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Abstract—We discuss the design of an experimentation
platform intended for prototyping low-cost analog neural net-
works for on-chip integration with analog/RF circuits. The
objective of such integration is to support various tasks, such as
self-test, self-tuning, and trust/aging monitoring, which require
classification of analog measurements obtained from on-chip sen-
sors. Particular emphasis is given to cost-efficient implementation
reflected in: 1) low energy and area budgets of circuits dedicated
to neural networks; 2) robust learning in presence of analog
inaccuracies; and 3) long-term retention of learned functionality.
Our chip consists of a reconfigurable array of synapses and
neurons operating below threshold and featuring sub-uW power
consumption. The synapse circuits employ dual-mode weight
storage: 1) a dynamic mode, for fast bidirectional weight updates
during training and 2) a nonvolatile mode, for permanent storage
of learned functionality. We discuss a robust learning strategy,
and we evaluate the system performance on several benchmark
problems, such as the XOR2-6 and two-spirals classification tasks.

Index Terms— Analog neural network, chip-in-the-loop
training, multilayer perceptron, nonvolatile weight storage,
ontogenic neural network, reconfigurable array, translinear
circuits.

I. INTRODUCTION

N RECENT years, machine learning-based solutions have

found use in a number of applications related to exam-
ining robustness and trustworthiness of analog/RF integrated
circuits (ICs). The general architecture of these solutions
is shown in the top portion of Fig. 1 and consists of cir-
cuitry which can generate predefined on-chip stimuli and
simple sensors which can obtain parametric measurements
from an analog/RF IC in response to these stimuli. These
measurements can then be processed by an on-chip clas-
sifier, to assess various operational aspects of the IC. For
example, a trained classifier can be periodically used to
assess, on the basis of simple sensor measurements, whether
the performances of an analog/RF IC continue to meet
the design specifications, thereby providing a built-in self-
test (BIST) capability [1], which is particularly desirable in
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of on-chip classifiers in trusted and robust

circuits deployed in safety-critical applications. Similarly, a
trained classifier can periodically use simple sensor mea-
surements to choose appropriate knob positions in tunable
analog/RF ICs, to select the optimal setting for a given
set of operating conditions, thereby increasing robustness
and optimizing power consumption through self-tuning [2].
Another application of this general architecture is in detect-
ing hardware Trojans [3], a contemporary concern brought
about by the globalization of the IC supply chain. Specifi-
cally, a trained on-chip classifier can be distinguished on the
basis of simple parametric sensor measurements (also known
as side-channel fingerprints), between hardware Trojan-free
and hardware Trojan-infested ICs, thereby enhancing trust-
worthiness. Yet another trust-related application of on-chip
classifiers can be found in using sensor measurements to
distinguish between new and aged chips, thereby helping in
combating the growing concern of detecting recycled and
counterfeit ICs [4].

All these applications share a common characteristic, i.e.,
the use of a trained machine learning entity to make a
crucial decision regarding robustness or trustworthiness of
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an analog/RF IC. While it has been shown that even rela-
tively simple learning models posses the power to extract the
decision information from low-cost measurements [5], [6],
prior research in this application domain has only explored
their software implementation running on an external
computer [7] or a built-in DSP block [8]. However, such
processing resources may be prohibitively expensive and are
not always available for performing such classification tasks
on a stand-alone analog/RF IC. Accordingly, in this paper we
explore the potential of developing a low-cost hardware neural
network implementation which can be integrated onto an IC in
order to provide the aforementioned capabilities. To this end,
we describe an experimentation platform which we developed
in order to prototype appropriate neural topologies and circuit
parameters for solving classification problems such as the ones
described above.

While numerous neural platforms employing various imple-
mentation technologies and addressing a range of requirements
dictated primarily by large-scale biological systems exist in
the literature, the specific set of requirements imposed by our
target applications call for a custom solution. In particular,
the resulting on-chip integrated neural network must consume
only a small fraction of available IC resources, especially with
regards to area and power. For battery powered ICs, it is not
uncommon that the power budget of such circuits lies in the
micro- or even nano-Watt range. To this end, it is imperative
that all processing is performed in the analog domain, since
analog-to-digital conversion of the sensor measurements and
processing in the digital domain is bound to be far more
demanding in area and power. Additionally, the neural network
must remember its learned regression function or classification
boundary throughout the lifetime of the analog/RF IC. In a
typical scenario, weight values are trained once at a vendor’s
facility and stored permanently using nonvolatile memory,
such that the deployed ICs do not require any off-chip support
to examine their robustness or trustworthiness. Furthermore,
training time is another important resource, which calls for
a rapidly programmable weight memory and a good training
strategy capable of overcoming implementation nonidealities
such as mismatch and process variation. Lastly, although
it is necessary for the platform to be programmable with
respect to the supported learning models, their topologies,
circuit parameters, power consumption, etc., scalability is less
important than in other state-of-the-art platforms. After all, if
the resources of a single platform are not sufficient to address a
problem, it is very unlikely that such a trained network would
be a cost-efficient solution for the targeted applications.

The key contribution of this paper is the development of a
custom neural platform targeting the specific design require-
ments outlined above. The design represents a major revision
of an earlier version [9] with improved circuit- and system-
level characteristics. The architecture supports two popular
learning models, namely the multilayer perceptron (MLP) and
the ontogenic neural network (ONN). Sacrificing the generality
and scalability of spiking neural networks, we resort to a
fully analog design operating in the space of sensor voltages
and providing low overhead in terms of power consumption
and transistor count. Equally important, our design allows
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direct connection of voltage-encoded sensor outputs, thereby
eliminating the need for costly analog-to-digital or voltage-to-
spiking-frequency converters. The basic computational primi-
tives, such as multiplication and nonlinear activation functions,
are realized by translinear circuits biased in the subthreshold
region. A hybrid approach is used for weight storage: for
fast bidirectional updates during training, weights are stored
on dynamic capacitors; after convergence, they are copied
onto floating gate transistors (FGTs) for permanent storage.
In training, we employ a chip-in-the-loop paradigm for robust-
ness against circuit nonlinearities and for modest use of extra
resources dedicated to learning.

The remainder of this paper is structured as follows.
In Section II we outline the current state-of-the-art in hardware
implementation of neural networks. Section III introduces the
MLP and ONN learning models. The overall chip architecture
is described in Section IV. In Section V, we explain the dual-
mode weight storage mechanism. Circuit implementation of
the core building blocks—synapses and neurons—is given
in Section VI. In Section VII, we provide the description
of peripheral blocks that support characterization, training
and operation of the neural network. Section VIII discusses
training strategies for the MLP and ONN models. Measure-
ment results and performance evaluation of the hardware
learning models on two benchmark problems are given in
Section IX. Finally, Section X concludes this paper.

II. PRIOR ART IN HARDWARE NEURAL PLATFORMS

Circuit implementation of neural networks is an active
research area with several neural platforms successfully
deployed and tested on real world problems [10]. One direc-
tion focuses on building neuromorphic systems of spiking
neurons for hardware emulation of large-scale biological
neural networks. These systems adopt various implementation
technologies, offer great configurability and scalability (up to
IM neurons [11] per system), consume low power and imple-
ment complex neuron dynamics [12]. The SpiNNaker platform
is an example of a fully digital implementation supporting a
wide range of neuron models (MLP, IZH, LIF, etc.), providing
high scalability (up to 1000 neurons per core), and offering
low-power consumption of 12 to 45 nJ/ms per neuron [13].
Another example leverages digital technology to provide an
accelerated simulation platform with up to 512 neurons and
100000 synapses per core [14]. Mixed-signal implementations
aim at further reducing transistor count and improving power
efficiency, as evidenced by the Neurogrid project (941 pJ
per synaptic activation). Stability considerations of large scale
neural systems have also been investigated in [15].

A second direction focuses on direct implementation of
neural networks represented by abstract mathematical models,
such as feed-forward networks of multiplying synapses and
summing neurons with sigmoid-like activation function. One
of the first neural platforms for prototyping feed-forward
topologies was Intel’s ETANN chip [16]. The weight values
were found off-line using a hardware emulation model and
stored on-chip using floating gate (FG) memory. The design
in [17] uses synapses with hybrid dynamic and nonvolatile
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weight storage. Most of the training is completed on-chip
utilizing dynamic storage and dedicated learning circuitry
tailored for a chain perturbation algorithm. The authors
in [18] address an ultralow power implementation of a
neural classifier, which is composed of a vector-matrix
multiplication (VMM) and a winner-take-all (WTA) circuit.
Weight values are determined in an off-line training proce-
dure and programmed onto the analog floating gate memory
for permanent storage. The advantages of off-chip training,
however, vanish rapidly for circuits which have small geome-
tries and which are biased in the deep subthreshold region.
The variety of existing solutions suggests that design
choices are largely dictated by application requirements. The
spiking network techniques of the first direction, for example,
are not directly applicable to our problem due to their focus on
large scale systems (while our applications require very small
footprint), complex neuron dynamics (which is unnecessary
for learning the relatively simple classification boundaries
of our applications), and digital or mixed-signal technology
(while in our applications crossing the analog/digital domain
is prohibitively expensive). Neural networks along the second
direction provide a better alternative for our requirements
by emphasizing a fully analog implementation (which offers
energy efficiency of up to 1000 x over the digital domain [19]),
simple computational models (i.e., a multiplier for a synapse
and a sigmoid function for a neuron), and compact nonvolatile
weight storage solution (i.e., analog FG memory). Accord-
ingly, we only compare the performance characteristics of our
platform to implementations from this second group.

II1. MATHEMATICAL MODELS

The first model supported by our platform is the widely
used MLP, which is capable of learning complex nonlinear
classification problems due to the presence of hidden layers
in its topology [20]. The block diagram of an MLP is illus-
trated in Fig. 2(a). The network is feed-forward; it does not
contain feedback loops and each layer receives connections
only from inputs or previous layers. The first layer (also
known as hidden) has M neurons which receive the inputs
X1,X2,...,Xp and a constant Xo = 1. The second layer
(also known as output) contains a single neuron (for binary
classification) which receives the outputs YIH , Y2H s YAI,',I
of the first layer and produces the network output ¥ . The
strength of connections is controlled by synapses which act
as multipliers of input signals and their local weight values.
The sum of synaptic products is passed through a nonlinear
activation function of a neuron. The number of inputs and
output neurons is usually defined by the classification problem
itself, while the number of hidden neurons reflects the learning
capacity of the model.

The second model supported by our platform is the ONN.
Unlike MLP, the ONN learns the boundary by both adjusting
the weights and expanding its topology [7]. It has a similar
structure, including a layer of inputs, several hidden neurons
and an output neuron [Fig. 2(b)]. However, a single neuron
receives connections from both the inputs and the outputs
of preceding neurons. A decision boundary is constructed by
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Fig. 2. Two learning models supported by the neural platform. (a) Multilayer
perceptron. (b) Ontogenic neural network. The synapse acts as an ideal
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Fig. 3. (a) System architecture of the neural network platform. The
reconfigurable array of synapses (S) and neurons (N) is shown in the shaded
box. (b) Die photograph of the chip implemented in 0.35-xm complimentary
metal-oxide—semiconductor and measuring 3 x 3 mm?.

successively adding hidden neurons: each hidden neuron aug-
ments the feature space of the original inputs with the intention
of making the derived space linearly separable. Trained by
cascade-correlation (CC), the ONN avoids the moving target
problem inherent in back propagation [21], thereby resulting in
more compact network sizes for a given classification problem.
The experiments in Section IX-D confirm this conjecture.
In the remainder of this paper, the topologies of both neural
models have an X-Y—-Z designation, where X, Y, and Z are
the number of inputs, hidden neurons, and output neurons,
respectively.

IV. CHIP ARCHITECTURE

The block diagram of the neural platform is shown in
Fig. 3. A 30 x 20 array of synapses (S) and neurons (N)
is arranged so that the neurons are aligned along the main
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diagonal of the upper matrix and along the right edge for the
bottom part. Each row of synapses is locally connected to a
corresponding neuron (N), forming a single unit. Global con-
nectivity is programmable by means of multiplexors inserted
between rows. The basic neural network operations, such as
multiplication and nonlinear activation functions, are imple-
mented via the translinear principle [22]. The signals and
weights are represented by balanced differential currents for
increased robustness and four-quadrant multiplication. As a
result, a single weight value requires two current sources for
differential current storage. For this purpose, we designed a
current storage cell (CSC) featuring two modes of weight
storage: dynamic, for rapid bidirectional programming, and
nonvolatile, for long-term storage of learned weights. The
dynamic mode is engaged during training, which requires
thousands of weight update operations to be completed in a
short period of time. Upon completion of training, the learned
weights are stored permanently using FGTs.

The peripheral circuits provide support for fast program-
ming and interfacing with the external world. The differential
transconductors GM convert voltage-encoded input signals
into balanced differential currents, as required by the core. The
digitally controlled current source (DCCS) generates target
currents from an on-chip reference for dynamic programming
of the CSCs. Finally, the current-to-voltage converter (ITOV)
facilitates the reading of internal currents by converting them
to voltages that can be sampled using an external analog to
digital converter. Each of these blocks requires characterization
prior to their first use, to achieve a desired accuracy.

In subsequent sections, we provide a detailed description of
neural circuit operation by using the following signal notation.
The positive and negative components of a balanced differ-
ential current are denoted by I* and I, respectively, with
an appropriate subscript. The differential (D) and common-
mode (CM) currents are defined as

IP=1"—1" and IM=1"4+1". (D)

We will also use a notion of a normalized current (X)
defined by

x It—1 1?

It 4 M

and spanning the range from —1 to 1. Also, unless stated
otherwise, we consider the default range for operating currents

to be limited by 10 nA, so that the CM signal of a balanced
current is 10 nA.

)

V. WEIGHT STORAGE MECHANISM

The principle of the CSC, which is the building block of
the weight memory, is shown in Fig. 4. At the core of the
circuit is a dual-gate FGT P1 (in the shaded box), whose
drain current I;= is the entity being stored. The drain current
is modulated by the voltage on the FG (Vf,), which is itself
determined by the FG node charge Qf; and the control gate
voltages V1 and Vo as

_ Qfg + Cgl Vgl + CgZVgZ + Ctuthun + Zi Ci Vi

Vi
e Cot

3)
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Fig. 4. Current storage cell. The CSC stores IM:/E, one of the weight current
components, which is determined by both the FG node charge Qfg (nonvolatile
mode) and the two control gate voltages Vg and Vgo (dynamic mode). The
sizes of key devices are as follows: P1 =2 x 2 ,umz, P2 =2x1 ,umz,
P3 = 04 x 035 um?; Cgl = 40 fF, Cg2 = 15 fF, C3 = 1.35 pF,
C4=0.6fF.

where Cg1, Cg2, Ciun, and Cyop are, respectively, the first gate,
second gate, tunneling, and total FG node capacitances, Vi
is the voltage of the vtun terminal, and C; and V; combine all
parasitic coupling capacitors and voltages. The vgatel, vtun,
and vcasp terminals are shared across all FGTs. In dynamic
storage mode, Vg1 is fixed at 2.5 V, whereas the drain
current is controlled by Vg, which is stored on a local
sample-and-hold (S/H) circuit comprising an metal-oxide—
semiconductor (MOS) capacitor C3 and a switch transistor P3.
In nonvolatile storage mode, the FGT acts as a single gate
transistor by connecting the second gate to the global vgatel.
The programmed value of its drain current is defined at
Vg1 = 2.5 V. FGT is considered fully erased when its drain
current is less than 1 pA. The cascode transistor P2 is inserted
to minimize the drain coupling effect on the FG node and also
to isolate the drain from the main circuit during programming.
The purpose of using the dual gate with nonequal coupling
ratios is explained in the subsection on dynamic programming.

A. Nonvolatile Programming

The FGT layout is similar to the one described in [23].
The source and body terminals are connected to avdd. The
FG node is electrically isolated from the control gates by two
poly-to-poly capacitors. The tunneling capacitor is a minimum
size p-channel metal-oxide—semiconductor (pMOS) transistor
with its gate connected to the FG node and its source, drain,
and bulk terminals connected to vtun. We employ two mech-
anisms for nonvolatile programming of FGTs. Hot-electron
injection is used to add electrons to the FG, thus, lower-
ing its voltage and increasing the drain current. Conversely,
Fowler—Nordheim (FN) tunneling is used to remove elec-
trons from the FG. Although the two mechanisms allow for
bidirectional charge transfer, owing to poor controllability
of FN tunneling we use it for global erase only. Individual
programming is, thus, performed only using injection.

To program a FGT of interest, it is first isolated from the
containing circuitry by raising vcasp to avdd and connecting
its drain to a bit line by row_sel via the transmission gate T1.
The bit line is routed by a column multiplexer to several
destinations, including an external pin, ITOV, and DCCS, each
controlling a specific aspect of the programming sequence.
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Fig. 5. Coarse injection stage. (a) Simplified circuit diagram. (b) Time
waveform consisting of a sequence of self-terminating injection steps.

To prevent other FGTs from parasitic injection, row_sel is
turned off for rows not containing the target FGT, and nonac-
tive bit lines are tied to avdd. The injection occurs when a large
source-to-drain (SD) potential is applied to the FGT biased at
a nonzero drain current. This condition is created by raising
avdd (to 5.5 V in our experiments) and pulling the drain to a
low potential (near ground), while setting vgatel to produce
a nonzero drain current. The programming is accomplished
in two stages: 1) coarse stage, which employs a negative
feedback to inject the FGT slightly below a target current and
2) fine stage, which achieves the desired accuracy using a fitted
injection model.

The negative feedback injection is made possible by con-
necting the drain of the target FGT to DCCS, sourcing a fixed
current Iy (e.g., 20 nA) [Fig. 5(a)]. The voltage on vgatel
is ramped down until the FGT starts conducting a nonzero
current Igpin. At this point, the drain potential (represented
by vout) is almost at the ground level (due to Ignin < Iop),
creating a favorable condition for injection. The SD potential
drops when Ignin exceeds Iy and the FGT stops injecting
[Fig. 5(b)]. In a series of subsequent steps, raising vgatel by
a small amount resets the drain current such that injection can
start again. The drain current by the end of the coarse injection
is roughly 10 pA, which is below the range of programmable
currents, yet sufficient to initiate injection in the fine stage.

During the second stage, vgatel is fixed and at its final value
(i.e., 2.5 V). For accurate injection, we adopt the algorithm
described in [24]; however, we use a pulse-width instead of
a drain voltage modulation, that is, the injected charge is
modulated by Tpuise, the amount of time the drain is kept low,
while the SD voltage is fixed. Prior to any programming, we
characterize a random set of FGTs and fit a polynomial of the
form

1Oglo(Tpulse) = P(loglo(ldrain), 10g10(AIdrain)) 4

which predicts the duration of a pulse needed to increase an
initial current lgp,in by the amount A Igpi,. Programming to a
target current liager then proceeds in a series of steps com-
prising: 1) measuring the initial current Igp,in and 2) applying
a drain pulse for the duration Tpyse predicted by the injection
model (Fig. 6). In fact, we set Algrain t0 & (Jtarget—Idrain) With
o < 1 to prevent accidental overinjection owing to variations
in injection characteristics of individual devices. As a result,
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Fig. 7. Dynamic programming setup. (a) Simplified circuit diagram. (b) Time
response of the feedback loop (vout) after closing the switch. (c) Estimated
time constant of the loop response. Estimated capacitances: Cy = 2.5 pF,
Cpccs = 0.25 pF.

several injection pulses are required to reach the target current
within a given tolerance.

Finally, for bulk erase of the entire array we apply high-
voltage pulses to vrun while grounding the control gates of
FGTs. The actual value of vtun varies from 8 to 9 V to achieve
the necessary 10 MV/cm electric field across the tunneling
oxide [25], which is 8 nm thick.

B. Dynamic Programming

Dynamic storage is employed during training for fast
bidirectional weight updates. Fig. 7 shows a simplified circuit
configuration of the dynamic programming. In this mode, a
CSC of interest is isolated from the array in a way similar
to the nonvolatile mode. However, the bit and gate lines
are connected to the output of DCCS, which generates a
target current Iprog, charging the dynamic capacitor C3 and
forcing the diode-connected FGT to supply equivalent current.
Once this self-biasing loop is stabilized, the switch transistor
disconnects the gate which now stores a new voltage value on
its dynamic capacitor. Although this programming scheme is
conceptually simple, it is important to address several design
considerations affecting its performance and, more broadly,
the overall network learning ability.
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The sequential nature of dynamic weight updates contributes
to the overall training time. The time to program an individual
CSC is dominated by the settling time of the negative feedback
loop formed by the FGT, DCCS, the unity gain op-amp, and
the S/H circuit [Fig. 7(a)]. The loop has two major poles:
1) at the output of DCCS driving the bit line capacitance
Cp and 2) at the output of the op-amp charging the gate
line capacitance Cg and the dynamic storage capacitance C3.
Fig. 7(b) shows a measured time response of the gate voltage
(a buffered version of the bit line voltage), which resembles the
settling behavior of a single-pole system. Indeed, the op-amp
is designed and biased to move the second pole outside the
unity gain frequency of the loop transfer function. As a result,
the closed loop is stable and has a well-behaved time response
which can be approximated by

(5)

where o(t) is the bit line voltage and 7 is the time constant
of an equivalent RC circuit. The estimated time constant
varies over three orders of magnitude for target currents from
40 pA to 40 nA, as shown in Fig. 7(c). The actual length of
the programming window is adjusted according to the target
current and consists of several time constants to allow for the
drain current to settle to within 1% of its target value. Note
that the primary reason of using the unity gain op-amp was to
decouple the large values of Cg and C3 from the capacitance
seen by DCCS, which would otherwise contribute to a longer
settling time.

Beyond the settling time, several design choices were made
toward diminishing parasitic effects of the switching transistor
P3 (such as clock feedthrough, charge injection, and reverse-
bias leakage current). For example, the dynamic storage node
is connected to a low coupling input of the dual-gate FGT
with the intention of reducing transconductance and, thus,
sensitivity to voltage disturbances on the dynamic capacitor.
A minimum size pMOS as a switching transistor and a large
1.35 pF n-channel MOS (nMOS) as a dynamic capacitor fur-
ther reduce parasitic effects. The pMOS capacitor is chosen for
its large unit capacitance, while ignoring the C—V nonlinearity
because it is used in static mode only. Equally important are
the employed layout techniques, including metal shielding and
guard rings around sensitive nodes. Lastly, the accuracy of
dynamic programming is limited by the resolution of DCCS,
which is considered in subsequent sections.

o(1) = v(0)[1 — e~ /7]

out

VI. IMPLEMENTATION OF NEURAL CIRCUITS
A. Synapse Circuit

The synapse circuit, shown in Fig. 8(a), implements
a four-quadrant multiplication function [26]. The circuit fea-
tures two CSC cells for the storage of differential weight
components and a six-transistor core P1-P6. Applying the
translinear principle to the core operating in the subthreshold
region, the output differential and CM currents are obtained by

+ —
D _ Iin B Iin

= cF =10y ISM=1t41- (6)
out —+ — (w w /) out w w

Iin + Iin
where Ii;:, I, are the differential components of the input
signal and I}, I, are the differential components of the

weight value. In normalized current notation, the synapse
equation becomes

@)

where IX, X, and IX are the input, weight, and output nor-
malized currents, respectively. Note that the above equations
assume that the core transistors are identical and there is no
mismatch. Equation (6) reveals an important characteristic of
the synapse circuit: the input signal enters the equation in the
normalized form, which effectively limits the range of the first
multiplier to [—1, 1], regardless of the CM signal.

The actual measured characteristic of one of the synapses
appears to be nonlinear and has a dc offset [Fig. 8(b) and (c)].
It is worth mentioning that the effect of mismatch on the entire
network is more profound than individual synapses or neurons
having deviations from their ideal characteristics. For example,
current mirrors used in the design to deliver signals to multiple
recipients (e.g., an input signal propagating to all synapses in
a hidden layer) introduce a significant error because of their
distributed nature and process variation across long distances.
Small device geometries and subthreshold currents result in
each recipient seeing as much as 30% variation of the original
signal [27]. Learning around these nonidealities is achieved by
a chip-in-the-loop training strategy described further below.

X _ X X
Iout_Iin'Iw

B. Neuron Circuit

The neuron circuit applies a nonlinear activation function
to the sum of the outputs of the connected synapses. Current
summation is realized by connecting positive and negative
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Non-linear transformation

1 lout
out out
output output

Fig. 9. Neuron circuit schematic. The bottom part controls the gain, and the
top part implements nonlinear conversion. All pMOS and nMOS transistors
have size 4 x 1 ,um2.

components of the synaptic outputs. Denoting the output cur-
rents of the N connected synapses as Iy, I», ..., Iy, the input
current of the neuron circuit has the following components:
1D =317 and IEM = >, I™M. If the CM components of
the synaptic outputs are equal, the normalized input current
becomes
D D
Iy 2. i

1
Iy =20 = oo =y 2 ®)
Iin Zili N i l

Since each of the Il.X is limited in absolute value by 1,
Iiil( can become very small for a large number of connected
synapses (or, equivalently, IiEM > Iig ). This poses difficulties
to the neuron circuit implementation that has to accommodate
signals with large dynamic range. As a solution, we consider
a neuron circuit as consisting of two stages (Fig. 9). The
first stage (also known as the gain control) adjusts the input
current to use the full range of the neuron’s activation function.
More specifically, the CM component of the input signal is
attenuated to obtain an intermediate signal I;, which more
uniformly spans its range and has a well-defined CM current.
The second stage performs a fanh-like nonlinear conversion
of the intermediate signal.

This gain control produces an intermediate signal I; by
subtracting a feedback current Iy, from mirrored copies of Iiﬁ
and I . I, is formed as a difference between IigM (created
by NI1-N3 and N4-N6 current mirrors) and g, which is
stored locally in a CSC. This difference is split between the
diode-connected P8 and P9, which reproduce halved copies in
the identically sized P7 and P10, that is, Ip, = max{1/2(/SM-
Igain), 0}. As a result, the intermediate current components
become I;7 = max{li}: — I, 0} and I = max{/[ — Ip,0}.
To proceed with the analysis, we consider two cases. In the
first case, the input signal has a small CM component, that is,
IiEM < Igain. As a result, the feedback current is zero and the
input passes without change, that is, ISX = Iiff . Now consider
the case when ISM > Igain. It is easy to show that the
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intermediate  current components become I} =
max{(1/2) L2 + (1/2)Igain, 0} and 17 = max{—(1/2)IP +
(1/2)Igain, 0}. The CM current is ISCM = Igain for Iig < Igain
and grows as I™ = (1/2)Igsin + (1/2)IP for IP > I
In terms of normalized currents, we have

I~D IACM
ISX:min[ -, l]:min[ n_ . X l] =min{G - I}, 1}
gain gain

©)

where G = ISM /Igain > 1 is the gain factor. This equation is
shown in Fig. 10: a small-valued input Iiil( is amplified by the
gain G and clipped at 1. A minimum gain of 1 (broken line)
is achieved when ISM > Igain with the input current being
copied to the output. Fig. 10(b) shows individual components
of I; as a function of the differential input current.

The top part of Fig. 9 shows a tanh-like activation
function [26]. Assuming the transistors P1-P6 are identical
and using the translinear principle, the output differential and
CM currents are obtained by

1+x 1+x
o _UH T T
out — Tix Tix ~ !neurs out — {Ineur
(I = + U -
where x is the subthreshold slope and Ipeyr is the CM output
current. Figs. 11 and 12 show the measured characteristics of
the entire neuron circuit. The input current is generated by
GM with IiEM = 10 nA, and the output is measured by ITOV.
For low values of Igain, the characteristic resembles a step-like

(10)
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Fig. 12.  Measured neuron transfer characteristic displayed in normalized
current notation.

Vdd

FGCS

Fig. 13. Schematic of the differential transconductor GM employing a wide-
linear-range back-gate OTA and a wrapper circuit for input range adjustment.
All pMOS and nMOS transistors have size 4 x 1 ,umz.

function because high G. As expected, setting g,y larger than
10 nA, that is, lgain > IiEM, results in G = 1, which is why
the last two curves appear overlaid (for Ig,in = 10 and 20 nA).

VII. IMPLEMENTATION OF PERIPHERAL CIRCUITS
A. Differential Transconductor (GM)

The neural platform accepts voltage-encoded signals as
its input features, while performing the necessary voltage-
to-current mapping internally with the help of GM circuits
(Fig. 3). It is desirable that the GM circuit has a wide linear
input range (low transconductance) and produces a differential
current with controlled CM signal. A conventional operational
transconductance amplifier (OTA) is not suitable due to an
extremely narrow linear input range (several thermal voltage
constants) when biased in the subthreshold region. Instead, we
designed a circuit shown in Fig. 13. The core of the circuit is
a back-gate subthreshold OTA (shown inside the dashed box),
the detailed description of which is given in [28]. The wide
linear range is achieved by employing the back-gate effect
{P1, P2}, source {P4, PS5} and gate {N1, N2} degeneration,
and bump linearization {N3, N4}.

The original back-gate OTA features a fixed transfer
characteristic regardless of its CM current Ign. In  fact, the
branch currents Ilj' and I, never reach zero, which means
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Fig. 14. GM circuit measured characteristic: chl_n and [, versus differential

input voltage for various values of Ipgj. Vp is swept from 1.1 to 3.3 V, and
Vn is fixed at 2.2 V. Inset: Y-axis in the normalized current notation.

that —1 < IbX < 1. To adjust the input range of GM,
we employ a wrapper circuit around the back-gate OTA which
generates Ioy by subtracting I,qj from the scaled version of
I generated by P3-P6. Fig. 14 shows the measured I}, I,
plotted against the differential input voltage for various values
of I.gj. Without the adjustment current (I = 0), the two
output components are always greater than zero for any
allowed range of input voltages. Alternatively, nonzero values
of Ingj limit the range of input voltages for which the output
spans its entire range (inset of Fig. 14). This is crucial
when GMs are connected to sensors with a limited output
range, as is the case in the target applications. Note that the
V—I mapping represents a part of the neural signal flow with
inherent nonlinearity (as seen in Fig. 14) and is subject to
process variation similar to the synapse and neuron circuits.

B. Digitally Controlled Current Source

DCCS is responsible for generating target currents for the
dynamic memory programming. The high-level block diagram
of DCCS is shown in Fig. 15(a). Its operation is based on a
current splitter [29], which divides the input current down by
each of its branches with ratio N, as shown in Fig. 15(b).
The first splitter coarsely divides the on-chip reference bias
to produce several range currents according to the values
of Wpange, €ach defining a separate interval of generated
currents. A precise value within each interval is produced
by two identical 12-b splitters connected in parallel. This
combined splitter greatly reduces differential nonlinearity by
introducing a multitude of redundant codes, filling the gaps
of a single splitter. A detailed description of this approach is
given in [30]. To make the best use of redundancy, the DCCS
is first characterized by measuring its 24 branch currents for
each interval with a picoammeter and storing them in a table.
To generate a target current, this table is used to find a subset
of branches whose combined current closely matches the target
value.

For better time response and accuracy of generated currents,
we employed an active current mirror at the output stage
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Fig. 15. DCCS is used to generate target currents for dynamic weight programming. (a) Block diagram of DCCS: an 8-b Wrange sets the range of generated
currents, and a combined 24-b [Wy,11, Wya2] determines an exact value of the output current. (b) First two branches of a 12-b current splitter. (c¢) Measured
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current being programed and Imeas is the actual current measured by Keithley 6485 picoammeter. Assuming that the error is an LSB of the generated value,
this form can be interpreted as bit resolution at each particular current value.
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Fig. 16. Schematic of ITOV converter.

of the DCCS [31]. The negative feedback clamps the drain
voltage of all branches to V., eliminating the channel-length
modulation in the branch transistors and greatly reducing the
delay owing to charging parasitic capacitance of the common
drain node. The fact that the source voltage of N1 can rise
above its gate voltage allows us to reliably generate currents in
the sub-nA range [27]. The accuracy of DCCS is evaluated by
measuring the error between the target I, and the measured
Imeas output currents. We consider currents from the range
given by Wpnee = 4, which covers the default range of
operating currents, that is, up to 10 nA. Fig. 15 shows the
measured accuracy expressed as 10g;|ltar — Imeas|/ Itar, Which
can be interpreted as bit resolution at each particular current
value. Note that decreasing accuracy for currents below 1 nA
is primarily due to lower density of redundant codes, which
can be fixed by decreasing the range Wange. The absolute error
is limited by 40 pA, which for the default range of currents
corresponds to an 8-b resolution.

C. Current-to-Voltage Converter

Our fast current measurement system consists of an
on-chip ITOV converter and an off-chip mapping from
voltage values to corresponding currents. The ITOV circuit
consists of a programmable current amplifier followed by a
resistor, as shown in Fig. 16. The current amplifier is derived
from a basic eight-input current splitter by rearranging it in a
diode-connected fashion. The control word rsel choses which
branch an input current flows in, thus controlling the
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Fig. 17. Output voltage measurements of ITOV for rsel from 3 to 7 covering
the range of currents from 20 pA to 150 nA.
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Fig. 18. Measured accuracy of ITOV. The input current is swept from 10 pA
to 100 nA. Y-axis: accuracy expressed as 1og,|fin — fin|/fin, Where i, is the
current inferred via ITOV and Iij is the current measured by Keithley 6485.

amplification factor. Fig. 17 shows five measured
characteristics for rsel from 3 to 7, that together cover
an input range from 20 pA to 150 nA. We fit polynomials
to all five characteristics that are later used to infer a
current value from Vyy. To test the accuracy of the current
measurement system, we sweep the input current (via one
of the FGTs) across the entire range of interest and measure
it using both the ITOV and an external picoammeter. The
measured accuracy in the form of bit resolution is shown
in Fig. 18. Note that the resolution remains fairly constant
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Fig. 19.  Chip-in-the-loop experimental setup. A custom printed circuit

board provides the stimuli generation/response measurement functionality as
well as the high-voltage interface for nonvolatile programming. An FPGA
board implements the logic behind the forward pass, dynamic, and nonvolatile
programming.

Algorithm 1 Resilient Backpropagation for MLP
1: Initialize A

2: Randomly initialize w

3: repeat

4 Enopert < 2; (Y; —F(w, X;))?
5 Epert < Zi (Y; — F(w + weert, Xi))2

6 sign(0E/ow) < sign((Epert — Enopert)/wpert)
7:  for each wy

8 Update Ay

9 wy < wi —sign(0E/owy) - Ay

10:  end

11: until stopping criterion

(about 8 b) for currents above 1 nA and drops significantly for
currents below 30 pA. The latter is due to the output voltage
of ITOV being close to ground, which can be improved using
a splitter with higher number of branches, that is, a higher
multiplication factor.

VIII. HARDWARE-FRIENDLY LEARNING STRATEGY

Learning a classification problem is a search process in
the space of possible network topologies and their weight
values, which results in a decision boundary that best describes
the training data. Off-the-shelf training algorithms commonly
available for software neural networks are hardly suitable for
the neural platform due to physical constraints imposed by
the analog implementation. Instead, we employ a chip-in-the-
loop strategy (shown in Fig. 19), whereby the training is done
by a computer which implements a gradient descent search
by measuring a response of the neural platform to an input
vector of features. Essentially, the neural platform implements
a forward pass, which includes: 1) dynamically programming
a set of weights w; 2) presenting the neural chip with an input
vector X;; and 3) measuring its response Y;. From the software
perspective, it is just a function call F(w, X;), which is used
by the following training algorithms.

A. MLP Training Algorithm

For training MLP, we employ the method presented in
Algorithm 1, which is a version of resilient back propagation
known as RPROP [32]. The direction of each weight update
is based on the sign of the error gradient 6 E/owy. Here, the
error measure E is given by

E(w) =) (Yi —F(w, X))’ (11)
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where X; and Y; are the input vector and the target value of the
ith observation. The gradient itself is estimated by perturbing
the weights by a small random vector wP™ and calculating a
first-order difference

E(W + wPet) — E(w)

pert
k

OE/owy ~ (12)
which requires two forward passes of the training set through
the neural network. The size of each weight update is repre-
sented by a local parameter Ay, which is adjusted in each
iteration using the following rule: if the gradient does not
change sign for two consecutive iterations, Ay is increased,
otherwise, it is decreased. The step-size adaptation allows for
an accelerated descent along shallow regions, while reducing
the step near local minima for better convergence. As far as
the algorithm is concerned, the weights and input features are
treated as dimensionless variables limited in absolute values
by 1. The translation into physical current components is done
by IX = 0.5ISM(1 £ w) with ISM set to 10 nA (default
operating range). The minimum step-size value Ap;, and
perturbation vector components are determined by the reso-
lution of the dynamic programming and are set to 0.005 for
subsequent experiments.

B. ONN Training Algorithm

For the ONN network topologies, we employ a
CC algorithm [33]. Training starts with a minimum size
topology including only an output neuron. Each subsequent
neuron adds on to the learning capacity of the model,
improving the error on the training set. Each iteration of
the training algorithm consists of two steps. Suppose that
our current topology has M — 1 hidden neurons [Fig. 2(b)
for reference]. Let Y ,H (X;) represent the output of the jth
hidden neuron for the training vector X; and YkO(X,-) be
the network output when it has k hidden neurons. In the
first step, an Mth hidden neuron is added at the bottom so
that it receives the primary inputs Xi,...,Xp as well as
the outputs of all preexisting neurons Y, . .| Y 571. This
neuron is trained to maximize the covariance between its
output ¥ AZ’ (X;) and the residual training error of the previous
iteration Yﬁfl(X,-) =Y — Yﬁfl(X,-). This covariance is
given by

C= > (Vi) =¥ (Vi (X~ ¥ji_))

1

13)

where YAZ’ and Y,ff;_l are averaged quantities over the entire
training set. The covariance maximization is equivalent to
the minimization of —C, which can be accomplished by
the RPROP algorithm with the error function £ = —C.
Once the covariance is maximized, the weights of this neu-
ron become permanent and the output layer is retrained to
minimize the error on the training set (11). The second step is
again completed by the RPROP algorithm. Note that in each
iteration, only the weights of the neuron being added undergo
modification, followed by the weights of the output neuron,
while the other weights are kept unchanged. This feature
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Fig. 20. Histogram of weight leakage rate estimates with a corresponding
fitted lognormal density function. Vertical line: 90th percentile of the fitted
distribution.

greatly simplifies the gradient estimation by the hardware and
leads to stable performance even for large-sized topologies.
Hidden neurons are added until one of the following two
events is achieved, depending on the classification task: a zero
error on the training set or a target error on a validation set.

IX. EXPERIMENTAL RESULTS

In this section, we put the neural platform to the test
to evaluate its performance and learning ability on several
classification tasks. First, we present the results of weight
leakage characterization in dynamic mode and the accuracy of
weight programming in nonvolatile mode. Next, the network
is trained on an XOR?2 task and its performance is compared
with similar implementations reported in literature. Finally,
we consider higher dimensional N-input parity tasks and
a 2-D two-spirals task and train analog neural networks
alongside their software counterparts for comparative analysis.

A. Weight Decay

Errors in dynamic programming directly affect the learning
ability of the analog neural network. Reverse-bias leakage
current of the switch transistor P3 (Fig. 4) is particularly
important because it determines a time interval during which
the weight change remains insignificant. We consider the
weight leakage rate as a relative change of the weight current
AT, per unit time, or Al,/(At - I,). Fig. 20 shows a his-
togram of the leakage rate estimates collected for 35 randomly
selected CSCs. Each cell was programmed to a number of
initial currents from 0.1 to 30 nA. The normal distribution
of the process variation parameters suggests that the leakage
rate belongs to the family of lognormal distributions (leakage
current affects the exponential part of the output drain current).
Indeed, the Kolmogorov—Smirnov test does not reject the null
hypothesis (p—value = 0.8). The leakage rate corresponding
to the 90th percentile is 0.00443 s~!. If we assume that the
weight value is represented by an 8-b word, a 1-b change
occurs in 0.88 s. It has been observed that the change of
1-b results in virtually no change in the network out-
put. To limit the exposure to weight decay, large datasets
(>500 observations) are split into smaller chunks during the
forward pass and separated by reprogramming the dynamic
memory.

B. FGT Programming Accuracy

To characterize the injection accuracy, a 20 x 10 array
of FGTs was programmed to different target currents and
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Fig. 22.  2-1-1 ONN trained on XOR?2 task. (a) Decision surface obtained

by measuring network response on a fine grid in input space. Also shown
are input vectors with added noise. (b) Transient response recorded from the
voltage output pin of ITOV.

measured with an external picoammeter. In particular, the pro-
grammed currents varied from 0.5 to 10 nA with a 0.5 nA step
along the vertical direction, so that each row received identical
currents. To avoid overinjection a was set to 0.5 (Section V-A).
The injection sequence stopped after the programmed currents
reached their target values within 20 pA accuracy. The number
of injection pulses varied in the range 5-20 depending on
the values of target currents. Fig. 21 shows percentage errors
of measured currents from their target values. Average and
maximum programming errors are 21 and 70 pA implying an
accuracy of 8.9 and 7.1 bs for the average and worst cases,
respectively, for the range of currents from 10 pA to 10 nA.
This precision turned out to be sufficient for the purpose of
retaining the network’s classification accuracy after copying
weights onto the nonvolatile memory. The residual program-
ming error could be further reduced by improving the accuracy
of the on-chip ITOV converter.

C. Performance Evaluation on XOR2

The purpose of the first experiment is to demonstrate the
low power ability and to make comparison with other similar
implementations, which also provide results for the two-input
XOR. For this experiment, we employed an ONN classifier
and limited the operating currents to 1 nA, which is below
the intended range of 10 nA. Fig. 22(a) shows the output
produced by the trained ONN with one hidden neuron and
weight values stored in the nonvolatile memory. The output
neuron is programmed for high gain by setting Igun to
0.2 nA, which explains the sharp rail-to-rail response. The
transient characteristic for all input combinations is presented
in Fig. 22(b). The worst case response time is 4 ms, which
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TABLE I
SYSTEM PERFORMANCE AND COMPARISON
ETANN [16] [18] this work
Technology 1 um CMOS 0.35 um, DP 0.35 um, DP
Weight storage floating gate floating gate FG + dynamic
Learning models | MLP VMM+WTA MLP+ONN
Learning strategy | off-chip off-chip chip-in-the-loop
Synapse current 20 um @5V 10 nA @24V 2 nA @3.3V
Response time 5 us NA 4 ms
Total power NA 700 nW 66 nW
(XOR2 taks)
Computational 1.3 GMAC/s/W | 11-14 TMAC/s/W | 57 GMAC/s/W
efficiency (theoretical) (measured)

also includes the propagation delay owing to the GM and
ITOV converters. The total power consumed by the trained
2-1-1 ONN classifier is 66 nW, resulting in the computational
efficiency of 57 GMAC/s/W.! Note that when in standby
mode, vcasp is tied to avdd (Fig. 4) which effectively shuts
off internal current sources, bringing the power consumption
to zero. On the basis of the measured data, Table I summarizes
performance characteristics of the introduced neural platform
along with two other similar implementations employing FGTs
for weight storage. The key advantages of our chip are the
extremely low power consumption and the robust chip-in-the-
loop training, which effectively avoids inaccuracies introduced
by off-chip emulation models and, thus, has greater potential
of learning more complicated classification tasks.

D. Learning N-Input Parity Tasks (XOR2-6)

N-input parity is a popular benchmark used in evaluating
the learning ability and convergence speed of new training
algorithms, both in software and in hardware. Learning this
task is computationally challenging as it requires allocating a
boundary between any pair of adjacent codes that differ in a
single bit. In this experiment, we trained both of the supported
hardware classifiers alongside their software counterparts for
a series of benchmarks from XOR2 to XOR6. In all cases,
the software classifiers had identical topologies and served
as a base line for comparison. The software version of MLP
was trained by the MATLAB Neural Networks toolbox by
using an RPROP algorithm. For the software ONN classifier,
we implemented a CC algorithm described in [33]. Software
synapses and neurons were ideal multipliers and hyperbolic
tangent functions, respectively, while the signals and weights
were represented in a double-precision format. In hardware
classifiers, we used the default range for operating currents,
that is, Ihewr = Igm = IuC)M = 10 nA. The values of neu-
ron gain currents were determined empirically by analyzing
convergence rates for various Ig,in. The best values have been
found to grow linearly with the number of connected synapses
and amounted to a small fraction of the total input current,
resulting in sharp boundary transitions between classes.

Fig. 23 shows the results of training MLP classifiers.
The range of networks varied 1-12 hidden neurons and for

IThis results in 57 GMAC/W/s x 66 nW x 4 ms = 15 MAC per
classification distributed as follows: one MAC per synapse and four MAC
per neuron (using four terms of tanh’s Taylor series [18]).
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Fig. 23. Training MLP classifiers on XOR-N tasks. Each bar represents the
number of converged trainings (zero classification error) out of ten attempts.
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Fig. 24. Training ONN classifiers on XOR-N tasks. Plot shows an average
and standard deviation of the number of hidden neurons in converged
networks. Training for each task has been repeated ten times.

each topology the number of converged trainings out of ten
runs is reported. Surprisingly, several hardware topologies
(e.g., 3-3-1) demonstrated better success rates, indicating the
susceptibility of software training algorithms to local mini-
mum traps. On average, the convergence rate of hardware
is somewhat lower, which is expected given the physical
constraints of the analog implementation. These results are
consistent with another analog implementation [17] which
reported 4/5 (XOR3) and 48/50 (XOR4) convergence rates
attained by 3-4-1 and 4-7-1 networks, respectively. An average
power achieved by the ten hidden neurons topology trained
on the XOR6 task was measured at 8 W with a 0.5 ms
classification latency.

The results of training ONN classifiers are shown in Fig. 24.
Starting with just an output layer, the training proceeded by
adding hidden neurons until all input patterns were classified
correctly. Note the difference in the number of hidden neurons
required by the hardware and software networks to perfectly
separate the spirals. This example demonstrates the need for
prototyping in hardware, because selecting network topologies
based on software training alone is an underestimation of
the acquired hardware resources. Also note that the hardware
ONN outperforms the hardware MLP for the N-input parity
problems, resulting in more compact networks.

E. Two-Spirals Problem

In the final experiment, the neural platform was
trained to distinguish between two interlocking spirals in
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Fig. 25. Two-spirals task. (a) Distribution of the sizes of converged networks
for 20 runs. (b) Power profile of the trained networks computed from weight
values.
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Fig. 26. Decision boundaries for the two-spirals problem drawn for each
stage of the training algorithm. The boundary is created using the same method
as in Fig. 22(a).

a 2-D input space. The challenges this benchmark presents to
back propagation networks are often used as an opportunity
to showcase the advantage of CC networks [33]. Thus, we set
out to evaluate the learning ability of our hardware ONN clas-
sifiers and compare their performance to equivalent software
CC networks. The training set consists of 20 points belonging
to each spiral that makes a single turn around the origin in
the x—y plane. Fig. 25(a) shows the distribution of converged
networks for a total of 20 runs. In all trials, the hardware net-
works converged successfully to perfectly separate between the
two spirals. Fig. 26 shows snapshots of the decision boundary
between two classes produced by the hardware training, which
achieved zero classification error in four steps. The power
consumption can be easily obtained knowing the topology,
the weight values, and the range of operating currents, which
is the same as in the N-input parity problems. Fig. 25(b)
shows the power profile for all trained networks, indicating
a trend proportional to the network size and exhibiting little
dependence on the actual weight values. Each neuron is
responsible for roughly two-third of the power consumed by
a single hidden unit. This becomes evident by noting that
the total current produced by the synapses is copied twice
inside the neuron circuit (N2-N5 and N3-N4 current mirrors
in Fig. 9).

The final step of every successful training is copying weight
values onto the FG memory. We verified the functionality of
the trained networks immediately after FG programming and
periodically for the next several days. Although the perfect
separation between classes remained unchanged, the weight
values underwent a small drift not exceeding 1%, which
was especially noticeable during the first few minutes. High
robustness of the network output to small changes in weight
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currents can be explained by the sharp transition of the output
neuron, which is insensitive to small variations of its input,
except for a narrow area around the boundary.

X. CONCLUSION

We presented a reconfigurable experimentation platform
aimed at prototyping low-cost neural networks for on-chip
integration. Comprising a large array of synapses and neurons,
the platform is used to identify hardware network topologies
and sizes that match the complexity of a target application.
The circuit implementation addresses several cost-efficiency
requirements, such as compact area and low power, nonvolatile
weight storage used in long-term retention of trained function-
ality, and dynamic weight storage, facilitating fast bidirectional
weight updates during training. Power efficiency is achieved
by biasing all circuits in the subthreshold region and employ-
ing the translinear principle for analog computation. Training
results from the N-input parity and two-spirals classification
problems confirmed: 1) robustness of training in presence of
implementation nonidealities and 2) adequate learning abil-
ity consistent with other reported analog implementations.
Future work will focus on integrating custom neural networks
(prototyped via this experimentation platform) into target ICs
to enable BIST, trust and aging monitoring, self-healing,
and other applications that may benefit from the provided
capabilities.
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