guarantee that no such malicious behavior could be imple-
mented. Since it is required that the module exit copy-mode
after a certain number of cycles, it would be impossible for
any infinite loop denial-of-service attack to provably satisfy
the termination_transfer property. It is likewise true
that any implementation which maliciously fails to copy cer-
tain registers—under any condition—could not be proven to
comply with the complex transfer property hierarchy.
It is not difficult to imagine an extension of our framework for

use in other applications beyond the example design scenario
presented above. We believe that the current needs of many
hardware IP-consuming organizations could be better served
with such a framework for provably trustworthy hardware ac-
quisition as an established component of the design cycle. Fu-
ture work will include the production of an automated verifica-
tion generator, a more complete semantic representation of the
Verilog language, a more thorough analysis of the soundness
of the inference rules for generating Coq representations, and
the development of a better behavioral circuit model in the the-
orem-proving language.

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 35

APPENDIX A
FULL PROOF OF TEST CIRCUIT 1

(* what hypotheses & proof for
controller1 circuit would look like *)

Section controller1.

(* inputs and outputs *)
Variable reset : signal.
Variables a1_in d1_in a2_in d2_in : bus.
Variables a1 a2 d1 d2 q1 : bus.
Variables we1_in we2_in we1 we2 : signal.
Variables cf c : signal.

(* internal signals *)
Variables cur_read cur_write stored_value : bus.
Variable cprev : signal.

(* number of highest register *)
Variable regs : nat.
Hypothesis rmin : regs > 5.
Lemma rno : cmp_eq 0 regs = lo.

assert(regs <> 0). omega.
rewrite cmp_neq_neg.
trivial. omega.

Qed.

(* hypotheses *)

Hypothesis initial_c : (c O) = lo.

Hypothesis assign_a1 :
(bus_cond_assign a1 cur_read a1_in (econs c)).

Hypothesis assign_d1 : (bus_assign d1 d1_in).

Hypothesis assign_we1 :
(assign we1 (cond (econs c)

(econs Gnd) (econs we1_in))).

Hypothesis assign_a2 :
(bus_cond_assign a2 cur_write a2_in (econsc)).

Hypothesis assign_d2 :
(bus_cond_assign

d2 stored_value d2_in (econs c)).

Hypothesis assign_we2 : (assign we2
(cond (and (econs cprev) (econs c))

(econs Vdd)
(cond (econs c)

(econs Gnd)
(econs we2_in)))).

Hypothesis initial_reset : reset 0 = lo.

Hypothesis reset_hi :
forall t : nat, t > 0 reset t = hi.

Definition sum_cur_read_1 :=
fun t:nat => cur_read t 1.

(* property definitions for final theorem *)

Definition unique := fun (n t nf : nat) =>
forall nm:nat, nm > 0 nm < nf nm > n
(we2 (t nm)) hi (a2 (t nm)) (a2 (t n)).

Definition write := fun (X n t nf : nat) =>
(we2(t+n))=hi/ (d2(t+n))=X/ (uniquentnf).

Definition read := fun (a n t X : nat) =>
(a1 (t+n)) = a / (q1 (t + n)) = X.

Definition transfer := fun (t nf : nat) =>
forall a:nat, a <= regs exists n:nat,

n > 0 / n < nf / exists X:nat,
(read a n t X) /
exists nw:nat,

nw > 0 / nw < nf / (write X nw t nf).

Hypothesis if_not_reset : forall t:nat,
(doif (ifelse (not (econs reset))

(noif (updcons
(updcons
(updcons

(upd_bus cur_read (const 0) t)
(upd_bus cur_write (const 0) t))

(updcons
(upd c (econs Gnd) t)
(upd cprev (econs Gnd) t)))

(upd_bus stored_value (const 0) t)))

(ifelse (and (bus_eq cur_write
(const regs)) (not (econs cf)))

(noif (updcons
(updcons
(updcons

(upd_bus cur_read (const 0) t)
(upd_bus cur_write (const 0) t))

(updcons
(upd c (econs Gnd) t)
(upd cprev (econs Gnd) t)))

(upd_bus stored_value (const 0) t)))

(noif (updcons
(updcons
(updcons

(upd_bus_cond (and (econs cf)
(not (econs c)))

cur_read (const 0)sum_cur_read_1 t)
(upd_bus_cond (and (econs cf)

(not (econs c)))
cur_write (const 0) cur_read t))

(updcons
(upd c (or (econs cf) (econs c)) t)
(upd cprev (econs c) t)))

(upd_bus stored_value q1 t)))))
t).

(* useful user-designed lemmas for use in proof *)

Lemma transitions : forall t:nat, t > 0
c t = lo cf t = hi c (S t) = hi /
cprev (S t) = lo / cur_read (S t) = 0
/ cur_write (S t) = 0.

intros.

generalize if_not_reset. intro inr.
specialize inr with (t:=t).
unfold doif in inr.
unfold update in inr.
unfold eval in inr.
rewrite H0 in inr.
rewrite H1 in inr.

apply reset_hi in H. rewrite H in inr.
generalize inr.
unfold const.
unfold sum_cur_read_1.
case cmp_eq.

tauto.
tauto.

Qed.

Lemma count_helper : forall t:nat, t>0

36 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

cf t = hi c t = lo forall n:nat,
n < S regs cur_read(t + S(S n)) = S n /
cur_write(t+S(S n)) = n /
c (t+S(S n)) = hi / cprev (t+S(S n)) = hi.

intros.

induction n.

generalize transitions. intro tr.
specialize tr with (t:=t).
apply tr in H.
generalize if_not_reset. intro inr.
specialize inr with (t:=S t).
unfold doif in inr.
unfold update in inr.
unfold eval in inr.
assert(reset (S t) = hi).

apply reset_hi. omega.
rewrite H3 in inr.
assert(cur_write (S t) = 0).

apply H. rewrite H4 in inr.
unfold const in inr. rewrite rno in inr.
assert(c(S t) = hi).

apply H. rewrite H5 in inr.
assert(cur_read(S t) = 0). apply H.
unfold sum_cur_read_1 in inr. rewrite H6 in inr.
assert(S(S t) = t+2).

omega. rewrite H7 in inr.
generalize inr.
case cf.

intuition. intuition.
assumption. assumption.

assert(n < S regs). omega.
apply IHn in H3.
generalize if_not_reset. intro inr.
specialize inr with (t:=t + S (S n)).
unfold doif in inr.
unfold update in inr.
unfold eval in inr.
assert(reset (t+S(S n)) = hi).

apply reset_hi. omega.
rewrite H4 in inr.
assert(cur_write(t+S(S n)) = n).

apply H3. rewrite H5 in inr.
assert(cur_read(t+S(S n)) = S n). apply H3.
unfold sum_cur_read_1 in inr. rewrite H6 in inr.
assert(c(t + S(S n)) = hi).

apply H3. rewrite H7 in inr.
unfold const in inr.
assert(n <> regs).

omega. apply cmp_neq_neg in H8.
rewrite H8 in inr.
assert(S(t+S(S n)) = t+S(S(S n))). omega.
rewrite H9 in inr.
assert(S n + 1 = S(S n)).

omega. rewrite H10 in inr.
generalize inr.
case cf.

intuition. intuition.
Qed.

Lemma count_all : forall t:nat, t>0
cf t = hi c t = lo forall n:nat,
n < S regs cur_read(t + S n) = n /
cur_write(t+S(S n)) = n /
c (t+S(S n)) = hi / cprev (t+S(S n)) = hi.

intros.
induction n.

split.
assert(t+1=S t). omega. rewrite H3.
generalize transitions. intro tr.
specialize tr with (t:=t).
apply tr.

assumption. assumption. assumption.

generalize count_helper. intro ch.
specialize ch with (t:=t).
assert(cur_read(t+2) = 1 /

cur_write(t+2) = 0 / c (t+2) = hi /
cprev (t+2) = hi).

apply ch.
assumption. assumption. assumption. omega.
apply H3.

split.
generalize count_helper. intro ch.
specialize ch with (t:=t).
assert(cur_read(t+S(S n)) = S n /

cur_write(t+S(S n)) = n /
c(t+S(S n)) = hi / cprev(t+S(S n)) = hi).
apply ch.

assumption. assumption. assumption.
omega.

apply H3.
assert(cur_read(t+S(S (S n))) = S(S n) /

cur_write(t+S(S(S n))) = S n /
c(t+ S(S(S n))) = hi /
cprev (t + S(S(S n))) = hi).
apply count_helper.

assumption. assumption. assumption.
omega.

apply H3.
Qed.

Lemma c_lock_helper : forall t:nat, t>0
cf t = hi c t = lo forall n:nat,
n < S(S regs) c (t+S n) = hi.

intros.
induction n.

assert(t+1 = S t). omega. rewrite H3.
generalize transitions.
intro tr. specialize tr with (t:=t).
apply tr.
assumption. assumption. assumption.

assert(cur_read(t + S n) = n /
cur_write(t+S(S n)) = n /
c (t+S(S n)) = hi /
cprev (t+S(S n)) = hi).
apply count_all.

assumption. assumption. assumption.
omega.

apply H3.
Qed.

Lemma c_lock : forall t:nat, t > 0
cf t = hi c t = lo forall n:nat,
n > 0 n < S(S(S regs)) c(t+n) = hi.

intros.
induction n.

assert(t+0=t). omega. rewrite H4.
rewrite H1. rewrite lo_neq_hi.
intuition.

apply c_lock_helper.
assumption. assumption. assumption.
omega.

Qed.

Lemma cprev_lock : forall t:nat, t > 0
cf t = hi c t = lo forall n:nat,
n < regs+1 cprev(t+S(S n)) = hi.

intros.
induction n.

assert(c(t+1) = hi). apply c_lock.
assumption. assumption. assumption.
omega. omega.

generalize if_not_reset. intro inr.
specialize inr with (t:=t+1).
unfold doif in inr.

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 37

unfold update in inr.
unfold eval in inr.

assert(reset(t+1) = hi).
apply reset_hi. omega.

rewrite H4 in inr.
rewrite H3 in inr.

assert(c (S t) = hi / cprev (S t) = lo /
cur_read (S t) = 0 / cur_write (S t) = 0).
apply transitions.
assumption. assumption. assumption.

assert(cur_write(S t) = 0). apply H5.
assert(S t = t+1).

omega. rewrite H7 in H6.
rewrite H6 in inr.
unfold const in inr.
rewrite rno in inr.
assert(S(t+1) = t+2).

omega. rewrite H8 in inr.
generalize inr.
case cf.

tauto. tauto.

assert(cur_read(t + S (S n)) = S n /
cur_write(t+S(S(S n))) = S n /
c (t+S(S(S n))) = hi /
cprev (t+S(S(S n))) = hi).
apply count_all.
assumption. assumption. assumption.
omega.

apply H3.
Qed.

Lemma read_eq : forall t:nat, t > 0
cf t = hi c t = lo forall n:nat,
n < regs+1 cur_read (t+S n) = n.

intros.
assert(cur_read(t + S n) = n /

cur_write(t+S(S n)) = n /
c (t+S(S n)) = hi /
cprev (t+S(S n)) = hi).
apply count_all.

assumption. assumption. assumption.
omega.

apply H3.
Qed.

Lemma unchc : forall t:nat, t > 0
cf t = lo c t = lo c (S t) = c t.

intros.
generalize if_not_reset. intro inr.
specialize inr with (t:=t).
unfold doif in inr.
unfold update in inr.
unfold eval in inr.
assert (reset t = hi).

apply reset_hi. assumption.
rewrite H2 in inr.
rewrite H0 in inr.
rewrite H1 in inr.
generalize inr.
unfold Gnd.
rewrite H1.
case cmp_eq.

tauto. tauto.
Qed.

Lemma cftrans : forall t:nat, t>0
c t = lo c (S t) = hi cf t = hi.

intros.
assert(cf t = lo c (S t) = c t).

intro.

apply unchc. assumption.
assumption. assumption.

assert(∼(cf t = lo)).
rewrite H0 in H2.
rewrite H1 in H2.
symmetry in H2.
rewrite lo_neq_hi in H2.
intuition.

apply lohi in H3.
assumption.
Qed.

Lemma unique_write : forall n t : nat, t > 0
c t = lo cf t = hi n > 1
n < S(S(S regs))

(unique n t (S(S(S regs)))).
intros.
unfold unique.
intros.
assert(c (t+n) = hi).

apply c_lock.
assumption. assumption. assumption.

omega. assumption.

assert(cur_write (t + nm) = nm-2).
assert(cur_read(t + S (nm-2)) = nm-2 /

cur_write(t+S(S (nm-2))) = nm-2 /
c (t+S(S (nm-2))) = hi /
cprev (t+S(S (nm-2))) = hi).
apply count_all.
assumption. assumption. assumption.
omega.

assert(t+S(S(nm-2)) = t+nm). omega.
rewrite H10 in H9.
apply H9.

assert(c (t+nm) = hi).
apply c_lock.
assumption. assumption.
assumption. assumption.
omega.

unfold bus_cond_assign in assign_a2.
unfold eval in assign_a2.
generalize assign_a2. intro a21.
specialize a21 with (t:=t+nm).
rewrite H10 in a21.
rewrite H9 in a21.
rewrite a21.

assert(cur_write(t+S(S (n-2))) = n-2).
assert(cur_read(t + S (n-2)) = n-2 /

cur_write(t+S(S (n-2))) = n-2 /
c (t+S(S (n-2))) = hi /
cprev (t+S(S (n-2))) = hi).
apply count_all.
assumption. assumption. assumption.
omega.

apply H11.

assert(t+S(S(n-2)) = t+n). omega.
rewrite H12 in H11.

generalize assign_a2. intro a22.
specialize a22 with (t:=t+n).
rewrite H8 in a22.
rewrite H11 in a22.
rewrite a22.
clear H0. clear H1. clear H2. clear H3.
clear H4. clear H7. clear H8. clear H9.
clear H10. clear a21. clear H11.
omega.
Qed.

(* show the cycle-address correspondence *)

38 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

Lemma read_regs1 : forall t a: nat, t > 0
c t = lo cf t = hi a < regs+1
a1 (t+S a) = a.

intros.
generalize assign_a1. intro aa.
unfold bus_cond_assign in aa.
specialize aa with (t:=t+(S a)).
unfold eval in aa.

assert(c (t + S a) = hi).
apply c_lock.
assumption. assumption. assumption.
omega. omega.

rewrite H3 in aa.
rewrite aa.
apply read_eq.

assumption. assumption. assumption.
assumption.
Qed.

(* show that a full transfer can be completed
in 34 cycles *)

Lemma transfer_regs3 : forall t: nat,
t > 0 c t = lo cf t = hi

(transfer t (S(S(S regs)))).
intros.
unfold transfer.
intros.
exists (S a).
split. omega.
split. omega.

exists (q1 (t + S a)).

split.
unfold read.

split.
apply read_regs1.

assumption. assumption. assumption.
omega. trivial.

exists (S(S a)).
split. omega. split. omega.

unfold write.
split.
generalize assign_we2. intro aw2.
unfold assign in aw2. unfold eval in aw2.
specialize aw2 with (t:=t+S(S a)).
assert(cprev(t+S(S(a))) = hi). apply
cprev_lock.

assumption. assumption. assumption. omega.
rewrite H3 in aw2.
assert(c (t+S(S a)) = hi).

apply c_lock.
assumption. assumption. assumption.
omega. omega.

rewrite H4 in aw2.
unfold Vdd in aw2.
assumption.

split.
generalize assign_d2. intro ad2.
unfold bus_cond_assign in ad2.
specialize ad2 with (t:=t+S(S a)).
unfold eval in ad2.
assert(c (t+S(S a)) = hi). apply c_lock.

assumption. assumption. assumption.
omega. omega.

rewrite H3 in ad2.
generalize if_not_reset. intro inr.
unfold doif in inr.

unfold update in inr.
unfold eval in inr.
specialize inr with (t:=t+S a).
assert(reset(t+S a) = hi).

apply reset_hi. omega.
rewrite H4 in inr.
assert(cur_write(t+S a) <> regs).

induction a.
generalize transitions.
intro tr. specialize tr with (t:=t).
assert(S t = t+1). omega. rewrite H5 in tr.
assert(cur_write(t+1) = 0). apply tr.

assumption. assumption. assumption.
omega.
assert(cur_write(t+S(S a)) = a).

assert(cur_read(t + S a) = a /
cur_write(t+S(S a)) = a /
c (t+S(S a)) = hi / cprev (t+S(S a)) = hi).
apply count_all.
assumption. assumption. assumption.
omega.

apply H5.
rewrite H5.
omega.

apply cmp_neq_neg in H5.
unfold const in inr. rewrite H5 in inr.
assert(c(t+S a) = hi).

apply c_lock.
assumption. assumption. assumption.

omega. omega.
rewrite H6 in inr.
assert(stored_value(S(t+S a)) = q1(t+S a)).

generalize inr.
case cf. tauto. tauto.

assert(S (t + S a) = t+S(S a)).
omega. rewrite H8 in H7.

rewrite H7 in ad2.
assumption.
apply unique_write.

assumption. assumption. assumption.
omega. omega.

Qed.

(* Theorems to be proven about circuit *)

(* stable_c: show that we never enter
copy-mode unless the cf flag is raised *)

Theorem stable_c : forall t:nat, t > 0
c t = lo cf t = lo c (S t) = lo.

intros.
generalize if_not_reset. intro inr.
unfold doif in inr.
unfold update in inr.
unfold eval in inr.
specialize inr with (t:=t).
rewrite H0 in inr. rewrite H1 in inr.
assert(reset t = hi).

apply reset_hi. omega. rewrite H2 in inr.
unfold const in inr.
generalize inr.
unfold Gnd.
case cmp_eq. tauto. tauto.
Qed.

(* when not in copy-mode, just pass
along inputs to RFs *)

Theorem transparency : forall t:nat,
t > 0 c t = lo
a1 t = a1_in t / d1 t = d1_in t /
we1 t = we1_in t / a2 t = a2_in t /
d2 t = d2_in t / we2 t = we2_in t.

intros.

split.
generalize assign_a1. intro aa1.

LOVE et al.: PCH IP: A PATHWAY TO TRUSTED MODULE ACQUISITION 39

unfold bus_cond_assign in aa1.
specialize aa1 with (t:=t).
unfold eval in aa1. rewrite H0 in aa1.
assumption.

split.
generalize assign_d1. intro ad1.
unfold bus_assign in ad1.
specialize ad1 with (t:=t).
assumption.

split.
generalize assign_we1. intro aw1.
unfold assign in aw1.
specialize aw1 with (t:=t).
unfold eval in aw1. rewrite H0 in aw1.
assumption.

split.
generalize assign_a2. intro aa2.
unfold bus_cond_assign in aa2.
specialize aa2 with (t:=t).
unfold eval in aa2. rewrite H0 in aa2.
assumption.

split.
generalize assign_d2. intro ad2.
unfold bus_cond_assign in ad2.
specialize ad2 with (t:=t).
unfold eval in ad2. rewrite H0 in ad2.
assumption.

generalize assign_we2. intro aw2.
unfold assign inaw2. specialize aw2 with(t:=t).
unfold eval in aw2. rewrite H0 in aw2.
generalize aw2.
case cprev. tauto. tauto.

Qed.

(* prove thatwe terminate ina finite— —number of
clock cycles, andthat we havea complete transfer
according to the extended definition—see above
*)

Theorem termination_transfer : forall t:nat, t > 0

c t = lo c (S t) = hi
exists n:nat, cf (t+n) = lo n > 0 /

n < regs+regs / c (t+S n) = lo /
(transfer t (S n)).

intros.
exists (S(S regs)). intros.

split. omega. split. omega. split.
apply cftrans in H1.
assert(cur_read(t + S regs) = regs /

cur_write(t+S(S regs)) = regs /
c (t+S(S regs)) = hi /
cprev (t+S(S regs)) = hi).
apply count_all.

assumption. assumption. assumption. omega.
generalize if_not_reset.
intro inr.
specialize inr with (t:=t+S(S regs)).

unfold doif in inr.
unfold update in inr.
unfold eval in inr.

assert(cur_write(t+S(S regs)) = regs).
apply H3. rewrite H4 in inr.

assert(reset (t+S(S regs)) = hi).
apply reset_hi. omega.

rewrite H5 in inr.
unfold const in inr.

assert(regs = regs). trivial. rename H6 into rr.
apply cmp_eq_lem in rr.
rewrite rr in inr.
rewrite H2 in inr.
assert(S(t+S(S regs)) = t+S(S(S regs))). omega.
rewrite H6 in inr.
apply inr.
assumption.
assumption.

apply transfer_regs3. assumption. assumption.
apply cftrans in H1.

assumption. assumption. assumption.
Qed.

REFERENCES
[1] Defense Science Board (DSB) Study on High Performance Microchip

Supply 2005 [Online]. Available: http://www.cra.org/govaffairs/im-
ages/2005-02-hpms_report_final.pdf

[2] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5,
pp. 34–39, May 2008.

[3] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using IC fingerprinting,” in Proc. IEEE Symp.
Security and Privacy, 2007, pp. 296–310.

[4] Y. Jin and Y. Makris, “Hardware Trojans in wireless cryptographic
ICs,” IEEEDes. Test Comput., vol. 27, no. 1, pp. 26–35, Jan./Feb. 2010.

[5] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan tax-
onomy and detection,” IEEE Des. Test Comput., vol. 27, no. 1, pp.
10–25, Jan./Feb. 2010.

[6] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay fin-
gerprint,” in Proc. IEEE Int. Workshop on Hardware-Oriented Security
and Trust, 2008, pp. 51–57.

[7] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware
Trojan horse detection using gate-level characterization,” in Proc. 46th
Annu. Design Automation Conf. (DAC’09), 2009, pp. 688–693.

[8] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power
supply signal calibration techniques for improving detection resolution
to hardware Trojans,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2008, pp. 632–639.

[9] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards
Trojan-free trusted ICs: Problem analysis and detection scheme,”
in Proc. IEEE Design Automation and Test in Europe, 2008, pp.
1362–1365.

[10] H. Salmani, M. Tehranipoor, and J. Plusquellic, “New design strategy
for improving hardware Trojan detection and reducing Trojan activa-
tion time,” in Proc. IEEE Int. Workshop on Hardware-Oriented Secu-
rity and Trust, 2009, pp. 66–73.

[11] Y. Jin, N. Kupp, and M. Makris, “DFTT: Design for Trojan test,” in
Proc. IEEE Int. Conf. Electronics Circuits and Systems, 2010, pp.
1175–1178.

[12] M. Banga and M. S. Hsiao, “Trusted RTL: Trojan detection method-
ology in pre-silicon designs,” in Proc. 2010 IEEE Int. Symp. Hard-
ware-Oriented Security and Trust (HOST), 2010, pp. 56–59.

[13] G. C. Necula, “Proof-carrying code,” in Proc. 24th ACM SIG-
PLAN-SIGACT Symp. Principles of Programming Languages
(POPL’97), 1997, pp. 106–119.

[14] A. W. Appel, “Foundational proof-carrying code,” Found. Intrusion
Tolerant Syst., pp. 247–256, 2003.

[15] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni, “A syn-
tactic approach to foundational proof-carrying code,” J. Automated
Reasoning, vol. 31, pp. 191–229, 2003.

[16] A. W. Appel and D. McAllester, “An indexed model of recursive types
for foundational proof-carrying code,” ACM Trans. Program. Lang.
Syst., vol. 23, no. 5, pp. 657–683, 2001.

[17] D. Yu, N. A. Hamid, and Z. Shao, “Building certified libraries for
PCC: Dynamic storage allocation,” Sci. Comput. Program., vol. 50,
pp. 101–127, 2004.

[18] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Modular verifica-
tion of assembly code with stack-based control abstractions,” in Proc.
SIGPLAN Notes, 2006, vol. 41, no. 6, pp. 401–414.

[19] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying hardware:
Towards runtime verification of reconfigurable modules,” in Proc. Int.
Conf. Reconfigurable Computing and FPGAs, 2009, pp. 189–194.

[20] G. Morrisett, K. Crary, N. Glew, and D. Walker, “Stack-based typed
assembly language,” J. Functional Program., vol. 12, no. 1, pp. 43–88,
2002.

40 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

[21] INRIA, The Coq proof assistant Sept. 2010 [Online]. Available: http://
coq.inria.fr/

[22] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware Trojan de-
sign and implementation,” in Proc. IEEE Int. Workshop on Hardware-
Oriented Security and Trust, 2009, pp. 50–57.

Eric Love (S’11–M’11) received the B.S. degree
in electrical engineering and computer science from
Yale University, New Haven, CT, in 2011. He is cur-
rently working toward the Ph.D. degree in computer
science at the University of California at Berkeley.
His research interests include secure hardware de-

vices, reconfigurable architectures, and programming
language based security.

Yier Jin (S’07) received the Bachelor’s and M.S. de-
grees from Zhejiang University, China, in 2005 and
2007, respectively. He is currently working toward
the Ph.D. degreee in electrical engineering at Yale
University, New Haven, CT.
His research interests include reliable, secure, and

trustworthy ICs, crypto-processor designs, as well as
dynamically reconfigurable architectures.

Yiorgos Makris (S’99–A’01–M’03–SM’08) re-
ceived the Diploma of computer engineering and
informatics from the University of Patras, Greece, in
1995, and the M.S. and Ph.D. degrees in computer
science and engineering from the University of Cal-
ifornia, San Diego, in 1997 and 2001, respectively.
After spending over ten years on the Faculty

of Electrical Engineering at Yale University, New
Haven, CT, he moved to The University of Texas
at Dallas, Richardson, TX, where he is currently
an Associate Professor of Electrical Engineering,

leading the Trusted and Reliable Architectures (TRELA) Research Group.
His current research interests include soft-error mitigation in digital circuits,
machine learning-based testing of analog/RF circuits, mitigation of hardware
Trojans, as well as test and reliability of asynchronous circuits. He serves
on the organizing and program committees of many conferences in the areas
of test, reliability, and trustworthiness and is the program chair for the 2011
Test Technology Education Program (TTEP) of the IEEE Test Technology
Technical Council (TTTC).

