
IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004 269

Enhancing Reliability of RTL Controller-Datapath
Circuits via Invariant-Based Concurrent Test

Yiorgos Makris, Ismet Bayraktaroglu, and Alex Orailoglu

Abstract—We present a low-cost concurrent test methodology
for enhancing the reliability of RTL controller-datapath circuits,
based on the notion of path invariance. The fundamental obser-
vation supporting the proposed methodology is that the inherent
transparency behavior of RTL components, typically utilized
for hierarchical off-line test, renders rich sources of invariance
within a circuit. Furthermore, additional sources of invariance are
obtained by examining the algorithmic interaction between the
controller, and the datapath of the circuit. A judicious selection
& combination of modular transparency functions, based on the
algorithm implemented by the controller-datapath pair, yields a
powerful set of invariant paths in a design. Compliance to the in-
variant behavior is checked whenever the latter is activated. Thus,
such paths enable a simple, yet very efficient concurrent test capa-
bility, achieving fault security in excess of 90% while keeping the
hardware overhead below 40% on complicated, difficult-to-test,
sequential benchmark circuits. By exploiting fine-grained design
invariance, the proposed methodology enhances circuit reliability,
and contributes a low-cost concurrent test direction, applicable to
general RTL circuits.

Index Terms—Algorithmic invariance, concurrent test, con-
troller-datapath, path invariance, transparency.

ACRONYMS1

ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
ATPG Automatic Test Pattern Generation
BIST Built-In Self-Test
DFT Design for Test
DSP Digital Signal Processor
GCD Greatest Common Divisor
RTL Register Transfer Level

NOTATION

, functions
, variables

time step
time step

, , , , , , RTL word variables
, variables

Manuscript received October 5, 2001; revised April 15, 2003. Responsible
Editor: J. Bowles.

Y. Makris is with the Electrical Engineering Department, Yale University,
New Haven, CT 06520 USA (e-mail: yiorgos.makris@yale.edu).

I. Bayraktaroglu is with Sun Microsystems, MS USUN03-315, Sunnyvale,
CA 94085 USA (e-mail: ismet.bayraktaroglu@sun.com).

A. Orailoglu is with the Computer Science and Engineering Department, UC
San Diego, San Diego, CA 92093, USA (e-mail: alex@cs.ucsd.edu).

Digital Object Identifier 10.1109/TR.2004.829175

1The singular and plural of an acronym are always spelled the same.

controller states
, , control signals

, environment signals

I. INTRODUCTION

THE ability to test the functionality of a circuit during usual
operation is becoming an increasingly desirable property

of modern designs. Identifying & discarding faulty results be-
fore they are further used constitutes a powerful design attribute
of ASIC performing critical computations, such as DSP, and
ALU. While this capability can be provided by hardware dupli-
cation schemes, such methods incur considerable cost in terms
of area overhead, and possible performance degradation. De-
vising a low-cost, nonintrusive concurrent test method which
enhances circuit reliability by providing high fault-security is
therefore a challenging task.

Current state-of-the-art efforts in concurrent & on-line test
research [1] can be roughly categorized in 2 main directions, as
shown in Fig. 1. Approaches along the first direction [2], [3]
use vectors & responses generated off-line, which are stored
on-chip, possibly compacted. Whenever one of these vectors
appears at the inputs during usual functionality, the actual re-
sponse is checked against the stored anticipated response. Such
approaches, however, require inordinate hardware overhead
for storing a sufficient number of test vectors & unpredictable
time until all vectors are applied, therefore suffering from very
long fault-detection latency. Their applicability is consequently
limited largely to combinational circuits. Approaches along
the second direction use coarse behavioral invariance either
inherent in the design [4], [5], or imposed through error
detection codes [6], [7], in order to check the correctness of
the functionality. In this case, while the circuit computes
for input , an additional function, , with a well-defined,
simple-to-check relation to , is also computed. The op-
erational health of the circuit is verified by checking that the
relation between & holds. Fault-detection latency is
not a problem in such methods, because the coarse invariance
function, or the error detection code are constantly active &
continuously checked. However, coarse behavioral design
invariance is inherently available only in limited domains;
furthermore, despite being nonintrusive, typical implementa-
tions of coarse invariance functions can necessitate appreciable
area overhead [4]. Invariably, error detection codes, which
constitute, in essence, a mechanism for introducing invariance
in a circuit, incur high area & performance overhead due to
their intrusive nature.

0018-9529/04$20.00 © 2004 IEEE

270 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004

Fig. 1. Typical concurrent test approaches.

In an effort to enhance circuit reliability, and in contrast
to the aforementioned approaches, a low-cost, nonintrusive,
concurrent test method is proposed for arbitrary RTL con-
troller-datapath circuits, using simple invariance functions
distributed across several paths in the design. Invariance is
established by examining the algorithmic controller-datapath
interaction & composing inherent transparency functionality
of RTL components into transparency-based & algorithmically
invariant paths. The proposed method is:

• generic, because it can be applied to any RTL controller-
datapath circuit;

• nonintrusive, because it neither interacts with, nor imposes
additional burden on, usual circuit operation; and

• low-cost, because transparency-based & algorithmic in-
variance functions are typically very simple to implement.

On the downside, unlike global circuit invariance, invariant
paths are not necessarily constantly active. Therefore, be-
cause fault detection latency depends on invariance activation
frequency, it is essential that low-cost, frequently activated,
invariant paths providing high fault-security be carefully
selected.

Section II is an overview of the proposed method. Sec-
tion III examines the applicability of the inherent transparency
functionality of RTL modules for concurrent test. Section IV
addresses the hardware overhead problem through transparent
path composition. Section V uses algorithmic path invariance
for enhancing fault security. Section VI discusses the latency
problem. Section VII is an example of the proposed method-
ology. Section VIII provides an experimental setup along with
results on difficult-to-test, sequential circuits.

II. METHODOLOGY OVERVIEW

Fig. 2 shows an overview of the proposed concurrent test
methodology. Given a controller-datapath pair, several invariant
paths are identified based on the transparency behavior, and
the algorithmic interaction of the RTL components. The
invariant behavior of each path is activated under a—possibly
empty—set of conditions defined on internal signal entities
of the design. Therefore, checking the correctness of each in-
variant path during usual circuit operation requires 2 elements:

1) the logic that examines whether the conditions hold, thus
activating the invariant path; and

2) the actual checker that verifies that the invariance function
is not violated.

If an invariant path is activated, but the invariance relationship
does not hold, then the concurrent test output indicates that an
error has occurred.

The distribution of invariance checking throughout the
design results in simpler invariance relationships, and therefore
lower area overhead for the invariance checkers, as compared
to a global design invariance checker. Additionally, the used
invariant paths rely on transparency functions of simple
RTL modules, extending the applicability domain of invari-
ance-based concurrent test to general RTL controller-datapath
designs, as opposed to the limited scope of global design
invariance, which can be found only in very few circuits. Fur-
thermore, as demonstrated in Fig. 2, whenever the activation
conditions of invariant paths are met, the invariance is checked
in parallel with used circuit interaction, thus constituting a
nonintrusive concurrent test scheme. However, unlike global
circuit invariance which holds continuously, invariant paths
only detect faults when activated, pointing out a trade-off
between fault detection latency & area overhead. Consequently,
achieving high fault security requires that a small number of
frequently activated, key invariant paths be selected, capable of
covering most faults in both the datapath, and the controller.
The identification, evaluation, and selection of these paths are
discussed in this paper.

III. CONCURRENT TEST VIA TRANSPARENCY

Modular transparency constitutes a key design attribute,
based on which several off-line hierarchical test methodologies
have been devised [8]–[10]. Hierarchical test methods address
the complexity of test generation in a divide & conquer fashion,
wherein test vectors are locally generated for each module,
and subsequently translated & applied from the global circuit
boundary. For this purpose, transparency-based hierarchical
test-paths are required, to justify test vectors from the primary
inputs to the inputs of the module under test, and propagate
test responses from the outputs of the module under test to the

MAKRIS et al.: ENHANCING RELIABILITY OF RTL CONTROLLER-DATAPATH CIRCUITS 271

Fig. 2. Concurrent test based on path invariance.

Fig. 3. Concurrent test via transparency functions.

primary outputs. Transparency behavior of RTL components,
whether inherent in the design [11]–[14] or explicitly incorpo-
rated through DFT [15], provides a simple & rapid mechanism
for traversing a circuit in order to access & test each module
through hierarchical test paths. This section examines the use
of transparency functions of RTL modules in concurrent test,
in an effort to integrate off-line & on-line test, and amortize the
corresponding cost.

Transparency is typically defined as surjective, injective, or
bijective functions. A function is surjective (or
onto) iff for every in the codomain there is at least one
in the domain such that . A function
is injective (or 1-to-1) iff for every in the codomain there
is at most one in the domain with . A function

is bijective (or 1-to-1 and onto) iff it is both injec-
tive & surjective, i.e., if for every in the codomain there is
exactly one in the domain with . The onto prop-
erty of surjective & bijective functions preserves the ability to
obtain all possible vectors while traversing a module. Similarly,
the 1-to-1 property of injective & bijective preserves the ability
to distinguish between correct, and erroneous responses. Trans-
parency functions commonly used in hierarchical off-line test,
such as Identity & Inversion, establish simple relations between

the inputs, and the outputs of the transparent module. We check
these relations every time the activation conditions hold during
usual operation of the circuit in order to provide a concurrent
test scheme capable of detecting any fault that distorts the trans-
parency of the module, as shown in Fig. 3.

Now examine the efficiency of this scheme for detecting
faults in simple RTL modules. Consider the 8-bit 2-to-1 MUX
in Fig. 4(a), along with its 2 inherent transparency functions,

. The simple
concurrent test mechanism in Fig. 3 detects 100% of the
faults in the MUX. This result is anticipated because the 2
transparency functions comprise the complete functionality
of the MUX, thus implicitly duplicating it. Now consider a
module where the transparency functions do not cover its
complete functionality, and therefore their hardware imple-
mentation is appreciably cheaper Fig. 4(b) shows an 8-bit
SUBTRACTOR, along with two transparency functions,

. The proposed
concurrent test mechanism results in 80% fault coverage in the
SUBTRACTOR, implying that many faults can be detected
through a few, judiciously selected, transparency functions. Fur-
thermore, the hardware for implementing the transparency func-
tions is very simple, requiring only shift & compare operations.

272 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004

Fig. 4. Examples of transparency functions in RTL components.

The idea is readily extendible into sequential modules. Fig. 4(c)
demonstrates the same scheme for an 8-bit REGISTER, where
99% of the faults are detected by the 2 transparency functions

. Fi-
nally, Fig. 4(d) shows how this scheme is applied to a 4-bit
LOADABLE COUNTER. Despite the fact that counters
cause serious problems to ATPG algorithms in general,
there exist interesting transparency functions which cover
many faults. For example, the 2 transparency functions:

cover 88% of
the COUNTER faults. Fault coverage can be calculated either
through ATPG [16], or through exhaustive fault simulation [17]
on the modified circuit, using only the concurrent test output
as an observable primary output. In support of the proposed
concurrent test scheme, a library of RTL components &
corresponding transparency functions is devised, and achieves
fault coverage ranging between 75%–100%.

As demonstrated through the examples in this section, a judi-
cious selection of a few transparency functions is adequate for
detecting a large number of faults in RTL modules. However,
several issues need to be addressed before this observation is
successfully converted into a methodology.

1) The cost of the hardware required for checking all the
necessary transparency functions for each RTL module
would make such a scheme unrealistic.

2) The fault security which can be achieved through
checking only the transparency behavior of each module
might not be adequate in itself, necessitating additional
sources of design invariance.

3) The activation frequency of the conditions impacts di-
rectly the latency of detecting a fault in the design through
transparency functions.

Sections IV–VI describe how these issues are addressed in
the proposed methodology.

IV. TRANSPARENCY-BASED PATH INVARIANCE

Incorporating a checking mechanism for each transparency
function of every RTL module in the design would result in in-
ordinate hardware overhead. To reduce this cost, several trans-
parency functions can be combined on a transparent path, such
that only one checking mechanism for the complete path suf-
fices for all the constituent transparency functions. Such a path
can span not only across several modules of the design, but also
across several clock cycles. In this manner, complicated sequen-
tial behavior of the design can also be checked along with the
simple transparency functions.

The circuit in Fig. 5 is an example of transparent path com-
position. Three transparency functions are provided for each of
the 2 RTL modules in the design, requiring 6 distinct checking
mechanisms. However, a path spanning 5 clock cycles can be
composed, comprising all 6 transparency functions. Although
we still need hardware for monitoring the activation conditions
of all 6 transparency functions, the path transparency function
requires only 1 check instead of 6. As a result, path composition
appreciably reduces the required hardware, while preserving the
attained fault coverage.

Off-line test path composition has been extensively studied
[8], [9], [11], [15] to provide transparent reachability paths for
hierarchical testing. The basic path construction capability is
therefore available, and can be extended to automate the com-
position of transparency-based invariant paths. However, these
off-line path composition approaches need to be tuned to the
particularities of concurrent testing. Ideally, the algorithm com-
poses a few long paths covering all the modular transparency
functions, to minimize hardware overhead. However, the acti-
vation frequency of the path is important in concurrent testing,
due to its latency impact. Off-line test path composition algo-
rithms verify that there is no conflict among the activation con-
ditions on the path but do not consider activation frequency, be-
cause the path can be fully controlled during off-line test appli-
cations. Concurrent testing, however, relies on usual operation
to activate the transparent paths. Therefore, the transparency fre-

MAKRIS et al.: ENHANCING RELIABILITY OF RTL CONTROLLER-DATAPATH CIRCUITS 273

Fig. 5. Transparency path composition example.

Fig. 6. Algorithmic path invariance example.

quency determined by the complexity of the activation condi-
tions needs to be considered to balance the number, the cost,
and the efficiency of the transparent paths. Finally, to reduce
the cost of the checker for the composite path function, simple
modular transparency functions, such as identity & inversion,
are used. These issues are addressed in a modified version of
the hierarchical test path composition algorithm & tool intro-
duced in [14].

V. ALGORITHMIC PATH INVARIANCE

While modular transparency functions & the composite in-
variant paths can detect many faults, the resulting fault coverage
might not be adequate to ensure high fault security in the design.
Additional sources of invariance, capable of checking for faults
which can not be detected through transparency functions, are
therefore required. Such invariance can be obtained from the al-
gorithmic interaction between the datapath, and the controller
of the design. Algorithmic invariance captures the restrictions
imposed by the controller on the datapath. Any fault causing a
deviation from this restricted behavior is detected through algo-
rithmic invariance checking. Algorithmic invariance frequently
has an equivalence relation to the conditions. In this case, verify

not only the existence of invariance when the activation condi-
tions hold, but also the lack of invariance when the activation
conditions do not hold, thus increasing the number of detected
faults.

Fig. 6 is an example of algorithmic invariance, and the con-
sequent concurrent test scheme. The example algorithm keeps
track of the minimum, maximum, sum, & average of an array of
numbers, and can be implemented as a simple controller-data-
path pair. The datapath comprises the registers & arithmetic
units, while the controller comprises a counter & comparators
for controlling the loop & enabling the registers, respectively.
Several invariant attributes can be identified in this algorithm.
For example, during usual circuit operation, the values of the
4 design-registers are related through the inequality

. Any fault violating this algorithmic
invariance is detected through the additional hardware for con-
current testing shown in Fig. 6.

The most interesting cases of algorithmic invariance cover
faults in the controller, where transparency rarely exists. Addi-
tionally, algorithmic invariance has a clear advantage in terms of
activation frequency; algorithmically invariant paths are always
active, and therefore the concurrent test scheme continuously
checks for errors. If algorithmic invariance exists only on part
of the algorithm, then, relying on a particular control path to be

274 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004

taken, the activation frequency reflects the execution frequency
of the specific part of the algorithm. In short, algorithmic path
invariance complements transparency path invariance in terms
of both fault coverage & activation frequency.

VI. INVARIANCE ACTIVATION FREQUENCY

Unlike off-line testing where faults are detected before the
circuit performs its intended operation, fault detection latency,
the time interval between fault occurrence & fault detection, is
a critical issue during concurrent testing. The later a fault is de-
tected after its occurrence, the higher the chances that an erro-
neous result might slip undetected. Latency has not only been
a difficult problem for concurrent test methodologies to solve,
but also hard to estimate. While some concurrent test methods
[4], [6], [7] guarantee zero-latency, they incur excessive area
overhead, thus limiting their applicability. The invariance-based
concurrent test methodology in [5] reduces the area overhead at
the cost of introducing latency. Within input monitoring tech-
niques, such as [2], [3], latency heavily depends on the values
which appear at the inputs of the circuit during usual operation.
Similarly, in the proposed methodology, latency depends on the
activation frequency of the invariant paths. Invariant path activa-
tion, however, requires only a few conditions to be met, and not
a complete vector, thus enabling all vectors satisfying these con-
ditions to be used for concurrent test. Therefore, invariant path
activation frequency is anticipated to be appreciably higher than
the activation frequency of techniques using stored test vectors.
In addition, the proposed scheme provides flexibility in judi-
ciously selecting among alternative invariant paths, based on the
complexity of the activation conditions.

Depending on activation frequency invariant paths can be cat-
egorized into 3 types:

• Type 1 comprises invariant paths that are always active,
such as unconditional algorithmic invariance. This is the
most desirable type of invariance because all faults which
can be detected through this checking mechanism will
have zero latency.

• Type 2 comprises invariant paths that are not always
active, but the activation conditions are frequently met
during normal operation. This type of invariance is also
highly desirable, because the frequent activation will help
keep latency low. Conditional algorithmic invariance is a
good example of this type.

• Type 3 comprises invariant paths that have low probability
of activation. As an example of this type, transparency
relying on specific values of wide datapath signals has
low activation probability, assuming uniform distribution.
Low priority should be given to the incorporation of this
type of invariance checking mechanisms in the design.

Activation frequency of an invariant path can be estimated in
two methods.

• Method #1 is a static analysis of the controller-datapath
interaction. Starting from the final states of the controller,

trace backward the datapath conditions that need to hold
for the algorithm to terminate. This information is used to
characterize the severity of the activation conditions for
each invariant path. When this type of analysis becomes
too expensive due to the large number of controller states
and paths, Method #2 is used.

• In Method #2, a dynamic profiling mechanism estimates
the activation frequency. In profiling, a large number of
random vectors are simulated, and the number of times
that the activation conditions of an invariant path are sat-
isfied is noted. This provides an indication of the relative
activation frequency of alternative invariant paths, thus
guiding selection among them.

From a latency perspective, many short, but frequently acti-
vated, invariant paths should be preferred over a few, long but
rarely activated invariant paths. The number of invariant paths,
their activation frequency, and the number of activation condi-
tions (and therefore the length of the path) are conflicting ob-
jectives. The given classification of invariant paths, along with
a fault coverage analysis of each, provides the necessary param-
eters for developing heuristics to exploit this trade-off; and itera-
tively balance area overhead, attainable fault coverage, and fault
detection latency.

VII. EXAMPLE

The invariance-based concurrent test is demonstrated on a
difficult-to-test benchmark, the GCD circuit, in Fig. 7, on which
three example tests are performed.

• Example #1 uses transparency of a single RTL module.
• Example #2 monitors a transparency-based invariant path.
• Example #3 exploits algorithmic invariance.

Example #1 is based on the transparency function
of the SUBTRACTOR. As discussed

in Section III, this function covers many faults in the SUB-
TRACTOR. Furthermore, checking that the condition

holds can be easily performed through a shifter & a com-
parator. Additionally, a simple comparator suffices for checking
the transparency function . Fig. 8(a) shows the hard-
ware implementation of this simple concurrent test mechanism.
The most important attribute of this invariance check, however,
is its frequency of activation. Within the controller-datapath im-
plementation of the GCD circuit, this transparency function of
the SUBTRACTOR module will be activated almost once per
GCD calculation. This is a conclusion which can be reached ei-
ther by analyzing the GCD algorithm or by examining the con-
troller-datapath interaction of the implementation. This subtract
& swap GCD algorithm terminates when , necessitating
that two clock cycles earlier for this to be achieved
through subtraction & swapping. This in turn requires that ei-
ther the initial values of & are equal, or that at
some point in the algorithm, which is the activation condition
of the SUBTRACTOR transparency function. These three fea-
tures (the good fault coverage, the simplicity of checking the

MAKRIS et al.: ENHANCING RELIABILITY OF RTL CONTROLLER-DATAPATH CIRCUITS 275

Fig. 7. The GCD benchmark circuit.

conditions & the transparency function, and the high frequency
of activation) make this invariance check a very efficient con-
current test mechanism.

Example #2 is a transparency-based invariant path,
resulting from the path composition methodology of Sec-
tion IV. The composite function of this transparent path is

. This
composite transparency function exercises several transparency
functions of the GCD datapath modules, and spans across 4
clock cycles, thus also exercising the corresponding controller
behavior. The transparency functions of the modules exercised
through this path are:

276 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004

Fig. 8. Invariance checking examples on the GCD benchmark.

REGISTER :

i)

REGISTER :

i)

ii)

REGISTER :

i)

MUX# 1:

i)
MUX# 2:

i)
ii)

MUX# 3:

i)
SUBTRACTOR:

i)
ARRAY_AND:

i)
COMPARATOR:

i)
ii)

iii)
CONTROLLER:

i)
ii)

Any fault causing a discrepancy between the outcome
of these functions on the faulty & the nonfaulty circuit

will be detected by the concurrent checking mechanism
shown in Fig. 8(b). In this case, an additional register
is required in order to store the value of register when-
ever the condition holds. The
stored value is compared to the output of the circuit 4
clock cycles later, to check the transparent path function

. The
hardware required is still simple, and its cost is justified by the
large number of modular transparency functions covered by
this path. The activation frequency of this transparency-based
invariant path is also once per GCD calculation, for the same
reasons as in the example check #1; the condition has to
be satisfied before the GCD algorithm terminates. Therefore,
checking this transparency-based invariant path also constitutes
an effective concurrent test.

Example #3 identifies algorithmic invariance in the calcula-
tion performed by the GCD circuit. The activation frequency
analysis given in example #1 has already demonstrated how
algorithmic invariance can assist in choosing modular trans-
parency behavior & effective transparent paths. In addition, con-
sider the first part of the if statement within the while loop of
the GCD algorithm. This part of the code performs the swap-
ping which in the implementation shown is performed in state

of the controller, reached only when the condition
holds. Performing a swap while would be algorithmically
invalid during usual operation of the GCD calculation. This al-
gorithmic invariance can be exploited to provide an additional
concurrent test capability, demonstrated in Fig. 8(c). Such algo-
rithmic invariance checks are mostly capable of detecting con-
troller faults, although depending on the circuit, datapath algo-
rithmic invariance may also exist. The hardware cost is very low,
while the activation frequency is not a problem in this case, be-
cause the algorithmic invariance is always active.

MAKRIS et al.: ENHANCING RELIABILITY OF RTL CONTROLLER-DATAPATH CIRCUITS 277

Fig. 9. Experimental validation setup.

TABLE I
EXPERIMENTAL RESULTS

Many more invariance checking examples can be demon-
strated & examined on the GCD circuit until a beneficial ratio
of fault coverage & hardware cost is achieved. To further re-
duce the cost, the hardware used for checking individual trans-
parency functions & conditions can be combined & optimized.
Finally, although several concurrent checking mechanisms are
incorporated in the design, only one concurrent test output pin is
required, driven by the OR function of the distributed checking
mechanisms.

VIII. EXPERIMENTAL RESULTS

To evaluate the proposed concurrent test methodology, ex-
amine the fault security & fault coverage achieved by the iden-
tified path invariance, as well as the area overhead imposed by
the invariance checking hardware. For this purpose, the exper-
imental setup in Fig. 9 is applied to three benchmark designs.
These benchmarks are difficult-to-test sequential circuits, im-
plemented as controller-datapath pairs, on which ATPG has a

hard time reaching high fault coverage. The first benchmark is
the GCD circuit examined in the example of Section VII. The
second benchmark is the MINMAX circuit, included in a set of
benchmarks by Politecnico di Torino [18]. The third benchmark
is a shift-&-add 8-bit multiplier described in [19].

First apply gate-level ATPG using HITEC [16] to obtain the
deterministic off-line test fault coverage as a reference point.
Subsequently, for the main part of the experimental validation,
use fault simulation of random input values for each design.
For the GCD circuit, 1000 random pairs of numbers are gen-
erated, and the corresponding GCD are calculated. The number
of clock cycles of each GCD operation depends on the actual
inputs. Therefore, to imitate usual circuit operation, we had to
simulate the circuit functionality through a computer program,
which calculates the number of clock cycles necessary for the
GCD calculation of the 1000 random pairs. In this case, the total
length of patterns is around 24, 000. This was not a difficulty in
the MINMAX circuit where 1000 randomly generated patterns
are applied to the circuit; and the minimum, maximum, & av-

278 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 2, JUNE 2004

erage numbers are calculated according to the benchmark algo-
rithm. Finally, in the benchmark every multiplication
takes 17 clock cycles, so in total 17, 000 patterns are required
to simulate 1000 random multiplications.

These vectors are fault simulated on the design using HOPE
[17], and the random off-line test fault coverage is obtained,
along with the set of covered faults. The design is then mod-
ified according to the proposed concurrent test methodology,
wherein path invariance checking hardware & a concurrent test
output pin are added to the design. Only the concurrent test
output is considered a primary output in the modified design.
The same random vectors are subsequently fault simulated on
the modified design, targeting only the faults covered in off-line
random vector fault simulation. The fault coverage achieved in
this experiment indicates the percentage of faults which can be
detected both on the original & on the modified design, thus
providing the random concurrent test fault security. In addition,
the random vectors are fault simulated, targeting all faults in the
modified design, to obtain the random concurrent test fault cov-
erage.

Table I summarizes the results, where the area overhead of
the proposed scheme is also shown, assuming only 2-input gates
& an equivalent of four gates for each flip-flop. To reduce the
cost, the hardware used for the transparency functions is com-
bined & optimized, and only one output pin is used. The results
demonstrate that the proposed concurrent test method achieves
fault security exceeding 90%, while keeping the area overhead
below 40%. In addition, the achieved random concurrent test
fault coverage is only 6% worse than random off-line test fault
coverage. It is important that a large portion of the undetected
faults are due to primary I/O faults which no invariance-based,
concurrent test methodology can detect.

REFERENCES

[1] M. Nicolaidis and Y. Zorian, “On-line testing for VLSI—A compendium
of approaches,” Journal of Electronic Testing: Theory and Applications,
vol. 12, no. 1–2, pp. 7–20, 1998.

[2] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent testing tech-
nique for digital circuits,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 7, pp. 1250–1260, 1988.

[3] I. Voyiatzis, A. Paschalis, D. Nikolos, and C. Halatsis, “R-CBIST: An
effective RAM-based input vector monitoring concurrent BIST tech-
nique,” in International Test Conference, 1998, pp. 918–925.

[4] A. Chatterjee and R. K. Roy, “Concurrent error detection in nonlinear
digital circuits with applications to adaptive filters,” in International
Conference on Computer Design, 1993, pp. 606–609.

[5] I. Bayraktaroglu and A. Orailoglu, “Concurrent test for digital linear
systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, pp. 1775–1791, 2001.

[6] C. Stroud, M. Ding, S. Seshadri, I. Kim, S. Roy, S. Wu, and R. Karri,
“A parametrized VHDL library for on-line testing,” in International Test
Conference, 1997, pp. 479–488.

[7] C. Zeng, N. Saxena, and E. J. McCluskey, “Finite state machine syn-
thesis with concurrent error detection,” in International Test Conference,
1999, pp. 672–679.

[8] B. T. Murray and J. P. Hayes, “Hierarchical test generation using pre-
computed tests for modules,” IEEE Transactions on Computer Aided
Design, vol. 9, no. 6, pp. 594–603, 1990.

[9] P. Vishakantaiah, J. A. Abraham, and D. G. Saab, “CHEETA: Composi-
tion of hierarchical sequential tests using ATKET,” in International Test
Conference, 1993, pp. 606–615.

[10] Y. Makris, J. Collins, A. Orailoglu, and P. Vishakantaiah, “TRANS-
PARENT: A system for RTL testability analysis, DFT guidance and hi-
erarchical test generation,” in Custom Integrated Circuits Conference,
1999, pp. 159–162.

[11] S. Freeman, “Test generation for data-path logic: The F-path method,”
IEEE Journal of Solid-State Circuits, vol. 23, pp. 421–427, 1988.

[12] B. T. Murray and J. P. Hayes, “Test propagation through modules and
circuits,” in International Test Conference, 1991, pp. 748–757.

[13] P. Vishakantaiah, J. A. Abraham, and M. S. Abadir, “Automatic test
knowledge extraction from VHDL (ATKET),” in Design Automation
Conference, 1992, pp. 273–278.

[14] Y. Makris and A. Orailoglu, “RTL test justification and propagation anal-
ysis for modular designs,” Journal of Electronic Testing: Theory and
Applications, vol. 13, no. 2, pp. 105–120, 1998.

[15] , “DFT guidance through RTL test justification and propagation
analysis,” in International Test Conference, 1998, pp. 668–677.

[16] T. Niermann and J. H. Patel, “HITEC: A test generation package for se-
quential circuits,” in European Conference on Design Automation, 1992,
pp. 214–218.

[17] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simulator
for synchronous sequential circuits,” IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems, vol. 15, pp.
1048–1058, 1996.

[18] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC 99 benchmarks
and first ATPG results,” IEEE Design and Test of Computers, vol. 17,
no. 3, pp. 44–53, 2000.

[19] J. P. Hayes, Computer Architecture and Organization, 3rd ed: McGraw-
Hill, 1998.

Yiorgos Makris received the Diploma of Computer Engineering and Infor-
matics from the University of Patras, Greece, in 1995; the M.S. degree in Com-
puter Engineering from the University of California, San Diego, in 1997; and
the Ph.D. degree in Computer Engineering from the University of California,
San Diego, in 2001. He is currently an Assistant Professor of Electrical Engi-
neering and Computer Science at Yale University. His research interests include
design-for-testability, test generation, testability analysis, and concurrent test.

Ismet Bayraktaroglu received the B.S. and M.S. degrees in electrical engi-
neering from Bogazici University, Istanbul, Turkey, in 1994 and 1996, respec-
tively; and the Ph.D. degree in computer engineering from the University of
California, San Diego, in 2002. He is currently a member of the technical staff
at Sun Microsystems. His research interests include built-in self-test (BIST), di-
agnosis of BIST designs, test pattern compression, and concurrent test of DSP.

Alex Orailoglu received the S.B. degree (cum laude) in applied mathematics
from Harvard University, Cambridge, MA; and the M.S. and Ph.D. degrees
in computer science from the University of Illinois, Urbana-Champaign. From
1983 to 1987 he was a Senior Member of Technical Staff at Gould Research Lab-
oratories, Rolling Meadows, IL. In 1987 he joined the University of California,
San Diego, where he is currently a Professor in the Computer Science and Engi-
neering Department. His research interests include digital and analog test, fault-
tolerant computing, computer-aided design, and embedded processors. Prof.
Orailoglu is a member of the IEEE Test Technology Technical Council (TTTC)
Executive Committee. He serves in numerous technical and organizing commit-
tees and he is a Golden Core member of the IEEE Computer Society.

