
Integration, the VLSI Journal 68 (2019) 87–98

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

CAPE: A cross-layer framework for accurate microprocessor power
estimation

Monir Zaman a,∗, Mustafa M. Shihab a, Ayse K. Coskun b, Yiorgos Makris a

a The University of Texas at Dallas, Richardson, TX, USA
b Boston University, Boston, MA, USA

A R T I C L E I N F O

Keywords:
Cross-layer simulation
Workload profiling
Power modeling
gem5
AnyCore
SimPoint toolset

A B S T R A C T

State-of-the-art system-level simulators can deliver fast power estimates for microprocessor designs, but often
at the expense of reduced accuracy. The inaccuracies mainly stem from incorrect or over-simplified modeling
of the target architecture. On the other hand, modern register-transfer level (RTL) simulators are cycle-accurate
but overwhelmingly time consuming for most real-life workloads. Consequently, the design community often
has to make a compromise between accuracy and speed. In this work, we propose a novel cross-layer power
estimation (CAPE) technique that carefully integrates system-level and RTL profiling data for the target design
in order to attain better accuracy. Our proposed methodology first leverages the SimPoint tool to transform a
workload into weighted simulation points. We, then, present two different strategies to represent the critical
segment of an application - either with a workload-specific simulation point (CAPE-WSSP) or, with the highest-
weighted simulation point (CAPE-HWSP). Next, we profile the critical simulation point with an RTL simulator for
maximum accuracy, while the other simulation points are simulated at system-level for fast evaluation. Finally,
we input the integrated set of profiling data to the power simulator (McPAT). Our evaluation results show that
CAPE can improve the power estimation accuracy by up to 15% for individual simulation points and by ∼8% for
the full application, compared to that of a system-level only simulation scheme while adding minimal runtime
overhead.

1. Introduction

In recent years, continuous process scaling has rendered power
dissipation a key consideration and figure of merit for microproces-
sor designs – often superseding the conventional performance param-
eters. At each stage of development, accurate simulation frameworks
are instrumental for exploring the design space and identifying the
Pareto-optimal points. Since exact technology libraries are initially not
available for a new architecture, designers can simulate it with either
a system-level model or a register-transfer level (RTL), for estimating
performance and power. In fact, such selection between high and low
level simulation frameworks results in a trade-off between accuracy and
latency [1].

RTL description of designs are written in hardware description lan-
guages (HDL) such as VHDL or Verilog. An RTL model can imitate the

∗ Corresponding author.
E-mail addresses: monir.zaman@utdallas.edu (M. Zaman), mustafa.shihab@utdallas.edu (M.M. Shihab), acoskun@bu.edu (A.K. Coskun), yiorgos.

makris@utdallas.edu (Y. Makris).
1 The RTL simulation times for the full benchmarks have been extrapolated from that of their respective first 100 M instructions.

actual hardware in a cycle-accurate manner, and thereby is exact. How-
ever, characterizing a microprocessor mandates simulation with real-
life applications, which can be impractically time-consuming with RTL
simulators. We illustrate this in Fig. 1 by comparing the RTL simulation
time with that of a system-level (SL) simulator for three applications
from the SPEC CPU2006 benchmark suite [2]. For example, simulat-
ing 100 million instructions of 401.bzip2 with a system-level simula-
tor (i.e., gem5 [3]) takes only 54 min, whereas for an RTL simulator
(i.e., AnyCore [4]) it takes 377 min – a 600% increase in simulation time.
We can observe that this trend is common across all three benchmarks
and degrades exponentially for higher number of instructions.1 Further-
more, the latest intellectual properties (IP) are often copyrighted by the
commercial vendors, and are unavailable in the public domain. There-
fore, the research community often has to depend on dated and less
accurate simulation models [5].

https://doi.org/10.1016/j.vlsi.2019.05.002
Received 9 October 2018; Received in revised form 11 April 2019; Accepted 3 May 2019
Available online 13 May 2019
0167-9260/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2019.05.002
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/vlsi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2019.05.002&domain=pdf
mailto:monir.zaman@utdallas.edu
mailto:mustafa.shihab@utdallas.edu
mailto:acoskun@bu.edu
mailto:yiorgos.makris@utdallas.edu
mailto:yiorgos.makris@utdallas.edu
https://doi.org/10.1016/j.vlsi.2019.05.002


M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 1. RISC-V microprocessor simulation – Exponentially growing execution
time often renders RTL simulation infeasible for designers.

On the other hand, system-level simulators, typically written in
general-purpose programming languages such as C or, C++, model
designs at a higher level of abstraction. Consequently, the system-level
model of a microprocessor is significantly faster (and easier) to develop,
modify, and parametrize for early design space exploration purposes,
compared to its RTL counterpart. Most importantly, unlike RTL simula-
tion, system-level simulators can profile large applications within rea-
sonable time (Fig. 1). Unfortunately, such speedup in simulation comes
with a compromise in accuracy [6,7]. While the system-level models
attempt to capture the real hardware, they often fall short due to cycle
inaccuracies and/or other internal design mismatches. These inaccura-
cies can be broadly categorized into modeling, specification and abstrac-
tion errors [1]. While the modeling errors tend to improve over time
by validating against hardware, specification and abstraction errors are
typically more persistent and difficult to correct [8].

The research community has ventured into multiple directions for
addressing the challenges in design simulation. For example, Huang et
al. proposed hardware/software co-simulation techniques for improved
performance accuracy [9], while Sanchez et al. proposed to reduce
simulation time by leveraging dynamic binary translation for instruc-
tion driven timing models [10]. Unfortunately, the prior works rely on
the limited accuracy of the system-level simulator in collecting perfor-
mance parameters and lack the accuracy of RT-level data. The inaccu-
racy of system-level simulation motivated Kim et al. to present a sam-
pling technique for power accuracy improvement, but their work criti-
cally depends on the availability and applicability of FPGAs [11,12].
On the other hand, Walker et al. proposed a hardware-validated,
improved power modeling technique; however, their technique depends
on lengthy regression models and actual hardware for the validation,
which is unemployable in early stage design explorations. Therefore, a
feasible solution to make fast and accurate power estimation for micro-
processors remains an open problem that is becoming increasingly more
critical.

To this end, in this work, we present CAPE – a Cross-layer
frAmework that can facilitate accurate Power Estimation by selectively
integrating results from both system-level and RTL simulation of the
target application.2 We first leverage the concept of phase-based work-
load representation to represent the workload into different represen-
tative simulation points. We then isolate the most critical simulation
point and simulate it at the RT-level for significantly improving the
micro-architectural profiling accuracy. We propose two different strate-
gies to select the critical simulation point – (i) CAPE-WSSP selects the

2 A preliminary version of this work has been published in International Sym-
posium on Power and Timing Modeling, Optimization and Simulation (PATMOS),
2018 [13].

critical workload specific simulation point (WSSP) based on micro-
architectural characterization, whereas (ii) CAPE-HWSP chooses the
highest weighted simulation point (HWSP) for RTL simulation. In both
variations of CAPE, the non-critical simulation points are profiled with
a system-level simulator for fast evaluation. Finally, we use the pro-
filed data for each simulation point (i.e., RTL profiling for the critical
simulation point and system-level data for the rest) to generate power
estimation for individual simulation points using the power simulator.
Next, the weighted aggregate is calculated in order to estimate overall
power consumption by the respective workload. The key contributions
of this work are as follows:

• We propose a cross-layer platform capable of integrating RTL sim-
ulation data with system-level profiling parameters in order to
improve the accuracy of power simulator.

• We present two different strategies for finding the critical sim-
ulation point for the given workload: (i) CAPE-WSSP: based on
user-defined workload-specific performance characteristics, and (ii)
CAPE-HWSP: based on the highest-weight assigned by the SimPoint
toolset.

• We present a comparative analysis of profiling data between system-
level and RTL simulation of the critical simulation point to demon-
strate the inaccuracies of the system-level abstraction.

• Lastly, we show power estimation accuracy improvement using the
CAPE framework. We apply the proposed scheme on a state-of-the-
art RISC-V microprocessor model and evaluate its performance for
multiple SPEC CPU2006 workload applications.

Our evaluation results show that the proposed cross-layer frame-
work can improve power estimation accuracy by up to 15% for indi-
vidual simulation points and by approximately 9% for the full applica-
tion, compared to that of existing schemes which leverage data from a
system-level simulator only.

2. Background

2.1. Design simulation frameworks

In most cases, modern microprocessor designs are evaluated and
tuned with either RTL or system-level simulators – particularly in the
early stages of development. While the RTL simulators utilize behav-
ioral HDLs for cycle-accurate modeling of the hardware, system-level
simulators use high-level models that are faster, albeit less accurate. In
the following sections, we briefly discuss the well-established RTL and
system-level simulators leveraged in our proposed cross-layer scheme.

2.1.1. AnyCore toolset
The AnyCore toolset is based on a synthesizable, parameterized RTL

model of a superscalar, out-of-order microprocessor core. The parame-
terized description renders it easy to modify various microarchitectural
details. Currently, the toolset is able to simulate two different instruc-
tion sets – PISA [14] and RISC-V [15]. While AnyCore provides the
option to choose between a dynamic or a static configuration, we use
the static option in this work.

The AnyCore RISC-V RTL model implements the RV64G user-level
ISA along with monitor-mode (M-mode) and supervisor-mode (S-mode)
for the privileged levels. System calls in the benchmarks are handled by
the RISC-V proxy-kernel (PK) and the front-end server. In addition, the
AnyCore design includes a set of L1-caches, where the memory man-
agement and address translation tasks are performed by the functional
simulator. The functional simulator also emulates the main memory.

Fig. 2 presents a high-level view of the AnyCore RISC-V co-
simulation framework. The framework guarantees functional correct-
ness of RTL simulation by using “Spike” (RISC-V functional simulator)
for each committed instruction. Spike is also used to initialize the reg-
isters prior to actual simulation at the RT-level. At the beginning of
the simulation, the benchmark is loaded into the PK which boots the

88



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 2. AnyCore framework: the high-level functional simulator verifies correct-
ness of retired instructions, while DPI calls implement the functions at HDL-
level.

Fig. 3. The gem5 simulator provides multiple CPU models with varying focus
on speed and accuracy.

CPU by setting up the registers, loading the benchmark to the main
memory and setting the start program-counter (PC) for the benchmark.
Once the desired instruction is reached, the framework starts running
detailed simulation with the RTL simulator.

2.1.2. gem5 simulator
gem5 is one of the well-known system-level performance simulators

in the open-source domain. As shown in Fig. 3, gem5 supports a range
of CPU models, simulation modes and memory system hierarchy that
corresponds to different levels of simulation speed and accuracy.

The gem5 CPU models are capable of capturing various processor
designs and functionality. The Atomic CPU is the fastest but least accu-
rate, while the detailed CPU corresponds to most time-consuming but
accurate simulations. The detailed CPU model has two sub-categories
– the In-Order and the Out-of-Order (O3/DerivO3) models. Both of the
detailed CPU models are pipelined and highly configurable.

In addition, the gem5 CPU models can run in two simulation modes
– the system-call emulation (SE) mode and the full-system (FS) mode.
In the SE mode, no operating system is loaded by gem5 during the
simulation and system-calls are emulated by the host system. In con-
trast, the FS mode executes both user-level and kernel-level instruc-
tions, and models a complete system by loading an OS in the simulator.
The OS boots the machine, simulates all the system-calls, and handles
the virtual-to-physical translations.

Also, gem5 is capable of modeling data and instruction caches, mem-
ory management unit (MMU) and a unified L2 cache, and supports two
types of memory hierarchy. For simpler memory modeling, gem5 uses
the Classic memory model, where the emphasis is put on the pipeline

simulation. The memory uses simple timing model to calculate hits,
misses and other memory performance data. On the other hand, the
Ruby memory model contains various coherence protocols, and can sup-
port a more detailed memory hierarchy simulation.

Finally, while the gem5 simulator can simulate different instruction
set architectures (ISA), we use the recently implemented RISC-V ISA in
gem5 [16].

2.2. SimPoint toolset

While the most accurate method to profile a workload is to simu-
late all the instructions, for many real-life applications such an evalua-
tion can be impractically long. For example, the SPEC CPU2006 bench-
mark on average contain 2249.75 billion instructions and executing
even a system-level simulation can take days [17,18]. The SimPoint tool
addresses this issue by generating representative phases of a workload
and aggregating the results in order to represent the whole application
[19]. The tool identifies and isolates unique phases/regions where the
program execution is stable and has a relatively constant CPI. SimPoint
starts by generating dynamic execution traces of the given workload
and then slices them into user-defined sizes. Typically, slices of 1 M or
10 M instructions can deliver high accuracy with reasonable simulation
times [20]. The tool then uses a K-means algorithm to form clusters of
slices. Towards the end of this stage, a representative slice is chosen
from each cluster and set as a simulation point. Each simulation point is
assigned a weight based on the cluster size it represents, and the sum of
the weights is always 1 (i.e., the full application). The weighted simu-
lation points can be simulated in parallel and then aggregated based on
weight, in order to generate a fast and accurate characterization pro-
file for the full application. For example, when using the SimPoint tool,
Sherwood et al. reported an average IPC error of 3% for SPEC CPU2000
benchmark running Alpha binaries [21].

2.3. McPAT simulator

The McPAT power simulator integrates power, area, and timing
information for comprehensive design space exploration [22]. The
framework is capable of simulating power based on the built-in models
for different technology nodes, single or multi-core, in-order and out-
of-order processors. Furthermore, McPAT model also takes into consid-
eration the off-chip elements, such as network-on-chip, multi-domain
clocks, caches, etc. The framework uses an XML based interface as an
input to the program. The interface contains critical micro-architectural
information, as well as various activity factors which contribute to
the power consumption of the microprocessor. The performance sim-
ulators generate the activity factors which are then parsed to fill out
the XML interface. The power, area and timing models in McPAT are
validated against multiple microprocessors and the hierarchical output
report contains information on low-level pipeline modules.

Fig. 4. Conventional power estimation frameworks: Benchmarks are run either
using system-level simulator or RTL simulator.

89



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 5. Proposed cross-layer power estimation framework.

3. Cross-layer framework for power estimation

3.1. Overview

The conventional setting for performance and power modeling
uses either a system-level or an RT-level simulation framework. The
high-level depiction for this setting is shown in Fig. 4. The micro-
architectural profiling data, as well as performance parameters (e.g.,
IPC) generated from workload execution, are captured by one of these
frameworks and then forwarded to a power simulator. The power simu-
lator utilizes such profiling parameters and the activity factors for var-
ious micro-architecture modules in order to calculate power consump-
tion.

There are two critical takeaways regarding the existing methodol-
ogy for power estimation. First, while RTL simulators typically pos-
sess an accurate description of a microprocessor using cycle-accurate
HDL, simulating real-life workload applications with them can often be
impractically time-consuming, which in turn forces the designers to opt
for the less accurate system-level simulators [23]. Second, the accuracy
of the power simulator critically depends on the accuracy of the profil-
ing data it receives as an input. The workload activity profile is given
as the input to the power simulator, which is then used to estimate
power consumption based on the pre-built power models. Therefore, it
is critical to provide the most accurate profiling data as the input to the
power simulator in order to accurately estimate power consumption of
the design.

In this work, we propose a cross-layer approach to overcome the
challenges of stand-alone system or RT-level full workload simulation.
Specifically, the cross-layer framework simulates representative phases
of the workload at both system and RT-level. The phases are gener-
ated by the SimPoint toolset, each marked with an individual weight.
The ‘critical’ phase is determined either by the weight assigned by
the SimPoint toolset or by the ‘critical score’ calculated by the user
based on microarchitectural performance parameters. Adopting the
simpoint-based representation allows our cross-layer approach to elimi-
nate lengthy RT-level simulation of the complete workload. Instead, we
run the RT-level simulation only on the ‘critical’ representative phase.

After simulation completes in the CAPE framework, the microarchi-
tectural parameters for each simulation point are collected and pro-

vided as an input to the power simulator for power estimation. The
power simulator gives individual simulation point power as its output.
Finally, power estimation for the entire workload is calculated by the
weighted sum of all simulation points.

Our proposed framework makes the following assumptions:

• Because our framework provides improved accuracy at the early
design stage, we assume that we only have access to the RT-
level design of the microprocessor. The RT-level simulation pro-
vides highly accurate microarchitecture performance parameters to
its faster system-level counter-part. When measuring any improve-
ments achieved by the CAPE framework, this RT-level simulation
results are considered as the baseline performance.

• The microarchitectural performance parameters for the full work-
load is available to us from offline simulation. This can be generated
using the system-level simulator, as it is impractical to simulate the
full workload using the RT-level simulator.

We present the CAPE framework in Fig. 5. The framework has four
distinct steps for accurate power estimation:

Step 1: Represent the workload in phases (simulation points) using
a workload phase detection toolset.
Step 2: Determine the CAPE scheme to be used and choose the
‘critical’ simulation point.
Step 3: Simulate the ‘critical’ simulation point at the RT-level; the
other non-critical simulation points are simulated at the system-
level.
Step 4: Finally, compute power consumption for each simula-
tion point using the power simulator and aggregate the weighted
results to represent overall power consumption for the work-
load.

We propose two separate schemes for the cross-layer simulation
framework. Both schemes require phase based representation of the
whole workload. This is shown in Fig. 5. We use the SimPoint toolset
for generating these phases, also known as the simulation points or
simpoints. Simpoints allow us to only simulate a fraction of the over-
all instructions to represent the whole benchmark. The accuracy of the
simpoint representation for each workload depends on the granular-
ity of the interval size and the number of maximum simulation points

90



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

allowed. It is worth noting that simpoints can be simulated in parallel.
Therefore, the total simulation time to characterize the whole workload
is represented by the following equation:

Overall workload characterization time =

max (Profiling time for a simulation point)
(1)

Given the same number of instruction simulation, the RT-level takes
larger amount of time to complete. Thus, based on Eq. (1), the time
needed to characterize the performance of a workload using simulation
points is bound by the time of the RT-level simulation. After completing
the benchmark representation, the next step is to determine the CAPE
scheme and identify the ‘critical’ simulation point.

3.1.1. CAPE-WSSP: workload specific SimPoint selection
Our first scheme for the cross-layer simulation framework utilizes

workload specific simulation points, which we call CAPE-WSSP. Using
the system-level simulator, we initialize this scheme by running detailed
simulation of all the simpoints generated by the SimPoint toolset. At the
end of simulation, each phase generates its representative performance
parameters, which we carefully profile. From the initial performance
profile, we select key performance parameters and generate a ‘critical
score’.

We formulate the ‘critical score’ with the following equation:

critical score =
N∑

i=0
(wi × vi) (2)

where w is the weight of the parameter, v is the value of the parameter,
and N is the total number of profiled parameters.

We note that the key performance parameters are chosen and cor-
responding weights are assigned based on the designer’s requirement
and the workload-specific characterization of the design. Therefore, the
‘critical score’ for a given phase will vary.

Next, we generate the ‘critical score’ for the full workload simula-
tion. Performance profiling for the full workload is available to us from
offline simulation. For this step, the key parameters and their weights
remain the same, and the generated ‘critical score’ represents the over-
all workload specific characteristics.

In the CAPE-WSSP scheme, we complete the selection process for
the ‘critical’ phase by comparing the calculated scores between the full
workload simulation and the simpoint-based simulation. The simpoint
with ‘critical score’ closest to that of the full workload is considered as
the ‘critical’ phase for this scheme. Consequently, this ‘critical’ simpoint
is then simulated at the RT-level for accuracy improvement. If a given
benchmark has multiple ‘critical’ simpoints, the user has the option to
simulate all or one ‘critical’ simpoint at the RT level.

Each abstraction level generates corresponding performance param-
eters for every simpoint after the simulation completes. These param-
eters, along with the microarchitectural details are then used as input
for the McPAT power simulator. The power simulator calculates power
for each simpoint. Finally, for the overall workload power estima-
tion, the McPAT simulator aggregates result based on all simpoint
weights.

3.1.2. CAPE-HWSP: weight-based SimPoint selection
The second proposed scheme for our cross-layer framework uses

the individual weights generated by the SimPoint toolset for each sim-
point to determine the benchmark specific ‘critical’ phase. We call this
scheme CAPE-HWSP, as it uses the highest weighted simulation point
(HWSP) for the ‘critical’ phase detection. In this methodology, we sim-
ulate the HWSP at the RT-level for accuracy enhancement over the
system-level simulator. The SimPoint toolset determines the weight of
an individual simpoint by calculating the amount of time and the num-
ber of basic blocks present for each phase during simulation. The sim-
point requiring longest simulation time for a phase is designated as the

highest weighted simulation point by the tool. Therefore, improving the
performance profiling accuracy of the HWSP increases the overall work-
load characterization in the CAPE-HWSP scheme. If multiple HWSPs are
present for the workload, in the current CAPE-HWSP scheme, we select
the one occurring first based on the simpoint id.

The final step in this scheme uses the performance parameters gen-
erated for individual simpoints as the input for the McPAT power simu-
lator. The individual simpoint power estimation is then combined using
the weighted-sum to generate the overall workload power consump-
tion.

3.2. Implementation

In this section, we provide implementation details for each of the
steps described in Section 3.1.

3.2.1. Simpoint generation
In the first step of our framework, we generate simulation points for

each benchmark using the SimPoint toolset (version 3.2) [19]. We com-
pile five benchmark application from the SPEC CPU2006 benchmark
suite [2] for the RISC-V instruction set architecture [15]. The appli-
cations are chosen from the SPEC CPU2006 integer suite and we use
Speckle [24] wrapper to compile them. We use the riscv-gnu-toolchain
with -O3 and -static flags for compiling the benchmarks, and use the test
input set to run the simulation. We generated simulation points with
three different cluster sizes: 1 M, 10 M, and 100 M. Finally, we evalu-
ated each cluster size for a maximum simulation point number of 6, 10
and 20.

3.2.2. Configuration for RTL and system-level simulation
AnyCore RTL: We use the AnyCore RISCV toolset for RTL simula-

tion. Specifically, we configure the static core-1 setting for our exper-
iments with minor modification. This setting allows the superscalar,
out-of-order microprocessor to fetch, decode, and rename one instruc-
tion every clock cycle. The core issues three instructions each cycle and
has three functional units in the pipeline. At every clock, one instruction
is committed. The pipeline also implements a simple 2-bit branch pre-
dictor unit to predict branch directions in the fetch stage. The L1 cache
is direct-mapped and L2 cache is always assumed to be a hit. Table 1
shows key microarchitectural details for the core-1 settings used in the
RTL simulation. The functional simulator in the AnyCore framework is
used for fast-forwarding the simulation to the desired starting point.
Once the desired instruction is reached, the functional simulator trans-
fers the architectural register states to the RTL framework. The detailed
RTL simulation starts at that point and continues until the end of the
simulation stop point. The performance parameters are probed from
different pipeline stages and reported at the end of the simulation.

gem5 Simulator: We start by modifying the gem5 simulator to
match the microarchitectural details in Table 1. This modification
includes changing the branch predictor unit, pipeline width, and
depths, different stage parameter sizes, etc. We also modify the func-
tional units’ latency and the number of functional units used by the
gem5 out-of-order CPU. The number of pipeline stages in the RTL

Table 1
Microarchitecture details for AnyCore core-1.

Feature Value Feature Value

Fetch-to-Dispatch width 1 L1 Ins. Cache 2 KB
Issue-to-Execute width 3 L1 Data Cache 8 KB
Retire width 1 Active List size 96
Issue Queue 16 Functional units 3
Load/Store Queue 32/32 Physical Register 160
BTB size 1024 RAS 16
BPU entries 1024 Floating-point Pipeline 0

91



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

design is matched by modifying the individual pipeline stage delay
in gem5. Finally, we turn off the indirect branch predictor in gem5
because the RTL design does not use this feature.

We simulate each simulation points using the out-of-order detailed
CPU in parallel using the modified gem5. To reduce the effect of cold-
cache start, we run 100 million instructions for warm-up prior to run-
ning detailed simulation from the simulation start point. If the detailed
simulation starting point is less than 100 million instructions, then we
either warm-up for 1 million instructions or do not warm-up at all (in
the case of detailed simulation starting from the first instruction count).
At completion, gem5 generates detailed performance parameter statis-
tics for each simulation points.

3.2.3. Power estimation with McPAT power simulator
The final step in our framework uses the McPAT power simulator to

estimate runtime dynamic power consumed by the core [22]. McPAT
uses a detailed XML file as its input. The input file contains various
architectural details and activity data for various performance param-
eters, which are generated by either gem5 or RT-level simulator. We
mimic the micro-architectural details of the microprocessor and mod-
ify the generic McPAT model to represent the AnyCore RTL design. For
parameters, such as ‘duty cycle’, we use the default values in the XML
file. The effect of using default values for these parameters for both
gem5 and RTL data remains the same. McPAT can generate peak, leak-
age and total runtime power consumption by the core and each of its
sub-modules for a chosen process technology. We use 65 nm technology
node for the power estimation results.

4. Evaluation

In this section, we discuss our evaluation results and demonstrate
the improvements achieved in power estimation accuracy with the pro-
posed CAPE framework.

4.1. Sensitivity analysis of different SimPoints

The accuracy of the SimPoint toolset depends on the simpoint clus-
ter size and the total number of simpoints available [25]. In this section,
we study the impact of cluster size and the maximum number of simula-
tion points for the five SPEC2006 benchmarks: 401.bzip2, 429.mcf,
445.gobmk, 458.sjeng and 471.omnetpp.

4.1.1. Varying simulation point interval sizes
To create the ‘full’ profile for each benchmark, we start by sim-

ulating them in gem5 simulator using the detailed out-of-order CPU
without any SimPoint representation. Next, each benchmark is repre-
sented with 1 M, 10 M and 100 M simulation point interval sizes with
maximum 6 simulation points. Each simulation points are then sim-
ulated with the detailed CPU in gem5. After simulation completes, the
weighted sum of the instruction-per-cycle (IPC) parameter is used as the
simpoint-based representation of each benchmark. In Fig. 6, we show
the accuracy of each simpoint-based representation of IPC compared
with the ‘full’ benchmark IPC generated from offline simulation. The
result shows, IPC for 401.bzip2, 429.mcf, 445.gobmk, 458.sjeng
and 471.omnetpp are 0.24, 0.08, 0.204, 0.13 and 0.06, respectively
for ‘full’ benchmark simulation. This is shown as ‘Full BM’ in the
figure.

For 1 M simpoint cluster size, the IPC for 401.bzip2, 429.mcf,
445.gobmk, 458.sjeng and 471.omnetpp are 0.24, 0.08, 0.35,
0.16 and 0.06, respectively. This result is represented as ‘SPS-1M’ in
Fig. 6.

In the same figure, ‘SPS-10 M’ represents the cluster size of
10 M instructions. The IPC for 401.bzip2, 429.mcf, 445.gobmk,
458.sjeng and 471.omnetpp are 0.43, 0.087, 0.22, 0.13 and 0.06,
respectively for the 10 M simulation point size.

Fig. 6. IPC differences for ‘full’ vs. simpoint representation of benc hmarks
simulated in gem5. Each benchmark is represented by 1 M, 10 M and 100 M
simpoint size with the maximum of 6 simulation points.

Fig. 7. IPC difference between the full benchmark and different simpoint vari-
ations. The maximum number of simpoints (max K) are varied between 6, 10
and 20 for the 1 M simpoint cluster size.

Finally, the IPC for 100 M simpoint interval size (represented
as ‘SPS-100 M’) is 0.25, 0.09, 0.13, 0.13 and 0.06 for 401.bzip2,
429.mcf, 445.gobmk, 458.sjeng and 471.omnetpp benchmark,
respectively.

We can observe that the average (geometric mean) IPC difference
for the five benchmarks is 2%, 3%, and 3% respectively for 1 M, 10 M,
and 100 M simulation point interval sizes when compared against the
‘full’ benchmark IPC. This result implies that the 1 M simulation point
interval size gives the closest IPC representation for the five benchmarks
we have simulated. The 10 M and 100 M simulation point representa-
tion is also reasonably close and, therefore, can be chosen for the CAPE
framework. However, simulation time at the RT-level increases expo-
nentially with increasing number of simulated instructions, therefore, it
is often impractical to simulate larger number of instructions (for exam-
ple 100 M) at the RT-level for accuracy improvement. In this work, we
chose the 1 M simpoint interval size for the CAPE framework.

4.1.2. Varying maximum number of simulation points
From Section 4.1.1, we extend our simulation for 1 M simulation

point interval size with varying simulation points number (max K). We
vary the max K size between 6, 10 and 20 and observe the IPC accuracy
for each variation. Our objective is to find the max K value for which
the difference in IPC is minimum compared with the ‘full’ benchmark
result.

Fig. 7 shows the comparison of max K values. The IPC for the ‘full’
benchmark simulation is shown as ‘Full BM’. Our results show that for
max K value of 6, the IPC for 401.bzip2, 429.mcf, 445.gobmk,
458.sjeng, and 471.omnetpp is 0.24, 0.08, 0.35, 0.16 and 0.06,
respectively.

Similarly, for max K value of 10, the IPC is 0.34, 0.08, 0.34,
0.13, and 0.06, respectively for 401.bzip2, 429.mcf, 445.gobmk,
458.sjeng, and 471.omnetpp benchmarks.

Finally, for max K value of 100, the IPC observed for 401.bzip2,
429.mcf, 445.gobmk, 458.sjeng, and 471.omnetpp is 0.34, 0.10,
0.34, 0.13, and 0.06, respectively.

When compared against the IPC obtained from ‘FULL BM’, the over-
all average (geometric mean) IPC varies by 2.32%, 7.15%, and 9.24%,
for max K values of 6, 10 and 20, respectively. Therefore, for the five

92



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Table 2
SimPoint details for evaluated SPEC CPU2006 benchmarks.

benchmarks we simulated, the SimPoint tool setting with 1 M simpoint
interval size with max K value of 6 is the closest average representa-
tion of the full benchmark. Table 2 shows the detailed SimPoint break-
down along with overall SimPoint generation runtime for each simu-
lated benchmark.

4.2. Case study 1: CAPE-WSSP

Based on the result from Section 4.1.2, we break each benchmark
into representative phases using the SimPoint tool. Next, the ‘critical
score’ for ‘full’ benchmark and each simpoint are calculated using Eq.
2. We select three performance parameters: branch, load and store
instruction count and assume 40% weight for the branch instructions
and 30% for load, and 30% for store instructions. These non-timing
related performance parameters are used only as an example. The user
has the option to select any other performance parameters as neces-
sary. For example, if the user needs to find more accurate performance
profiling of the microprocessor register accesses, then s/he can use
the register read count as one of the key performance parame-
ter and assign a higher weight to it. For floating point unit utilization,
the user should include floating point instruction count as a
key parameter with appropriate weight distribution, ensuring workload
specific simpoint selection. The ‘critical’ simpoint in the CAPE-WSSP
scheme varies based on the selected performance parameters and their
weights.

Based on the weights selected, the ‘full’ benchmark’s ‘critical scores’
are 153.7, 236.7, 194.2, 149.8, and 212.8 for 401.bzip2, 429.mcf,
445.gobmk, 458.sjeng, and 471.omnetpp benchmarks, respec-

tively. Next, we calculate the ‘critical score’ for each simpoint for indi-
vidual benchmark and summarize in Table 3. For each of the bench-
marks, the simpoint highlighted in yellow represents the critical sim-
point as it corresponds to the critical score closest to that of the full
benchmark simulation. Specifically, the critical simpoint ids are: 5, 3,
3, 1, and 5 for 401.bzip2, 429.mcf, 445.gobmk, 458.sjeng, and
471.omnetpp benchmarks, respectively.

We present the differences observed for various executed perfor-
mance parameters in Fig. 8. The ‘critical’ simpoint for each bench-
mark is simulated both in AnyCore RTL and in gem5 simulator for 1 M
instructions.

Load count. Fig. 8a shows the difference in number of load instruc-
tions for five simulated benchmarks. The WSSP of 458.sjeng exhibits
the lowest difference of 6% between the AnyCore and gem5 simulation,
while the difference is highest for 445.gobmk at 66%.

Store count. The comparative result for number of store instruc-
tions is shown in Fig. 8b. We can see that 458.sjeng again manifests
the minimum difference of 3%, whereas for 429.mcf the difference is
the maximum at 82%.

Branch count. Fig. 8c shows that the difference in branch instruc-
tion count is the highest for 401.bzip2 at 94%. In contrast,
458.sjeng shows the least difference of 8%.

Branch misprediction. In Fig. 8d, we see an average differ-
ence of 48% across five benchmarks for branch misprediction count.
401.bzip2 exhibits the lowest 30% difference, while for 445.gobmmk
it stands highest at 87%.

Cache miss. Fig. 8e portrays the fluctuation in instruction cache
misses between the two simulation platforms. We observe that,

93



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Table 3
Critical simulation point selection for CAPE-WSSP scheme.

401.bzip2, 429.mcf, 445.gobmk, 458.sjeng, and 471.omnetpp
report differences of 41%, 64%, 31%, 61% and 44%, respectively. Addi-
tionally, Fig. 8f shows the differences in data cache misses to be 47%,
55%, 60%, 71% and 61%, for 401.bzip2, 429.mcf, 445.gobmk,
458.sjeng, and , 471.omnetpp, respectively.

IPC. As our final point of comparison, we present the comparison
of IPC values attained from the gem5 and the AnyCore simulator in
Fig. 8g. One can note that, 458.sjeng exhibits the minimum differ-
ence of 2%, while 429.mcf shows the maximum difference of 83%.
The average IPC difference observed is 21% for the simpoints in the
CAPE-WSSP scheme.

4.3. Case study 2: CAPE-HWSP

In CAPE-HWSP scheme, we use the HWSP for each benchmark as
the critical simulation points. Each simpoint details along with corre-
sponding weight is listed in Table 2 with the HWSP highlighted. In
order to explore the amount of discrepancy in the various performance
parameters, we simulate the HWSP of each benchmark in both the RTL
(AnyCore) and the system-level (gem5) simulator. The variations are
presented in Fig. 9. Each simulation is run for 1 million instructions
from the starting point listed in Table 2.

Load count. Fig. 9a shows the difference in number of load instruc-
tions for all five benchmarks. We can see from the figure that, the HWSP
of 429.mcf exhibits the lowest difference of 5% between the RTL and
system-level simulation followed by 401.bzip2 and 458.sjeng with
a difference of 6%. The HWSP for 445.gobmk benchmark shows the
maximum difference of 66% for its system-level counterpart.

Store count. As shown in Fig. 9b, for store instructions, 445.gobmk
again manifests the maximum difference of 61%, whereas for
458.sjeng the difference is the minimum at 3%. The overall average
difference across five benchmarks for the ‘store count’ is 16%.

Branch count. Fig. 9c shows that the difference in branch instruc-
tion count is the highest for 445.gobmk at 39%. In contrast,
458.sjeng shows the least difference of 8%.

Branch misprediction. As shown in Fig. 9d, for branch mispredic-
tion count, 429.mcf exhibits the minimum difference of 17%, while
for 401.bzip2 it stands maximum at 95%.

Cache miss. Fig. 9e compares instruction cache misses for the
two simulation platforms. The average instruction cache miss across
five benchmarks is 52%. The 445.gobmk shows the maximum and
401.bzip2 benchmark shows the minimum amount of difference for
this parameter. Similarly, in Fig. 9f, we find an average difference of
55% across five benchmarks for the data-cache miss count. For this per-
formance feature, the 429.mcf benchmark shows the minimum varia-
tion of 29%.

IPC. As our final point of comparison, we present difference in IPC
values attained from the gem5 and the AnyCore simulator in Fig. 9g.
One can note that, 471.omnetpp exhibits the highest amount of vari-
ation in IPC at 75%, while 458.sjeng shows the lowest variation of
2%.

We further discuss the reasons for the observed variations in perfor-
mance parameters (and, thereby, in IPC) between gem5 and RT-level
simulation in Section 4.6.

4.4. Power estimation results

For power estimation, we present (i) individual power estimation
variations observed for the ‘critical’ simpoints, and (ii) overall work-
load power estimation variation using combined weighted-sum of sim-
points. The performance parameters obtained from RTL simulation is
the baseline performance, and the power estimated by the McPAT sim-
ulator using these values, therefore, is the baseline power for ‘critical’
simpoints. Figs. 10 and 11 present power estimation variations observed

94



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 8. Comparison of parameter profiling between gem5 and AnyCore RTL framework for simulation points selected in CAPE-WSSP scheme.

using the CAPE-WSSP and CAPE-HWSP schemes, respectively. For com-
parison, both schemes present ‘gem5’ as the power estimated only from
the system-level simulation using simpoint representation of the bench-
marks.

The improvement in power estimation is measured as:

Power improvement = baseline power − gem5 power
baseline power

(3)

Fig. 10a shows an average power estimation improvement of ∼6%
across all five benchmarks when only the ‘critical’ simpoints are con-
sidered in the CAPE-WSSP scheme. The maximum power improvement
of 14% is observed for the 445.gobmk benchmark and the minimum
power improvement is noticed for the 458.sjeng benchmark for the
respective ‘critical’ simpoints. This matches with the trend observed in
Section 4.2, where 458.sjeng has minimum difference for five out of
seven key performance parameters we profiled.

The overall workload power estimation using the CAPE-WSSP
scheme is presented in Fig. 10b. Results show an average power varia-
tion of 1.5% when compared between gem5-only performance parame-
ter used for each simpoint and CAPE-WSSP scheme used for the critical
simpoint.

Fig. 11a shows power differences observed for the HWSP between
performance parameters generated from gem5-only and RTL-only sim-
ulation. We see an average power improvement of 8% for individual
HWSPs across five benchmarks. For individual HWSPs, 445.gobmk
shows maximum and 458.sjeng shows minimum amount of power
estimation difference. The overall benchmark power estimation com-
parison between ‘gem5-only’ simpoint simulation and CAPE-HWSP
scheme is presented in Fig. 11b. This shows an average of ∼4% accuracy
improvement over five benchmarks using the CAPE-HWSP scheme. For
this scheme, the 429.mcf benchmark has the maximum variation of
∼6%, followed by ∼5% deviation observed for the 445.gobmk bench-
mark. The lowest difference is noticed for the 458.sjeng benchmark
with ∼2% power estimation accuracy improvement.

4.5. CAPE framework runtime

Fig. 12 presents the CAPE runtime and compares it against two
‘corner’ cases. We measure simulation runtime using time command
in the Unix operating system. The ‘gem5-Full BM’ represents a typi-
cal benchmark characterization using the gem5 simulator. Using the

95



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 9. Comparison of parameter profiling between gem5 and AnyCore RTL framework for the highest weighted simulation point. Our CAPE-HWSP scheme improves
accuracy by enabling RTL (AnyCore) simulation for the critical segment of the workload application.

Fig. 10. Power estimation improvement using CAPE-WSSP scheme. (a) represents power improvement over individual simulation point. (b) represents overall power
improvement for each benchmark using the CAPE-WSSP scheme.

detailed cpu model, the benchmark is simulated to completion with-
out any simpoint representation. The ‘gem5-SP’ represents the average
of 1 M instruction simulation time when all simpoints are simulated
using the gem5 simulator. This simpoint-based benchmark simulation
does not use any RT-level simulation. Finally, the ‘HWSP’ and ‘WSSP’
represent the RTL simulation time for 1 M instruction for the ‘critical’

simpoints in CAPE-HWSP and CAPE-WSSP scheme, respectively.
On average, the ‘gem5-Full BM’ approach takes 651 min to sim-

ulate five benchmarks. In contrast, the ‘gem5-SP’ method takes only
10 min on average to simulate all simpoints across five benchmarks.
The ‘HWSP’ method spends an average of 31 min simulation runtime
for 1 M instructions at the RT-level. For the ‘WSSP’ method, the average

96



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

Fig. 11. Power estimation improvement using CAPE-HWSP scheme. (a) represents highest weighted simulation point power improvement for each benchmark. (b)
represents overall benchmark power estimation improvement using the CAPE-HWSP scheme.

Fig. 12. Runtime comparison for different simulation methods. The CAPE
framework is ∼24× faster than gem5 full benchmark simulation.

runtime is 28 min for the same setting. Compared to the ‘gem5-Full BM’
approach, both ‘HWSP’ and ‘WSSP’ schemes are 21 times and 24 times
(on average) faster, respectively. However, compared with the ‘gem5-
SP’ approach, both the ‘HWSP’ and ‘WSSP’ approaches are ∼3 times
slower (on average). This increased runtime is the trade-off required to
achieve the improved accuracy offered by the CAPE framework.

4.6. Discussion

4.6.1. Variations in performance parameters
Throughout this work, we incorporate the accurate RT-level infor-

mation with the system-level simulation results to improve the over-
all workload profiling, and thereby improve power estimation accu-
racy. Figs. 8 and 9 show the detailed comparison of key performance
parameters. The expected differences between the number of executed
key performance parameters in gem5 and AnyCore framework are con-
firmed from the experimental results. While micro-architectural param-
eters have been matched both in AnyCore and gem5 models, the exist-
ing differences are caused by the simplified, generic design of key
microarchitectural modules [5,26]. For example, the fetch stage in
gem5 always aligns itself with the cache-line boundary for fetching
new instructions. This results in two fetches when critical instructions
cross over the cache-line boundary. Similarly, the default write-back
depth in the gem5 O3CPU is 1, which generates write-back stalls for
long-latency instructions and reduces the overall performance of the
simulated design [6]. In order to improve the microarchitectural mod-
eling in gem5, each design needs to be verified against real hardware
architecture. However, at early design-space-exploration, this option is
impractical and often impossible [1]. Nevertheless, system-level simula-
tors (gem5) generally provide the flexibility of quick simulation with an
acceptable level of accuracy, which in turn depends on various param-
eters such as: the underlying microarchitecture, validation against real
hardware, runtime and performance parameter validation. Typically,
system-level simulators can generate reasonably accurate microarchi-
tecture performance information after multiple rounds of correcting the

modeling, abstraction, and specification errors. As mentioned earlier,
we address the specification errors in gem5 by matching the microar-
chitecture parameters and delays. It should be noted that we do not
attempt to address the other errors in gem5 as that would skew the
simulator towards a hardware specific design, which in turn nulli-
fies the idea of leveraging a generalized system-level simulator during
early design-space exploration. Instead, we leverage the state-of-the-
art, expecting (and accepting) that there would be variations in data
reported by gem5 and the AnyCore RTL.

4.6.2. Accuracy improvement with CAPE framework
The CAPE-WSSP scheme achieves an average of ∼2% overall power

estimation improvement across five simulated workloads. This nominal
improvement is attributed to the fact that the CAPE-WSSP scheme does
not consider simpoint weight when determining the ‘critical’ simpoint.
Therefore, although the ‘critical’ simpoint results up to ∼13% power
estimation improvement (Fig. 10a: 445.gobmk), when combined with
respective simpoint weights, this high improvement is weighed down
to ∼5% (Fig. 10b: 445.gobmk). The same is observed for rest of the
workloads, thereby confirming that in the CAPE-WSSP scheme, the
amount of overall power estimation accuracy is critically dependent
on the ‘critical’ simpoint weight.

5. Related work

5.1. gem5 simulator

gem5 is a widely used system-level simulator for performance char-
acterization, design modeling and design space exploration [3]. Fer-
nando et al. used gem5 simulator to model both in-order and out-
of-order arm microprocessors [5]. Their design modeled the microar-
chitectural details based on published and estimated data. Yang et al.
extend gem5 to build a VLIW simulation platform [27]. They also mod-
eled their design based on a cycle-accurate simulator and finally vali-
dated against the RTL simulator. We note that our scheme is different
from the prior works because of the incorporation of RT-level informa-
tion for accuracy improvement. Moreover, instead of running the full
workloads, we leverage smart usage of SimPoint generated phases of
the workload to reduce overall simulation time.

5.2. SimPoint-based benchmark simulation

Simpoint-based simulations create representative points/phases for
a workload and simulate those points only. Maximilien et al. use Sim-
point technique to profile benchmarks for different performance param-
eters and predict the performance of the benchmark [28]. Their model
is solely dependent on the SimPoint accuracy and the hardware model
used by the system-level simulator. Coskun et al. used the SimPoint tool
to create a database for benchmarks and use that for dynamic thermal
management [29]. However, their work did not include any RT-level
data for improving accuracy.

97



M. Zaman et al. Integration, the VLSI Journal 68 (2019) 87–98

5.3. Cross-layer simulation frameworks

The idea of multi-level simulation framework has been addressed
by several research communities to tackle the issue of inaccurate
simulation results. Huang et al. suggested the importance of hard-
ware/software co-simulation techniques for improved performance
accuracy but did not provide the necessary implementation details [9].
While Sanchez et al. proposed a microarchitectural simulator that can
reduce the time for detailed simulation by leveraging dynamic binary
translation for instruction driven timing models, their simulator uti-
lizes system-level description of the design and lacks the accuracy of
RT-level information [10]. On the other hand, Oboril et al. proposed
a framework for simulating and modeling power/area at the microar-
chitectural level for exploring the impact of aging [30]. Their frame-
work also relies on the limited accuracy of the system-level simulator
in collecting performance parameters. Instead of using actual RT-level
information, the authors introduce different aging models and utilize
technology parameters and performance data generated by gem5. As a
result, their work does not capture the hardware-level accuracy for per-
formance/power characterization. The inaccuracy at the system-level
simulation motivated Kim et al. to use FPGA based sampling technique
for power accuracy improvement [11,12]. However, their work solely
depends on the FPGA and RT-level design, which often time can be pro-
hibitive for architecture designers for quick design space exploration.
Walker et al. proposed a hardware-validated improved power model-
ing technique for the gem5 simulator [7]. Their technique depends on
lengthy regression models for accuracy improvement. Moreover, their
model requires actual hardware for the validation, which is prohibitive
for early-stage design exploration. Furthermore, the model needs to be
updated for every hardware, meaning lengthy simulation both at the
hardware-level to create a database for the algorithm, and multiple sim-
ulations at system-level (gem5) for addressing all the modeling errors
and finalizing an acceptable model for power estimation.

To the best of our knowledge, our proposed scheme is the first to
introduce the ‘cross-layer’ approach by integrating system-level and
RTL simulation results to increase the accuracy of power estimation,
while maintaining reasonable fast simulation times overall.

6. Conclusion

The proposed CAPE framework enables accuracy improvement for
microprocessor power estimation during early design stage explo-
ration. The framework also allows user to selectively focus on spe-
cific microarchitectural module for power consumption using the CAPE-
WSSP scheme. Utilizing the simpoint representation of the workload,
the CAPE framework profile the ‘critical’ simpoint at the RT-level and
rest at the system-level simulator. The parameters collected from the
cross-layer profiling is used as input to the power simulator. Our evalu-
ation results show that the proposed schemes can improve power esti-
mation accuracy by more than 15% for individual simpoints, and by
∼9% for full benchmark applications – compared to the existing system-
level simulation based frameworks. The CAPE framework is ∼3 times
slower than the stand-alone system-level simulation of simpoints, while
approximately 24 times faster than the conventional full benchmark
simulation at system-level.

References

[1] A. Butko, R. Garibotti, L. Ost, G. Sassatelli, Accuracy evaluation of GEM5
simulator system, in: International Workshop on Reconfigurable and
Communication-Centric Systems-On-Chip, ReCoSoC), 2012.

[2] J.L. Henning, SPEC CPU2006 benchmark descriptions, Comput. Architect. News 34
(4) (2006) 1–17.

[3] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M.D.
Hill, D.A. Wood, The gem5 Simulator, Comput. Architect. News 39 (2) (2011) 1–7.

[4] R.B.R. Chowdhury, A.K. Kannepalli, S. Ku, E. Rotenberg, AnyCore: a synthesizable
RTL model for exploring and fabricating adaptive superscalar cores, in:
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2016.

[5] F.A. Endo, D. Courouss, H.P. Charles, Micro-architectural simulation of in-order
and out-of-order ARM microprocessors with gem5, in: International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIV), 2014.

[6] T. Nowatzki, J. Menon, C.-H. Ho, K. Sankaralingam, Architectural simulators
considered harmful, IEEE Micro 35 (6) (2015) 4–12.

[7] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, B. Al-Hashimi,
Hardware-validated CPU performance and energy modelling, in: International
Symposium on Performance Analysis of Systems and Software (ISPASS), 2018.

[8] B. Black, J.P. Shen, Calibration of microprocessor performance models, Computer
31 (5) (1998) 59–65.

[9] C.-Y.R. Huang, Y.-F. Yin, C.-J. Hsu, T.B. Huang, T.-M. Chang, SoC HW/SW
verification and validation, in: Asia and South Pacific Design Automation
Conference (ASP-DAC), 2011.

[10] D. Sanchez, C. Kozyrakis, ZSim: fast and accurate microarchitectural simulation of
thousand-core systems, in: ACM SIGARCH Computer Architecture News, vol. 41,
2013, pp. 475–486.

[11] D. Kim, A. Izraelevitz, C. Celio, H. Kim, B. Zimmer, Y. Lee, J. Bachrach, K.
Asanovicc, Strober: fast and accurate sample-based energy simulation for arbitrary
RTL, in: International Symposium on Computer Architecture (ISCA), 2016.

[12] D. Kim, C. Celio, D. Biancolin, J. Bachrach, K. Asanovic, Evaluation of RISC-V RTL
with FPGA-accelerated simulation, in: First Workshop on Computer Architecture
Research with RISC-V, 2017.

[13] M. Zaman, M.M. Shihab, A.K. Coskun, Y. Makris, Towards a cross-layer framework
for accurate power modeling of microprocessor designs, in: International
Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2018.

[14] D. Burger, T.M. Austin, S. Bennett, Evaluating Future Microprocessors: the
SimpleScalar Tool Set, University of Wisconsin-Madison, Computer Sciences
Department, 1996.

[15] A. Waterman, Y. Lee, D.A. Patterson, K. Asanovi, The RISC-V Instruction Set
Manual, Volume I: User-Level ISA, Version 2.1, Tech. Rep. UCB/EECS-2016-118.
EECS Department, University of California, Berkeley, May 2016http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html.

[16] A. Roelke, M.R. Stan, Risc5: implementing the RISC-V ISA in gem5, in: First
Workshop on Computer Architecture Research with RISC-V (CARRV), 2017.

[17] A.A. Nair, L.K. John, Simulation points for SPEC CPU 2006, in: International
Conference on Computer Design (ICCD), 2008.

[18] K. Ganesan, D. Panwar, L.K. John, Generation, validation and analysis of SPEC
CPU2006 simulation points based on branch, memory and TLB characteristics, in:
SPEC Benchmark Workshop, 2009.

[19] G. Hamerly, E. Perelman, J. Lau, B. Calder, Simpoint 3.0: faster and more flexible
program phase analysis, J. Instruct. Level Parallel. 7 (4) (2005) 1–28.

[20] E. Perelman, G. Hamerly, B. Calder, Picking statistically valid and early simulation
points, in: International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2003.

[21] T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Automatically characterizing
large scale program behavior, Comput. Architect. News 30 (5) (2002) 45–57.

[22] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, McPAT: an
integrated power, area, and timing modeling framework for multicore and
manycore architectures, in: IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2009.

[23] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, T. Yoshimura, A fast
hardware/software Co-verification method for system-on-a-chip by using a C/C
simulator and FPGA emulator with shared register communication, in: Design
Automation Conference (DAC), 2004.

[24] A wrapper for the SPEC CPU2006 benchmark suite. URL https://github.com/
ccelio/Speckle.

[25] J.Y. Joshua, R. Sendag, D.J. Lilja, D.M. Hawkins, Speed versus accuracy trade-offs
in microarchitectural simulations, IEEE Trans. Comput. 56 (11) (2007).

[26] J.H. Ahn, S. Li, O. Seongil, N.P. Jouppi, McSimA: a manycore simulator with
application-level simulation and detailed microarchitecture modeling, in:
International Symposium on Performance Analysis of Systems and Software
(ISPASS), 2013.

[27] L. Yang, L. Wang, X. Zhang, D. Wang, An approach to build cycle accurate full
system VLIW simulation platform, Simulat. Model. Pract. Theor. 67 (2016) 14–28.

[28] M.B. Breughe, S. Eyerman, L. Eeckhout, Mechanistic analytical modeling of
superscalar in-order processor performance, Trans. Architect. Code Optim. (TACO)
11 (4) (2015) 50.

[29] A.K. Coskun, R. Strong, D.M. Tullsen, T. Simunic Rosing, Evaluating the impact of
job scheduling and power management on processor lifetime for chip
multiprocessors, in: ACM SIGMETRICS Performance Evaluation Review, 2009.

[30] F. Oboril, M.B. Tahoori, ExtraTime: modeling and analysis of wearout due to
transistor aging at microarchitecture-level, in: International Conference on
Dependable Systems and Networks (DSN), 2012.

98

http://refhub.elsevier.com/S0167-9260(18)30537-6/sref1
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref2
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref3
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref4
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref5
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref6
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref7
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref8
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref9
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref10
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref11
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref12
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref13
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref14
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref16
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref17
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref18
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref19
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref20
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref21
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref22
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref23
https://github.com/ccelio/Speckle
https://github.com/ccelio/Speckle
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref25
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref26
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref27
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref28
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref29
http://refhub.elsevier.com/S0167-9260(18)30537-6/sref30

	CAPE: A cross-layer framework for accurate microprocessor power estimation
	1. Introduction
	2. Background
	2.1. Design simulation frameworks
	2.1.1. AnyCore toolset
	2.1.2. gem5 simulator

	2.2. SimPoint toolset
	2.3. McPAT simulator

	3. Cross-layer framework for power estimation
	3.1. Overview
	3.1.1. CAPE-WSSP: workload specific SimPoint selection
	3.1.2. CAPE-HWSP: weight-based SimPoint selection

	3.2. Implementation
	3.2.1. Simpoint generation
	3.2.2. Configuration for RTL and system-level simulation
	3.2.3. Power estimation with McPAT power simulator


	4. Evaluation
	4.1. Sensitivity analysis of different SimPoints
	4.1.1. Varying simulation point interval sizes
	4.1.2. Varying maximum number of simulation points

	4.2. Case study 1: CAPE-WSSP
	4.3. Case study 2: CAPE-HWSP
	4.4. Power estimation results
	4.5. CAPE framework runtime
	4.6. Discussion
	4.6.1. Variations in performance parameters
	4.6.2. Accuracy improvement with CAPE framework


	5. Related work
	5.1. gem5 simulator
	5.2. SimPoint-based benchmark simulation
	5.3. Cross-layer simulation frameworks

	6. Conclusion
	References


