
Analog Implementation of Ontogenic Neural
Networks for RF Built-In Self-Test

Dzmitry Maliuk∗ and Yiorgos Makris†
∗Electrical Engineering Department, Yale University, New Haven, CT, 06520-8267

†Electrical Engineering Department, The University of Texas at Dallas, Richardson, TX, 75080-3021

Abstract— We introduce an analog implementation of an
ontogenic neural network (ONN) model and investigate its
applicability to the field of built-in self-test (BIST) of RF
circuits. Our chip consists of a reconfigurable array of synapses
and neurons operating below threshold and featuring sub-µW
power consumption. The synapse circuits employ dynamic weight
storage for fast bidirectional weight updates during training. The
learned weights are copied onto the analog floating gate (FG)
memory for permanent storage. Training is performed using
a chip-in-the-loop strategy by the cascade-correlation learning
algorithm. A benchmark XOR task is employed to evaluate the
system performance. Finally, the network is trained to distinguish
faulty from functional LNA chips using a set of low-cost sensor
measurements.

I. INTRODUCTION

Machine learning-based testing of RF circuits has suggested
the use of non-linear classifiers to predict pass/fail test labels
from low-cost measurements. If a circuit-under-test (CUT) is
integrated on the same die alongside stimuli generators, on-
chip sensors and a non-linear classifier, then a complete stand-
alone BIST architecture can be achieved [1]. The readings
of on-chip sensors, usually provided in the form of DC
voltages, are presented to the neural classifier which produces
a binary output indicating whether the CUT passes or fails its
specifications. The accuracy of such prediction depends both
on the ability of the neural network to learn the underlying
mapping (its learning ability) and on the separability of classes
as such (sensor measurement quality). The latter has been
addressed in recent studies showing great promise in predicting
performances of CUTs with minimum overhead (e.g. [2]).
Instead, we focus on the hardware implementation of the non-
linear classifier — an ontogenic neural network. The software
version of the ONN has proven to be an adequate learning
model to predict circuit health from low-cost measurements
[3]. However, the processing resources required to run the
software model, such as an external computer or a built-in
DSP, are not always available to a stand-alone IC, thus calling
for a custom hardware network that can be integrated on-chip.

In applications such as BIST the additional power and
area overhead incurred by test circuits is crucial. We selected
an analog implementation for its superior power efficiency
during run time, compact size and the possibility of permanent
weight storage using analog floating gate memory. Indeed,
when high precision is not required, analog computation can
be as much as 1000x more energy efficient than digital [4].
In addition, analog circuits can be directly interfaced with
sensor outputs, thereby eliminating the use of analog-to-digital
converters. Finally, the use of the FG technology in standard
CMOS offers efficient non-volatile storage of weight values

X1X   =10 X2 XP

hidden 
neuron 1

hidden 
neuron M-1

added 
neuron M

output 
neuron

input
synapse
neuron1

M-1

M

O

YM-1
H

Y1
H

YM
H

YO

Fig. 1. The ontogenic neural network topology. The hidden neurons receive
connections from both the network inputs Xi and the outputs of the previous
hidden neurons Ŷ H

j . The bottom neuron serves as a network output Ŷ O .

with high accuracy [5]. Following the mentioned guidelines we
have designed and fabricated a reconfigurable experimentation
platform in a 0.35-µm CMOS process available from TSMC.
The remainder of the paper is structured as follows. Section II
introduces the ONN learning model. Section III describes the
implementation details including the overall architecture, the
weight storage mechanism, the synapse and neuron circuits.
Section IV presents the measurement data and evaluates the
system’s learning ability on XOR and LNA classification tasks.

II. OVERVIEW OF ONTOGENIC NEURAL NETWORKS

Fig. 1 illustrates a block diagram of the ONN learning
model. A decision boundary is constructed by successively
adding hidden neurons; each hidden neuron augments the
feature space of the original inputs with the intention of
making the derived space linearly separable. This strategy is
guided by the cascade-correlation algorithm [6], which repeats
the following steps for each added neuron. Suppose that our
current stage has M − 1 hidden neurons, as shown in Fig. 1.
Let Ŷ H

i be the output of the i-th hidden neuron and Ŷ O
i be the

output of the network when it has i hidden neurons. The M -th
hidden neuron is added at the bottom so that it sees the primary
inputs X0, ..., XP as well as all the outputs of the preceding
neurons Ŷ H

1 , ..., Ŷ H
M−1. Next, we train this neuron to maximize

the correlation between its output Ŷ H
M and the training error

of the previous stage ÊM−1 =
∑

(YT − Ŷ O
M−1)2, where

YT represents the target class labels and the summation is
done over the entire training set. Once the correlation is
maximized, the weights of this neuron become permanent
and the output layer is retrained to minimize the error on
the training set, i.e. ÊM =

∑
(YT − Ŷ O

M )2. Note that in
each step, only the weights of the neuron being added or
of the output neuron undergo modification, while the other
weights are kept unchanged. This feature greatly simplifies
the gradient estimation by the hardware and leads to stable
performance even for large-sized topologies. Hidden neurons



vin1 vin2 vin3

uA

Iprog Iout

vin20

vout

G M G M G M G M

IDAC ITOV

(a)
(b)

S S S SN

S S S SN

SS SS N

*M/ KI   ref

Fig. 2. (a) System architecture of the ontogenic neural network chip. The
reconfigurable array of synapses (S) and neurons (N) is shown in the shaded
box. (b) Die photograph of ONN chip measuring 3×3 mm2.

are added until a stopping criterion is reached, which in our
case is a classification error on a validation set. The correlation
maximization and the error minimization are done by the
resilient back propagation algorithm (iRPROP+), which can
be efficiently customized for hardware networks.

III. CHIP DESIGN
A. System Description

Fig. 2 shows a block diagram of the neural network chip.
A 30×20 array of synapses and neurons is arranged so that
the neurons are aligned along the main diagonal of the upper
matrix and along the right edge for the bottom part. The recon-
figurable fabric for the ONN topologies is a subset of synapses
lying below the main diagonal (similar to the layout in Fig. 1).
Global connectivity is programmable by means of multiplexors
inserted between rows. The core operates in the analog domain
with weights and signals represented by differential currents.
A single weight value requires two current sources for dif-
ferential current storage. A current source is implemented
as a current storage cell (CSC) circuit that combines two
modes of operation: the dynamic, for fast bidirectional weight
updates, and the non-volatile, for long-term storage of learned
weights. The dynamic mode is engaged during training, when
the weight values undergo multiple updates. Upon the com-
pletion of training, the learned weights are copied onto the
FG transistors for permanent storage. The peripheral circuits
provide support for fast programing and interfacing with the
external world. The GM blocks convert voltage-encoded input
signals (sensor readings) into balanced differential currents
required by the core. The digitally-controlled current source
IDAC generates target currents from an on-chip reference
for dynamic programming of the CSCs. Finally, the current-
to-voltage converter ITOV facilitates the reading of internal
currents by converting them to voltages that can be sampled
by an external ADC. Each of the blocks undergoes extensive
characterization to provide the reading/sourcing accuracy of at
least 8 bits.

B. Weight Storage

The principle of weight storage is illustrated in Fig. 3. We
use a multiple-input FG transistor (FGT) P1 to store the drain

vgate2

vgate1

20/20??

avddvtun

row_sel

b
it

_l
in

e

rowi colj

vcasp

global control gate 
(common for all FGs)

dynamic 
storage node

MOS storage 
capacitor

floating gate 
node

Current
Storage
Cell P1

P3

C3

C1

C2

C4

P2

I   prog

I   w

IDAC

/ KI   ref

CSC

Fig. 3. Schematic of the current storage cell along with the dynamic
programming loop. The sizes of key components are as follows: P1 = 2×2
µm2, P2 = 2×1 µm2, P3 = 0.4×0.35 µm2; C1 = 40 fF, C2 = 15 fF, C3 =
1.35 pF, C4 = 0.6 fF.

CSC CSC

Iw+ Iw-

P1 P4 P5 P6P3P2

Iin+ Iin-Iout+ Iout-

Fig. 4. Schematic of the synapse circuit (P1 = ... = P6 = 4×2 µm2).

current Iw representing one of the weight value components.
The drain current is modulated by the voltage on the FG
node, which is itself determined by the FG node charge and
the voltages on two control gates. The global voltage vgate1
of the first control gate is shared among all FGTs, while
vgate2 is stored locally in the dynamic sample-and-hold (S/H)
circuit which consists of the switch transistor P3 and the MOS
capacitor C3. The low-coupling capacitor C2 makes Iw much
less sensitive to charge leakage and other parasitic effects of
the S/H circuit. The tunneling capacitor C4 is implemented as
a minimum size PMOS transistor with its source, drain and
well terminals connected to vtun. The details of non-volatile
and dynamic programming are described in [7].

C. Synapse and Neuron Circuits

The synapse circuit, illustrated in Fig. 4, implements a
four-quadrant multiplication of a differential input current
{I+in, I

−
in} by a differential weight current {I+w , I−w }. The cir-

cuit features two CSC cells for differential weight components
storage and a six-transistor core P1-P6. The neuron circuit,
illustrated in Fig. 5, applies a nonlinear activation function
to the sum of the outputs of the connected synapses. The
nonlinear transformation is completed in two stages. The first
stage, represented by the bottom part of the circuit, controls
the slope of the activation function. The slope is adjusted by
programming the Igain current, which is stored in a local CSC.
The top part (P1-P6) performs nonlinear transformation of the
normalized input current. The common-mode signal Ineur of
the output current is set by a separate FGT.



dvdd dvdd
FG

I   neur

I   gain

I   fbI   fbIin+

Iout+ Iout-

Iin-

CSC

P3P1

P2 P6P5 P4

Fig. 5. Schematic of the neuron circuit. All PMOS and NMOS transistors
have size 4×1 µm2.

IV. EXPERIMENTAL RESULTS

A. Weight Decay

Errors in dynamic programming directly affect the learning
ability of the analog neural network. Reverse-bias leakage
current of the switch transistor P3 (Fig. 3) is particularly im-
portant since it determines the time window during which the
weight change remains insignificant. In order to characterize
this effect we measured weight decays for a randomly selected
set of CSCs. The weight leakage rate rw can be defined as a
relative change of the weight value per unit time, or

rw = ∆Iw/(∆t · Iw) (1)

where Iw is the original weight current, ∆Iw is the weight
change over time ∆t. Fig. 6 shows a histogram of the leakage
rate estimates collected for 35 randomly selected CSCs. Each
cell was programmed to a number of initial currents from
0.1 nA to 30 nA. The normal distribution of the process
variation parameters suggests that the leakage rate belongs to
the family of lognormal distributions (leakage current affects
the exponential part of the output drain current). Indeed,
Kolmogorov-Smirnov test does not reject the null hypothesis
(p-value=0.8). The leakage rate corresponding to the 90%
percentile is 0.00443 sec−1. If we assume that the weight
value is represented by an 8-bit word, a 1-bit change occurs in
0.88 sec. It has been observed that the change of 1-bit results
in virtually no change in the network output. To limit the
exposure to weight decay, large datasets (>200 observations)
are split into smaller chunks during the forward pass and
separated by reprogramming the dynamic memory.

B. XOR2 Problem

We begin with the classical 2-input XOR task. It is well
known that linear classifiers fail to allocate a boundary in
this case. In fact, a multilayer perceptron (MLP) requires a
minimum of two hidden neurons for this task. For power
efficiency demonstration, we limited the operating currents
to 1 nA (i.e. the output currents of the GM blocks, neurons
and the maximum weight currents). The training started with
just an output layer and successively added hidden layers

Leakage rate [1/sec]

D
en

si
ty

0.000 0.002 0.004 0.006

0
10

0
20

0
30

0
40

0 data
fitted
90% percentile

Fig. 6. A histogram of weight leakage rate estimates with a corresponding
fitted lognormal density function.

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

input 1 (V)input 2 (V)
ne

tw
or

k 
ou

tp
ut

 (n
A)

Fig. 7. Decision surface for XOR2 task obtained by measuring network
output on a fine grid in input space. Also shown are the input patterns with
added noise.

(neurons) until all 4 patterns were classified correctly. The
training consistently converged with a single hidden neuron.
Fig. 7 illustrates the output produced by the trained ONN
with one hidden neuron. The output neuron is programmed
for high gain, which explains the rail-to-rail response. The
transient characteristic of the neural network is presented in
Fig. 8. The response time is 4 ms, which also includes the
propagation delay due to the GM and ITOV converters. The
system performance and comparison data are summarized in
Table I.

C. LNA chips

We proceed by training the hardware neural network to
separate faulty from functional LNA chips using on-chip
sensor measurements. The LNA chip is integrated with two
RF amplitude detectors placed at its input and output ports (for
detailed description see [1]). Two test stimuli are applied to the
LNA and the outputs of the amplitude detectors comprise a 4-
dimensional input pattern presented to the neural classifier. The
LNA chip is labeled as either functional or faulty according to
the set of specifications. The training and test sets consist of
900 and 1,000,000 instances, respectively. This large number
of instances is obtained by generating a synthetic population
of LNA chips from the original post-layout Monte-Carlo
simulations [1].

The training was repeated for a total of 10 times for network
topologies of up to 6 hidden neurons. A portion of training
instances was set aside for calculation of validation errors
which are shown in Fig. 9. The fact that the error does not



4 ms

3 ms
input 1

input 2

output

time (ms)

a
m
p
l
i
t
u
d
e
 
(
V
)

0 5 10 15 20 25
0

1

2

3

4

5

Fig. 8. Transient characteristic of the ONN trained to classify XOR2 patterns.
The output is recorded from the voltage output pin of the ITOV converter.

TABLE I
SYSTEM PERFORMANCE AND COMPARISON

ETANN [8] [9] this work
Technology 1 um CMOS 0.35 um, DP 0.35 um, DP
Weight storage floating gate floating gate FG + dynamic
Learning models MLP VMM+WTA MLP+ONN
Learning strategy off-chip off-chip chip-in-the-loop
Synapse current 20 um @5V 10 nA @2.4V 2 nA @3.3V
Response time 5 us NA 4 ms
Total power
(XOR2 taks)

NA 700 nW 66 nW

Computation
efficiency

1.3 GMAC/s/W 11–14 TMAC/s/W
(theoretical)

57 GMAC/s/W
(measured)

improve after a few hidden neurons have been added to the
topology suggests that the optimal boundary is fairly simple.
The test error evaluated for the best topology having 2 hidden
neurons is 0.48%. This result agrees well with our previous
hardware neural network implementation [1]. For the same
classification problem, the test error achieved by the hardware
perceptron with 2 and 4 hidden neurons was 0.727% and
0.435%, respectively. The software training resulted in 0.566%
and 0.548% test errors.

This result suggests that the classification accuracy is similar
across various implementations. The major improvement of
the ONN chip is achieved with respect to power efficiency
and non-volatility. Table II lists the mean and standard error
of power consumption for all 10 runs of the training algorithm.
It should be noted that we raised the minimum level of currents
to 20 nA as compared to the XOR training. Yet, the power
consumption is significantly lower than that required by our
previous implementation (≈ 0.5 mW). Finally, we copied the
learned weights onto the FGTs and verified that the test error
remained consistent within several days. The long term study
of non-volatile weight retention is yet to be conducted.

V. CONCLUSIONS

The system characteristics of the presented analog imple-
mentation of the ONN make it a great candidate for on-
chip inclusion as a part of RF BIST. Low power is achieved
by biasing all circuits below threshold and employing the
translinear principle for analog computation. Efficient dynamic
weight programming is achieved by storing dynamic voltage
on a MOS capacitor which drives a low-coupling gate of

TABLE II
POWER CONSUMPTION FOR TRAINED LNA CLASSIFIERS

No. of hidden layers 0 1 2 3 4 5 6
Mean power
consumption (µW) 0.551 1.54 2.59 3.65 4.71 5.89 7.15

Stderr power
consumption (µW) 0.068 0.126 0.846 1.20 1.54 2.31 2.73

0 1 2 3 4 5 6
0.052

0.056

0.06

0.064

No. of hidden neurons

Va
lid

at
io

n 
er

ro
r

Fig. 9. The results of 10 runs of the training algorithm on the LNA task.
The best validation error achieved for each number of hidden neurons is
highlighted by the solid line.

a mutliple-input FGT. Non-volatile weight storage is made
possible through the FG technology available in double-poly
CMOS. Finally, the ONN chip demonstrated excellent results
in predicting pass/fail labels for LNA circuits using low-cost
sensor measurements.

REFERENCES

[1] D. Maliuk, H.-G. Stratigopoulos, H. He, and Y. Makris, “Analog
neural network design for RF built-in self-test,” in Proceedings of
the IEEE International Test Conference (ITC), 2010, pp. 23.2.1–
23.2.10.

[2] L. Abdallah, H.G. Stratigopoulos, S. Mir, and C. Kelma, “RF
front-end test using built-in sensors,” IEEE Design and Test of
Computers, vol. 28, no. 6, pp. 76–84, 2011.

[3] H.-G. Stratigopoulos and Y. Makris, “Error moderation in low-
cost machine learning-based analog/RF testing,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 27, no. 2, pp. 339–351, 2008.

[4] C.R. Schlottmann and P.E. Hasler, “A highly dense, low power,
programmable analog vector-matrix multiplier: The FPAA imple-
mentation,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 1, no. 3, pp. 403–411, 2011.

[5] A. Bandyopadhyay, G. J. Serrano, and P. Hasler, “Adaptive
algorithm using hot-electron injection for programming analog
computational memory elements within 0.2% of accuracy over
3.5 decades,” IEEE Journal of Solid-State Circuits, vol. 41, no.
9, pp. 2107–2114, 2006.

[6] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning
architecture,” in Proc. Advances Neural Inform. Process. Syst,
1990, vol. 2, pp. 524–532.

[7] D. Maliuk and Y. Makris, “A dual-mode weight storage analog
neural network platform for on-chip applications,” in IEEE
International Symposium on Circuits and Systems, 2012, pp.
2889–2892.

[8] H. A. Castro, S. M. Tam, and M. A. Holler, “Implementation and
performance of an analog nonvolatile neural network,” Analog
Integrated Circuits and Signal Processing, vol. 4, no. 2, pp. 97–
113, 1993.

[9] S. Ramakrishnan and P. Hasler, “The VMM and WTA as
an analog classifier,” IEEE Transactions on Very Large Scale
Integration Systems, in press.


