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Abstract— We propose a technology-independent vulnerability-
driven parity selection method for protecting modern
microprocessor in-core memory arrays against multiple-bit
upsets (MBUs). As MBUs constitute over 50% of the upsets
in recent technologies, error correcting codes or physical inter-
leaving are typically employed to effectively protect out-of-core
memory structures, such as caches. Such methods, however, are
not applicable to high performance in-core arrays, due to com-
putational complexity, high delay, and area overhead. Therefore,
we investigate vulnerability-based parity forest formation as an
effective mechanism for detecting errors. Checkpointing and
pipeline flushing can subsequently be used for correction. As the
optimal parity tree construction for MBU detection is a computa-
tionally complex problem, an integer linear program formulation
is introduced. In addition, vulnerability-based interleaving (VBI)
is explored as a mechanism for further enhancing in-core array
resiliency in constrained, single parity tree cases. VBI first phys-
ically disperses bitlines based on their vulnerability factor and
then applies selective parity to these lines. Experimental results
on Alpha 21264 and Intel P6 in-core memory arrays demonstrate
that the proposed parity tree selection and VBI methods can
achieve vulnerability reduction up to 86%, even when a small
number of bits are added to the parity trees.

Index Terms— Architectural vulnerability factor (AVF),
interleaving, memory array, modern microprocessor,
optimization, parity.

I. INTRODUCTION

RECENT radiation-induced soft error rate (SER) scaling
trends show that, while the single-bit SER for static

RAMs (SRAMs) continues to decrease and the error rate for
sequential and static combinational devices has not changed,
the multibit SER has increased dramatically [1]. In the pres-
ence of a multiple-bit upset (MBU), two or more physically
adjacent SRAM bits are upset by a single neutron particle [2].
During an MBU, multiple bit errors in a single word,
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as well as single bit errors in multiple adjacent words, can be
introduced [3]. As contemporary memory structures exhibit an
increasing multibit failure rate, the importance of MBU analy-
sis has been highlighted in several recent publications [4], [5].
Dixit and Wood [4] emphasize that MBUs have become
much more frequent due to shrinking feature sizes, and
MBU protection in microprocessors has become a necessity.
MBU statistics are necessary to assess the effectiveness of
error correction schemes, with recent experiments demon-
strating that MBUs can affect up to eight adjacent cells [6].

Considering both single-bit upset (SBU) and MBU becomes
particularly important when assessing vulnerability of modern
microprocessors, as they typically include numerous in-core
memory arrays to support high-performance execution.
In addition to the use of SRAMs for large memory structures,
such as the instruction and data caches, limited power budget
also dictates the use of SRAM-based structures for various
in-core memory arrays, such as the instruction queue or
the register allocation table [7]. A concrete example of
power savings in a microprocessor is the use of content
addressable memory (CAM)/RAM-based structures [8], [9]
instead of latch-based memories. These structures are built
using SRAM technology, with a typical CAM cell consisting
of two SRAM cells [9], and achieve power savings of 36%
on average [10]. As SRAMs come at the cost of increased
susceptibility to single and multiple bit errors, counter mea-
sures against radiation-induced errors need to be put in place.

Typical methodologies for MBU protection include physical
interleaving [11], [12], error detection codes [13], and error
correcting codes (ECCs) [14], [15]. Interleaving refers to
the creation of logical checkwords from physically dispersed
locations of the memory array, forcing the MBUs to appear
as multiple single-bit errors, instead of a single multibit error.
Checkwords are generated based on a specified ECC scheme,
thus interleaved memories rely on the presence of advanced
ECCs. However, while applying ECC protection to out-of-
core memories (such as caches) is the state-of-the art method
for resiliency enhancement, generation of checkwords at core
clock speed is challenging, and comes at the cost of very high
area overhead [16].

Error detection methods, however, that build on parity bits,
are far less complex and may still constitute a feasible solution.
While parity offers only detection capabilities, it is sufficient
for in-core memory arrays of modern microprocessors as
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other correction mechanisms, such as pipeline flushing and
checkpoint restoring, can be applied after the fault has been
detected. Yet, blindly applying parity across the board not only
incurs significant area, power, and delay overhead but may
also reduce the achieved coverage. Furthermore, parity pro-
tection of certain bits is unnecessary, as they may, ultimately,
have a low probability of affecting the application outcome.
Instead, similar to the low-overhead parity selection opti-
mization methods that were introduced in different contexts
in [17] and [18], judicious parity construction is necessary to
minimize vulnerability. As we discuss in Section II, optimal
parity selection for MBU detection is not straightforward and
simple heuristics yield suboptimal results. Thus, toward a
comprehensive solution, in Section III, we formulate the prob-
lem as an integer linear program (ILP). Section IV presents
a method for rearranging the position of certain bit fields,
called vulnerability-based interleaving (VBI), to enhance the
efficiency of the ILP solution for one parity tree. Section V
describes the modeling language, the solver, and the in-core
memory arrays used in this paper and the results are presented
in Section VI, followed by the conclusion in Section VII.

II. SELECTIVE PARITY

While parity is a potentially viable option for protecting
in-core memory arrays, adding all bits to a single parity tree
is not a good idea for the following two reasons.

1) In-core memory arrays in modern microprocessors are
typically quite wide, to store all the information needed
for out-of-order instruction execution. For example, the
information appended to an instruction word in the
Alpha 21264 ranges between 160 and 290 bits [19]. Since
up to 32 instructions can be in-flight, the microprocessor
employs several large in-core memory arrays to support
the pipelined execution engine. Hence, adding parity trees
for all the bits in each word of these memory arrays
would incur significant overhead in terms of area, power
consumption, and delay.

2) More importantly, such a parity tree would only detect
MBUs causing an odd number of errors. Therefore,
the parity scheme would fail to detect 2- and 4-bit
MBUs, which constitute a significant portion of current
MBU distributions.

Evidently, connecting only a carefully selected subset of
bits to the parity tree might yield better overall protection
from MBUs. Moreover, not all bits in such words are equally
critical. Indeed, since the type of information stored by each bit
is known in advance, we can characterize a priori its relative
importance and vulnerability. For this purpose, we can use
the architectural vulnerability factor (AVF) of each bit, which
was first introduced in [20] and which reflects the probability
that a bit flip will cause a system-visible error. Consider, for
instance, the word of a sample 8-bit memory array, shown
in Fig. 1, and let us assume that bit i0 has an AVF of 0.5.
In this case, only half of the faults in this particular bit will
affect the end user. Similarly, let us assume that bit i2 has
an AVF of 0, therefore no faults affecting it can produce a
visible error. An example of such a case could be a memory
array storing information related to branch prediction, which

Fig. 1. Example of parity selection for protecting memory words.

is used to populate the branch history table. The impact of a
fault affecting bit i2 would only result in a different prediction
and, thus, a possible performance penalty (or gain), but not to
a system-visible error.

By considering the vulnerability of each bit, we can select
the most appropriate subset of bits to add to the parity
tree, effectively introducing an AVF-driven parity optimization
method. In our example, since bits i2 and i3 have an AVF of 0,
including them in the parity tree is unnecessary. In other
words, a parity tree including the remaining 6 bits would be
equally effective as a parity tree including all 8 bits, yet it
would incur less area, power, and delay overhead. In addition,
note that bit i6, which has a very low AVF of 0.2, is adjacent
to bit i7, which has a very high AVF of 0.9. This implies
that MBUs, which affect both of these bits will be masked.
Leaving i6 out of the tree will enable detection of such MBUs
that have a high probability of becoming visible to the system,
at the cost of allowing single errors on i6 to propagate (with
low probability) to the system level. In other words, careful
AVF-driven selection of bits to include in the parity tree can be
beneficial both in terms of overhead and in terms of coverage.

Nevertheless, any such single parity tree will continue to
be ineffective in detecting MBUs that affect an even number
of bits among those connected to the tree. To alleviate the
problem, a possible solution is the addition of multiple parity
trees. In our previous example, if a 2-bit wide upset affects bits
i0 and i1, it will propagate undetected; however, if i0 and i1 are
connected to different parity trees, an error affecting both will
be detected separately by the two parity bits. Adding more
parity trees comes at the cost of an extra parity bit, which
needs to be stored per word. However, assuming that the total
number of bits connected to the parity trees is the same, it
does not require additional XOR gates. It speeds up parity
computation since the depth of each tree is smaller than that of
a single tree. We also note that the maximum number of trees
that one should consider does not exceed the maximum width
of the expected MBUs. Indeed if, for example, a single event
upset affects at most two adjacent bits of a memory word,
addition of a third parity tree is superfluous since all the pairs
of potentially erroneous bits can be split into the two trees.
The same holds true when there are no adjacent bits with high
AVF, essentially implying that a very small number of parity
trees will suffice.

To summarize the problem, given: 1) the expected
MBU distribution; 2) the vulnerability of the bits; 3) the
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Algorithm 1 Simple Algorithm

maximum number b of bits that the budget allows to connect to
parity; and 4) the number t of available parity trees, we seek
to choose which bits to add to each of the parity trees to
maximize the protection of the memory word from MBUs.

A. Simple Algorithm

A straightforward algorithm for selecting, which bits to add
to each of the parity trees is shown in Algorithm 1. The main
idea behind this greedy heuristic is to select and place the b
most vulnerable bits to the t parity trees in a round-robin
fashion. In the example shown in Fig. 1, for b = 5 and for
t = 2, bits {i0, i4, i5, i6, i7} will be selected, with {i0, i5, i7}
connected to the first parity tree and {i4, i6} to the second.

This simple algorithm, however, may yield suboptimal
results, especially since it does not consider the distribution
of MBU faults. For instance, a 4-bit wide upset affecting
bits {i4, i5, i6, i7} will go undetected as both parity trees will
experience an even number of errors. Given the high AVFs of
the corresponding bits, this MBU will most likely affect the
user. However, if i6 was omitted from the trees, this particular
MBU would be detected, although the word would now be
vulnerable to SBUs affecting bit i6. As the latter has a very
low AVF (0.2), its exclusion can give better results than the
previous configuration. Evidently, a wider range of solutions
need to be explored to obtain the optimal subset.

Given a word of k bits and a budget of b bits to connect
to parity trees, the size of the solution space for a single
parity tree is

(k
b

)
. In a commercial design, such as the Alpha

21264 that has a k = 219-bit instruction queue memory array,
this implies that with a budget of b = 44 bits (20%), the
number of possible solutions is

(219
44

) ≈ 3.47e46. This space
increases dramatically as more trees are added. This huge
solution space, in combination with the inability of simple
heuristics to provide an optimal solution to this cover-like
problem (as further demonstrated in Section VI), pinpoint the
need for a more general solution. To this end, in the following
section, we formulate vulnerability-based parity selection as
an ILP and we use dedicated ILP solvers for approximating
the optimal solution.

III. FORMULATION OF PARITY OPTIMIZATION ILP

In this section, we demonstrate the necessary steps to
formulate the parity selection optimization problem as an
ILP. We first introduce the ILP formulation in Section III-A,
and then explain the derivation of the cost function, first in
an intuitive nonlinear form in Section III-B, which we then
linearize in Section III-C.

A. ILP Formulation

The goal of the parity optimization problem is to minimize
the vulnerability of the in-core memory array. Since we
add parity per memory word, the developed cost func-
tion will refer to each individual word. Thus, to formu-
late the cost function to be minimized, called memory
word vulnerability factor (MWVF), we define the following
ILP.

Given the parameters:
1) k: number of bits in the memory word;
2) Vi : AVF of bit i , Vi ∈ [0, 1], i ∈ {1, 2, . . . , k};
3) d: maximum MBU distance, defined by specified fault

model;
4) Pj : probability of a j -wide BU, defined by fault model,

Pj ∈ [0, 1], j ∈ {1, 2, . . . , d}, ∑d
j=1 Pj = 1;

5) t: the number of parity trees, t ≥ 1;
6) b: maximum number of bits to be added to the parity

trees, 1 ≤ b ≤ k.
Solve for:

1) Si,r ∈ {0, 1};
2) yi, j,m,r ∈ {0, 1};
3) xi, j,m,r ∈ {0, 1, . . . , � j/2�};
4) zi, j,m ∈ {0, 1, . . . , t − 1};
5) wi, j,m ∈ {0, 1} in the domain i ∈ {1, 2, . . . , k},

j ∈ {1, 2, . . . , d}, m ∈ {1, 2, . . . , j}, r ∈ {1, 2, . . . , t}.
Minimize cost function

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

wi, j,m (1)

subject to constraints:

1)
∑k

i=1
∑t

r=1 Si,r ≤ b;
2)

∑ j
n=1 Si− j+m+n−1,r = 2xi, j,m,r + yi, j,m,r ;

3)
∑t

r=1(1 − yi, j,m,r ) = t ∗ wi, j,m + zi, j,m .

B. Formulating Cost Function

Let us now explain how this cost function was derived and
why it reflects the choice and distribution of bits to parity
trees, which minimizes vulnerability of an in-core memory
word to MBUs. This vulnerability, which we termed MWVF,
is defined as the sum of the individual MBU vulnerabilities
of all bits in the word. The vulnerability of each individual
bit is defined as the product of the bit AVF (Vi ) multiplied by
the probability that a j -wide MBU will affect bit i . Thus, the
initial formulation of MWVF is the following:

k∑

i=1

Vi ∗ (probability of a j -wide MBU affecting bit i). (2)
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Fig. 2. Bitwise probability distribution in j-wide MBUs.

Given an MBU distribution, bit i might be part of a 1-bit
wide MBU (SBU), a 2-bit wide MBU, and a 3-bit wide MBU.
For example, given that bit i has two neighboring bits, a 2-bit
wide MBU might affect the pair { i −1, i} or the pair { i, i +1}.
For the presented formulation, we assume that MBUs affect
bits horizontally; vertical MBUs are dealt with by observing
that each memory word is protected by a separate parity bit.

The MBU fault model defines how the MBUs manifest to
the memory array. For instance, an MBU distribution could be
[1: 0.45, 2: 0.18, 3: 0.10, 4: 0.27]. This distribution indicates
that with 0.45 probability, the MBU will affect 1 bit, with
0.18 probability it will affect 2 bits, and so on. In case of
a 2-bit wide MBU, a fault that includes bit i should be
analyzed separately in case i − 1 and i bits are affected, and
in case i and i + 1 are affected. This distinction is essential,
because the vulnerability factor changes according to whether
bit i − 1 or i + 1 is included in a parity tree.

In this paper, we make the assumption that the two cases
have equal probability. Given the MBU distribution described
earlier, we assume that the probability of a 2-bit wide MBU
affecting bits i − 1 and i is 0.09 (0.18/2), and the probability
of an MBU affecting bits i , i + 1 is also 0.09. Therefore, in
case of a j -wide MBU, the probabilities are distributed equally
among all cases, as shown in the example presented in Fig. 2.

Equation (2) is expanded to reflect the different cases of
MBU manifestation

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

( j -wide MBU affects bit i ). (3)

In the simple case of one parity tree (r = 1), a j -wide
MBU will affect bit i if an even number of these j bits are
protected by parity. For example, in case bits i − 1, i , and
i + 1 are affected by an MBU, the error will be detected if
Si−1+Si +Si+1 is an odd number, implying that 1 or 3 of these
bits are protected by parity. In case 0 or 2 bits are protected,

the error will be masked, and will eventually affect the user
with probability Vi ∗ P3/3.1

Therefore, in case the sum of S of the j affected bits is
even, the corresponding case should be set to 1, otherwise it
should be set to 0. Equation (3) now becomes

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

⎛

⎝1 −
⎛

⎝

⎛

⎝
j∑

n=1

Si+m+n− j−1

⎞

⎠mod 2

⎞

⎠

⎞

⎠ .

(4)

Note that the inclusion of the mod operator converts the
problem to nonlinear. In the following section, we present the
transformations needed to linearize it.

Equation (4) assumes that only one parity tree is used.
To account for multiple trees, (4) is extended to the following:

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

t∏

r=1

⎛

⎝1−
⎛

⎝

⎛

⎝
j∑

n=1

Si+m+n− j−1,r

⎞

⎠mod 2

⎞

⎠

⎞

⎠.

(5)

The expression (1 − ((
∑ j

n=1 Si+m+n− j−1,r ) mod 2) is 0
when, in case of a j -wide MBU, there is at least one case
(out of the j cases) that the error will be detected by parity.
Therefore, the addition of the product operator ensures that
the contribution of the particular case to the total vulnerability
will be 0 if there is at least one parity tree that detects the
corresponding fault. For instance, if only parity tree two out
of three trees in total detects the tested case, the product will
be 1 ∗ 0 ∗ 1 = 0, implying that the error is detected by the
current configuration of Si,r and will not contribute to the total
MWVF.

Equation (5) shows the cost function that we want to
minimize. Since we indicate that b out of the k bits will be
added to the parity trees, the following constraint is added:

k∑

i=1

t∑

j=1

Si, j ≤ b. (6)

Note that this constraint does not preclude the inclusion of
a bit to multiple trees.

C. Converting Function to Linear
The inclusion of the mod operator, as well as the product

operator, makes this optimization problem nonlinear. In this
section, we introduce two transformations to convert it back
to linear.

To remove the mod operator, the expression
((

∑ j
n=1 Si+m+n− j−1,r ) mod 2) is rewritten as (yi, j,m,n,r ),

and the following constraints are added:
j∑

n=1

Si− j+m+n−1,r = 2xi, j,m,r + yi, j,m,r

yi, j,m,r ∈ {0, 1}, xi, j,m,r ∈ {0, 1, . . . , � j/2�}. (7)

The variables xi, j,m,r , yi, j,m,r are added to the solver.
Equation (7) implies that yi, j,m,r will be 0 when

1i can be part of 3 different MBUs, as shown in the 3-bit MBU example
of Fig. 2, so the probability that bits i − 1, i , and i + 1 are affected is P3/3.
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Fig. 3. Example of VBI. (a) Initial order of bit lines. (b) Order of bit lines
after VBI. (c) Post-VBI word line including parity bit.

∑ j
n=1 Si− j+m+n−1,r is an even number, otherwise it will

be 1. This effectively replaces the mod operator, and our cost
function now becomes

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

t∏

r=1

(1 − yi, j,m,n,r ). (8)

The final step of converting the cost function to linear is
the removal of the product operator. Similar to the previous
operation, we replace

∏t
r=1(1− yi, j,m,n,r ) with wi, j,m , adding

the following constraints:
t∑

r=1

(1 − yi, j,m,r ) = t ∗ wi, j,m + zi, j,m

zi, j,m ∈ {0, 1, . . . , t − 1}, wi, j,m ∈ {0, 1}. (9)

Since the term zi, j,m is a positive number smaller than t ,
wi, j,m will be 1 iff

∑t
r=1(1 − yi, j,m,r ) = t . The latter implies

that all y terms are 0, thus there is no parity tree detecting
the corresponding fault. If at least one tree detects the fault,
its y term will be 1 and w will be forced to 0.

Therefore, the final optimization function that we feed to
the ILP solver is the following:

k∑

i=1

Vi

d∑

j=1

Pj

j

j∑

m=1

wi, j,m (10)

given the constraints [6], [7], [9].

IV. VULNERABILITY-BASED INTERLEAVING

There are cases where the ILP solver has limited flexibility
when selecting, which bits to add to the parity trees. For
example, if critical bits are clustered and only one parity
tree is available, then the solver will add only one of them
to the formed parity tree, limiting the vulnerability reduction
achieved. Fig. 3(a) shows this case: bits 0, 1, and 2 are critical,
but the solver will have to select only one to add to the single
parity tree.

One parity tree is the most common case in modern mem-
ories, as the area footprint is minimal. Thus, to increase the
flexibility of the ILP solver during parity optimization, we
also propose a method for interleaving individual bit cells

Fig. 4. Physical interleaving [11].

based on their probability of affecting instruction execution.
Current interleaving techniques [11] include every bit in the
protection scheme, regardless of the bit criticality. This is
essential for out-of-core memories, where there is no a priori
information about the contents of the bits. In the case of
in-core memories, on the contrary, this information is fixed
(e.g., bit 0 is the valid bit and bit 1 is the issued bit).
Furthermore, techniques, such as [21] rely on spares to
introduce a two-level redundancy. Spares are not an option
for microprocessor arrays due to cost. Other techniques, such
as 2-D error coding [12], incur prohibitive latency because of
both horizontal and vertical refresh of the parity bits.

Our proposed method rearranges the position of certain
bitlines in the stored word. Throughout this section, bitlines
refer to the columns of a memory array (vertical lines),
and word lines refer to the rows (horizontal lines) (Fig. 4).
VBI aims to improve design resiliency by exploiting the
fact that important bitlines are usually adjacent, rendering
the memory array more susceptible to multiple bit errors.
Experimental results presented in Section VI-E confirm this
observation. Thus, by physically dispersing the critical bitlines
and using the ILP formulation to select the optimal set of bits
to add to the parity trees, VBI greatly improves the resiliency
of a given design.

An example of VBI appears in Fig. 3. A common layout
of the information stored in a typical out-of-order instruction
queue consists of a bit for the validity of the instruction,
a bit indicating whether the instruction has been issued to
the functional units, bits storing the branch target of poten-
tial branch instructions, bits storing the instruction operands,
and bits storing the predicted branch direction. Evidently,
as also demonstrated for the Alpha 21264 microprocessor
in Section VI-E, critical bits are clustered: for example, the
issue and valid bits are usually the first bits stored in the
instruction queue, and will certainly result in instruction cor-
ruption. However, the PC branch target information, contained
in several adjacent bits up to 64 in modern microprocessors,
is rarely used, thus the likelihood of errors in these bits
affecting instruction execution is very low. Fig. 3(a) shows
the initial layout of bit fields in the stored word, where darker
coloring implies higher probability to affect workload output.
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Algorithm 2 Sample VBI Algorithm

A possible rearrangement based on VBI appears in Fig. 3(b).
More critical bit fields are spread throughout the word, thus
minimizing the probability that an MBU will affect more than
one of them. With the addition of selective parity protection,
as shown in Fig. 3(c), the vulnerability of the memory array
is expected to decrease, as the critical bitlines are protected
and the probability of an MBU affecting more than one
critical bitline is very low (and dependent on the interleaving
distance).

Fig. 5. Selecting the new placement of bits for VBI.

A. VBI Algorithm

The proposed method for rearranging the bitlines appears
in Algorithm 2. The inputs of the algorithm consist of the
memory array to be protected, the percentage B of bitlines to
be protected with parity (given a specific resiliency budget),
as well as a vulnerability figure for the individual cells of
the memory array. These vulnerability figures are obtained
through fault simulation, using the MBU fault model defined
in Section V-D. The first step of the algorithm is to calculate
the individual vulnerability factor for each vertical bitline, by
summing the vulnerability factors of each bit in this bitline.
Then, the algorithm ranks the list of bitlines in decreasing
order of vulnerability.

The next step is to place the most critical bit fields as far
from each other as possible. Intuitively, the most critical bit
field will be placed in the first bit of the memory word and the
second most critical to the end. The third, to be as far from the
two, will be placed in the middle. For example, in a 219-bit
memory word, the order to place the first three bit fields would
be 0, 219, and 110. Then, the next bit field should be placed
as far apart from the placed ones as possible, so that is either
the median of the range [0, 109] or [111, 219]. The selection
should be 165, as AVF(219) <= AVF(0). Fig. 5 shows the first
steps of the application of the algorithm to the aforementioned
219-bit memory word. The green boxes denote the next range
that will be split. Therefore, steps 12–30 of the algorithm are
generating this sequence. The last step assigns the sorted list
of bit fields to the generated sequence. While this assignment
may slightly increase the routing overhead of the design,
the experimental results presented in Section VI-F indicate
that application of VBI incurs minimal power and no area
overhead.

V. EXPERIMENTAL SETUP

In this section, we present the experimental setup, which
we used to demonstrate the effectiveness of the proposed
vulnerability-based parity optimization methods.

A. Modeling Language

To model the optimization problem, we used GNU Math-
Prog [22]. MathProg is a modeling language intended for
describing mathematical programming models, and it is a
subset of a modeling language for mathematical program-
ming. The reason behind the choice of MathProg is that it
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automatically translates the model description into internal
data structures, which are then used to generate mathematical
programming problem instances and can also be used by
appropriate solvers to find a solution to the given problem.
Given the nature of the optimization problem described in this
paper, which includes thousands of variables and constraints,
MathProg allows us to use variable domains that expand
during translation, and thus to avoid the tedious effort of
manually generating all the statements.

B. ILP Solver

The solver used to obtain the numeric solution to the
optimization problem is solving constraint integer prob-
lems (SCIPs) [23]. Constraint integer programming is a gen-
eralization of mixed-integer programming, thus it can also be
used for solving ILPs. The techniques employed by SCIP,
such as Linear Programming (LP) relaxation of the problem,
strengthening the LP by cutting plane separator, and analyzing
infeasible subproblems to infer global knowledge, are neces-
sary to approximate the optimal solution in a reasonable time,
as memory and computational time rise exponentially as more
integer variables are added.

In particular, for the presented optimization problem, we
first obtain the LP relaxation of the problem by dropping the
integrality restrictions of the variables, effectively providing
a dual bound on the objective value. This relaxed solution is
used for the bounding step of the branch-and-bound algorithm,
supported by cutting plane separation. The cut separators
are general purpose cuts that usually include complemented
integer rounding and Gomory cuts.

Since SCIP cannot directly read the GNU MathProg lan-
guage, we used glpsol [22] to convert the input program
from MathProg to the CPLEX LP format, and then used SCIP
to solve the optimization problem.

C. In-Core Memory Arrays

Two in-core memory arrays are used in this paper: The
instruction queue of the Alpha 21264 instruction sched-
uler [24], and a memory array of the reservation station (RS)
of the Intel P6 architecture.

The Alpha processor incorporates all the features present in
current commercial microprocessors, such as aggressive out-
of-order scheduling, a deep 12-stage pipeline, and superscalar
execution. The instruction queue incorporates 32 memory
words, each with a size of 219 bits. The 219 bits include bit
fields of various importance, such as the critical valid and
issue bits, or the less important tag of the program counter,
which is only used for branches. The information stored in
the instruction queue is shown in Table I. The first 32 bits
contain the instruction word, fetched from the instruction
cache. The fetch unit appends information about the location
and the target of the instruction and feed the renaming
logic. During the rename stage of the pipeline, several fields
are added to the instruction in-flight, i.e., functional unit
destination, renamed registers, and branch information. When
the instruction reaches the scheduler, the reorder buffer id

TABLE I

BIT FIELDS OF THE INSTRUCTION STORED IN THE INSTRUCTION QUEUE

TABLE II

TOTAL NUMBER OF VARIABLES AND CONSTRAINTS FOR

VARIOUS NUMBERS OF PARITY TREES

as well as the issue and valid bits are appended before the
instruction is stored in the queue for execution.

The P6 architecture is the basis of modern Intel
microprocessors. We paper an in-core memory array of the
36-slot RS, which is the instruction scheduler of the P6
out-of-order cluster. Due to a nondisclosure agreement with
Intel Corporation, we do not present implementation details or
absolute vulnerability factors of this in-core array. However,
this is not required for this paper, as the main focus is
the relative vulnerability reduction achieved by selecting the
optimal percentage and distribution of bits to include in the
parity trees.

Hierarchical statistical fault injection, as described in [25],
was employed to extract the individual AVFs of the
two in-core memory arrays. A three-level hierarchical design is
used: scheduler, out-of-order cluster, and full chip. As accurate
vulnerability analysis relies on the use of real-life applications,
several benchmarks from the SPEC suite were utilized.

The number of variables and constraints for the individual
ILPs appears in Table II. The large number of variables and
constraints highlight the need for using an efficient ILP solver
to obtain the optimal solution in a reasonable time.

D. MBU Fault Model

Typically observed fail bit patterns, as shown in Fig. 6,
indicate that MBUs do not manifest as multiple bit flips
spread across rows or columns; instead, they are clustered in
double stripes perpendicular to the wordlines and manifest as
force-to-0 or force-to-1 effects. This is attributed to the battery
effect described in [26]. Fig. 7 shows a highly compact layout
of bit cells widely used in the design of such arrays. Since the
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Fig. 6. Typically observed fail bit patterns [6].

Fig. 7. Compact mirror layout of arrays [27].

TABLE III

MBU DISTRIBUTION FOR THE THREE DIFFERENT FAULT MODELS

p-well is shared among every pair of columns, in case a
particle strikes and causes charge collection, the generated
charge raises the potential of the bulk and turns on a
parasiting bipolar transistor. Hence, the circuit node is
shorted to the bulk and the contents of the cell are flipped.
There is also a probability that parasitic bipolar transistors
in neighboring cells sharing the same p-well will turn on,
effectively generating an MBU. Depending on the node hit by
the particle, the value of the cell may or may not change. For
example, in case node Q is struck when the bit is holding 0,
the bit cell will not be affected; the same applies when node
QB is struck when the bit has a value of 1. Consequently,
about 50% of the upsets will not result into bit flips.

Of course, particle effects will not manifest exclusively
as 1, 2, 3, or 4 BUs, but rather as a distribution of MBUs
of different cardinality. Thus, we define three different fault
models that are used in this paper, namely, Fm90, Fm65,
and FmNew. The percentile MBU distribution for these three
fault models appears in Table III. Fm90 and Fm65 are the
two realistic distributions of faults taken from [6], while
FmNew represents an estimation of future vulnerability of
memories to MBUs and reflects a uniform distribution of
upsets that are up to 6-bits wide.

While Fig. 7 shows a layout of 6T cell, the proposed
methodology is independent of the underlying technology.
Therefore, the presented methodology can be directly applied
to 8T or 10T cell designs. Similar to error detection and
correction mechanisms that rely on a priori knowledge of
expected behavior of particle strikes, such as AVF [20]
and scrubbing [28], the proposed methodology relies on a

representative distribution of MBUs. The key parameter of
the distribution is the maximum width of the MBUs, as the
ILP solver attempts to place the most critical bits apart. The
designer can estimate the maximum radius of MBU strikes
based on the density of the SRAM cells and typical radiation
experiments [29]. In case of uncertainty, the designer might
choose a pessimistic MBU radius.

Finally, as the proposed methodology assumes uniform
device-level vulnerability, the designer needs to take precau-
tions to decrease the effect of process parameter variations.
These process variations are typically caused by limitations
of the fabrication process and variation in the number of
dopant atoms in the channel of the short channel devices [30].
An extensive analysis of the impact of SRAM cell process
variations appears in [31]. A plethora of solutions, trading-off
area, power, and speed, has been proposed. Solutions include
body-biasing schemes [32], dual-supply voltage schemes [33],
short wordline and bitline pulse schemes [34], and wordline
signal rise-time calibration [30].

VI. RESULTS

In this section, we discuss the results of the vulnerability-
based parity optimization and interleaving methods.
Section VI-A presents the MWVF reduction achieved
for various configurations of protected bits, parity trees, and
fault models, while Section VI-B discusses the overhead of the
presented configurations. Section VI-D compares the quality
of the solutions obtained by the ILP solver to the simple
algorithm presented in Section II. Finally, Section VI-E
demonstrates the effectiveness of VBI and Section VI-F
reports the corresponding overhead.

A. MWVF Reduction for Various Configurations

1) Optimal Selection of Parity Bits: Fig. 8(a) and (b)
shows the MWVF reduction obtained by adding an increasing
number of bits to the parity trees, for the Alpha instruction
queue and the P6 RS, respectively, for each of the three fault
models. Zero bits indicates that no parity is added. The axis
values are omitted for the P6, as vulnerability estimates for the
Intel microprocessor cannot be disclosed. However, it is clear
from the graphs of both designs that a careful construction of
parity trees can lead to a significant vulnerability reduction.
For example, adding 77 bits of the Alpha memory array to the
parity tree reduces vulnerability by 93%. This, in turn, allows
the designer the select the optimal number and distribution of
bits to the parity trees to meet reliability goals.

We note that, in case the desired fault coverage for the Alpha
in-core memory array is 100%, a configuration of 99 out of
the 219 bits, split among two parity trees, offers complete
immunity to faults.

2) Effect of Adding Parity Trees: As expected, for the
Fm90 fault model, adding more parity trees has very little
effect on the achieved vulnerability reduction. This happens
because, in this case, only 5% of the MBUs affect more
than 1 bit. However, as a rich set of MBUs is introduced
using the Fm65 and FmNew fault models, it is clear that for
both microprocessors, one parity tree has limited potential for
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Fig. 8. MWVF reduction for different configuration of parity trees. (a) Alpha 21264 instruction queue. (b) Intel P6 reservation station structure.

TABLE IV

OVERHEAD FOR DIFFERENT PARITY SCHEMES FOR THE ALPHA 21264 INSTRUCTION QUEUE

efficient MBU protection. This difference is more apparent in
the P6 in-core memory array, where inclusion of a second
parity tree leads to an immediate additional MWVF reduction
of 50%, even for a very small numbers of bits added to
the parity trees. Furthermore, the overall MVWF reduction
achieved using only one parity tree saturates after a certain
point. For the Alpha instruction queue, addition of more
than 66 bits to the single parity tree does not decrease the
vulnerability of the structure; however, 44 bits split into two
parity trees offers better protection to MBUs than 66 or more
bits in a single parity tree (80 versus 140 MWVF). This key
observation highlights the necessity of formulating the parity
selection problem as an ILP, as the optimal selection and
distribution of bits to parity trees is not straightforward.

Another key observation, concerning the number of parity
trees, is that adding more than two parity trees does not offer
significant MWVF reduction, even in the presence of 6-bit

wide MBUs (FmNew model). Since three and four parity trees
significantly increase area overhead, this observation allows us
to limit the number of parity trees to two. Evidently, this holds
true for the selected distribution of faults. As the distribution
of MBUs may change dramatically in future nodes, the ILP
will be able to handle and identify the need for more than two
parity trees.

B. Parity Overhead

Table IV shows the area and delay overheads of protecting
the Alpha 21264 instruction queue for a different number
of bits added to the parity trees. The instruction queue was
synthesized using synopsys design compiler.

1) Area Overhead: Using Table IV, we can select the most
desired parity tree configuration to protect against MBUs.
As expected, the area overhead increases linearly as more bits
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are added to the parity tree, which in turn increases the number
of XOR gates required. However, adding a second parity tree
adds very small area overhead, as only a flip-flop is added per
memory word.

2) Delay Overhead: Similarly, in terms of delay overhead,
increasing the depth of the parity tree increases the time
required to calculate the word parity. However, adding two
parity trees has a considerable advantage, as the depth of the
XOR trees decreases and the delay overhead is significantly
reduced. Therefore, since in the previous section, we identified
two parity trees as sufficient, possible candidates for the
most cost-effective resiliency enhancement should be selected
among the solutions involving 33, 44, 55, or 66 bits and two
parity trees (shown in boldface in Table IV), which offer an
MWVF reduction of 67%, 78%, 87%, and 92%, respectively.

3) Recovery Overhead: Error recovery relies on
architectural-level microprocessor mechanisms, since parity
only offers error detection. Typical server configurations
include advanced checkpoint and recovery mechan-
isms [35], [36]. In case the microprocessor lacks checkpointing
mechanisms, popular solutions, such as ReVive [37]
and SafetyNet [38], can be seamlessly integrated to the
architecture. ReVive adds a 6.3% execution time overhead,
while SafetyNet adds no latency to the common case of
99.9% of instructions, by pipelining the checkpoints. The
recovery overhead is in the range of a few clock cycles
for implementations that checkpoint at the architectural
boundary [35], and in range of milliseconds for ReVive and
SafetyNet. As in the case of ECCs, the cumulative recovery
overhead is dependent on the failing rate of the in-core
memories.

C. Comparison With ECC

To highlight the advantages of using selecting parity
for vulnerability enhancement, we compare the proposed
methodology with traditional ECCs. Typical ECC used in
modern microprocessors include Hamming Codes [39] and
Hsiao codes (odd-weight-column codes) [15]. Since L2 cache
pipelines have high latency, they provide time for deep check-
bit generation logic supporting large bundle sizes with low
area overhead, e.g., for a 256-bit bundle and a 10-bit syn-
drome using a Hsiao code, the bit area overhead is 3.9%.
For fast microprocessor arrays, however, a lightweight error
detection and correction scheme (LEDAC [16]) offers single-
cycle detection (assuming a single-cycle read-write), at the
price of increased overhead.

Specifically, when LEDAC is applied to the microprocessor
array under consideration, it can provide a 100% MWVF
reduction at an 88.9% overhead and a two cycle latency
(since the in-core memory arrays studied do not offer single-
cycle read-write). These results emphasize the advantages of
the proposed methodology, offering a 100% MWVF (for two
parity trees) at 10.76% overhead.

With regards to recovery latency, ECCs offer various trade-
offs between latency and area overhead. Hsiao codes, in
particular, are capable of zero-cycle error correction at the
expense of added delay to the critical path. This critical path
timing penalty, however, may be prohibitive in multigigahertz

clock frequencies at which a typical modern microprocessor
operates. For example, according to [40], to protect 99 bits,
nine check bits are required (as compared with two check
bits for parity trees), with a corresponding delay of being
23 equivalent gates. Nevertheless, the designer could identify
the most vulnerable bits using the proposed method and use
Hsiao codes—instead of the simple parity proposed herein—to
immediately correct errors, at the cost of a sizeable increase
in area and critical path timing.

D. ILP Solution Evaluation

In this section, we discuss the quality of the solution
obtained by the ILP solver, as compared with the simple
algorithm described in Section II. Fig. 9(a) and (b) shows the
MWVF reduction achieved by the solutions obtained by the
solver (ILP-) and the simple algorithm (ALG-), for the Fm65
and FmNew fault models, and for the Alpha and P6 in-core
memory arrays, respectively.

As expected, the solution obtained by the ILP solver is
always better than that of the simple algorithm for all con-
figurations of parity trees. Moreover, the simple algorithm
yields very poor results when selecting the subset of bits
to add to one or two parity trees, for both the Alpha and
the P6 structures and for all fault models. For example, the
average MWVF difference between the two obtained solutions
for the FmNew for one parity bit in the Alpha memory array
is ≈200 units. This is attributed to the effect presented in
Section II, where exclusion of a bit from the trees can lead to
better protection from MBUs. The simple algorithm produces
good results only in the case of three or four parity trees.
However, since we demonstrated in the previous section that
more than two parity trees add cost without providing much in
the way of MWVF reduction, the ILP formulation is necessary
to maximize the return on investment with regards to resilience
enhancement.

Furthermore, the simple algorithm exhibits an interesting
artifact when more than 30% of parity bits are included in one
or two parity bits; adding more bits increases the vulnerability
of the in-core memory arrays. Indeed, adding more parity
bits to one tree increases the density of protected bits; thus,
blindly adding them to the tree increases the probability of
error masking, as more errors resulting in an even number of
bit flips are introduced.

E. VBI Application

As mentioned in Section IV, usage of one parity tree, which
is the preferred method in parity application, can severely limit
the quality of the solution obtained by the ILP formulation.
This is evident in Fig. 8(b), where addition of a second parity
tree provides an additional 50% reduction for the P6 structure.
Therefore, we first apply the VBI algorithm presented in
Section IV-A to rearrange the bit fields in the Alpha and the
P6 structures and then use the ILP formulation to approximate
the optimal bit selection for a single parity tree.

Fig. 10(a) shows the initial order of bitlines, before appli-
cation of VBI, for the Alpha 21264 instruction queue mem-
ory word. Darker color indicates higher vulnerability factors.
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Fig. 9. MVWF reduction of ILP solution compared with simple heuristic algorithm. (a) Alpha 21264 instruction queue. (b) Intel P6 RS structure.

Fig. 10. Pre- and post-VBI orders of bitlines for the Alpha 21264 instruction queue. (a) Initial order of bitlines in the instruction queue. (b) Order of bitlines
after VBI.

Fig. 10(b) shows the new order of bit fields, after dispersing the
bitlines using the VBI algorithm, assuming a parity protection
budget of B = 10% (i.e., 22 bits). As expected, the most
critical bitlines are placed at a maximum distance, based on
the given percentage of protected bits.

The vulnerability reduction achieved by VBI deployment
appears in Fig. 11. Fig. 11(a) shows the results of applying
VBI to the Alpha queue for one parity tree and the three
fault models, while Fig. 11(b) shows the corresponding results
for the P6 structure. In the case of the latter, it is clear
that VBI greatly improves the reliability of the solution,
for any given fault model. The relative MWVF reduction
is more than 85% for the Fm65 and the FmNew fault
models.

In the case of Alpha structure, however, VBI improves the
reliability of the structure when more than 22 bits (10%) are
added to the parity tree. This result is attributed to the fact that
the initial clustering of critical bit fields can be more effective
in MWVF reduction, as only one parity bit can significantly
reduce vulnerability, since a very few parity bits are added to
the tree. VBI spreads the bit fields along the memory word,
so it is harder to protect many of them using a very few bits.
However, as more than 10% bit fields are added to the parity
tree, VBI-based solutions outperform solutions achieved by
non-VBI placement. Since the expected use of selective parity
involves adding more than 10% for an effective solution, VBI,
coming at virtually no extra cost, can significantly improve the
solution obtained by the ILP solver.
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Fig. 11. MVWF reduction by applying VBI. (a) Alpha 21264 instruction queue. (b) Intel P6 RS structure.

Fig. 12. Alpha IBOX [41].

F. VBI Overhead
Finally, we estimate the overhead of applying VBI to the

instruction scheduler of the Alpha 21264 microprocessor.

As described in Section V-C, the scheduler features a 32-slot,
219-bit wide instruction queue for storing the incoming
instructions (up to 4) from the renaming logic, and can
dispatch up to six instructions to the corresponding functional
units. We synthesized the Alpha 21264 scheduler using synop-
sys design compiler and we generated a floorplan and layout
using synopsys integrated circuits compiler. The target library
was the synopsys generic library, which includes nine metal
layers. The floorplanning for the instruction scheduler was
initialized to match the actual layout used for the commercial
Alpha 21264, as shown in Fig. 12 (INT IBOX). The instruction
queue SRAM array is placed on the top of the module, and
the scoreboard on the bottom.

We then repeated the process, this time using the new
bitline arrangement for the instruction queue, as dictated by the
VBI algorithm, while keeping the floorplan and the I/O port
location the same. The modified order of incoming bits
resulted in an increase in total wire length within the instruc-
tion scheduler, as well as extra buffers which the synthesis
and layout tools added to meet the timing constraints set forth
(in our experiments, the clock frequency was set to 1 GHz).
However, the results show that no area overhead was incurred
by applying VBI. This can be explained by observing that the
instruction scheduler has a large number of I/O ports, due to
which the utilization of the control logic area is rather low.
This allows for efficient routing and buffer addition even in
the case of a completely random rewiring of the incoming bits.
The added wires and buffers, however, do cause an increase in
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the power consumed by the design. Specifically, after applying
the VBI algorithm, the total dynamic power of the control logic
increased by 0.09%. Given that the IBOX consumes 33% of
the total power of the microprocessor (Fig. 12), this overhead
is negligible. Overall, the area and power overhead incurred
by the VBI algorithm is minimal and well justified, given the
achieved vulnerability reduction.

VII. CONCLUSION

Recent radiation-induced experiments in contemporary tech-
nology nodes reveal a significant increase in MBUs, high-
lighting the need for revisiting vulnerability analysis and
developing novel methods for protecting modern microproces-
sor in-core memory arrays against MBUs. To this end, we
proposed technology-independent AVF-driven selective parity
as an efficient method for detecting SBU and MBU, and we
introduced an ILP formulation of the parity forest construction
optimization problem. Experimentation with several multibit
fault distributions injected into in-core memory arrays of the
Alpha 21264 and the Intel P6 instruction schedulers elucidated
that optimal single tree parity selection can achieve great
vulnerability reduction, even when only a small number of bits
are added to the parity trees. Furthermore, effective exploration
of the solution space, as enabled by the ILP formulation,
revealed that the introduction of a second parity tree offers
a vulnerability reduction of more than 50% over a single
parity tree. Finally, in constrained problem instances where
the ILP solver has limited flexibility in selecting the optimal
parity tree, application of the proposed VBI method can lead
to vulnerability reduction of 86% with minimal overhead.
Looking ahead, we expect that the benefits of employing
vulnerability-based parity optimization will increase further,
as smaller process nodes will exhibit greater vulnerability to
MBUs.
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